
Parsing-based View-aware Embedding Network for Vehicle Re-Identification

Dechao Meng1,2, Liang Li*1, Xuejing Liu1,2, Yadong Li3, Shijie Yang2, Zheng-Jun Zha4, Xingyu Gao6,

Shuhui Wang1, and Qingming Huang2,1,5

1Key Lab of Intell. Info. Process., Inst. of Comput. Tech., CAS, Beijing, China
2University of Chinese Academy of Sciences, China, 3Megvii Inc, Beijing, China

4University of Science and Technology of China, China, 5Peng Cheng Laboratory, Shenzhen, China,
6 Institute of Microelectronics, Chinese Academy of Sciences, Beijing, China

{dechao.meng, xuejing.liu, shijie.yang}@vipl.ict.ac.cn, {liang.li, wangshuhui}@ict.ac.cn,

liyadong@megvii.inc, gaoxingyu@ime.ac.cn, zhazj@ustc.edu.cn, qmhuang@ucas.ac.cn

Abstract

Vehicle Re-Identification is to find images of the same ve-

hicle from various views in the cross-camera scenario. The

main challenges of this task are the large intra-instance dis-

tance caused by different views and the subtle inter-instance

discrepancy caused by similar vehicles. In this paper, we

propose a parsing-based view-aware embedding network

(PVEN) to achieve the view-aware feature alignment and

enhancement for vehicle ReID. First, we introduce a pars-

ing network to parse a vehicle into four different views,

and then align the features by mask average pooling. Such

alignment provides a fine-grained representation of the ve-

hicle. Second, in order to enhance the view-aware fea-

tures, we design a common-visible attention to focus on the

common visible views, which not only shortens the distance

among intra-instances, but also enlarges the discrepancy of

inter-instances. The PVEN helps capture the stable discrim-

inative information of vehicle under different views. The ex-

periments conducted on three datasets show that our model

outperforms state-of-the-art methods by a large margin.

1. Introduction

Vehicle Re-identification (ReID) has attracted more and

more attention in recent years as it is important for building

intelligent transportation and city surveillance systems [16,

11, 18, 14, 13, 30, 2]. This task aims to retrieve images of

a query vehicle in a large gallery set, where the target vehi-

cles are usually under various views and from widespread

cameras. It is particularly useful when the license plates of

*Corresponding author.

vehicles are occluded, blurred, and damaged. As illustrated

in Figure 1, there exists two key challenges in this task, 1)

the large intra-instance difference of the same vehicle under

different views. 2) the subtle inter-instance discrepancy of

different vehicles when they share the same type and color.

To address the above challenges, some works use the

meta information (e.g. vehicle attributes, spatial-temporal

information) to improve the representation ability of the

features. Liu et al. [16] proposed a course-to-fine search

framework to model the attributes and spatial-temporal in-

formation into vehicle ReID. Zheng et al. [34] introduced a

deep network to fuse the camera views, vehicle types and

color into the features of vehicle. These approaches focus

on learning global representation for the vehicle.

However, the overall appearance changes dramatically

under different view-points, which results in the instability

of global features and also brings the first challenge. In con-

trast, local features usually provide the stable discriminative

cues. Recently, researchers introduced local regions to learn

the more discriminative features about the vehicle. Wang

et al. [27] generated orientation invariant features based on

vehicle keypoints detection. Liu et al. [17] extracted local

features based on three evenly separated regions of a vehicle

to acquire distinctive visual cues. He et al. [3] detected win-

dow, lights, and brand for each vehicle through a YOLO de-

tector to generate discriminative features. The above meth-

ods focus on pre-defined regions to learn the subtle local

cues. However, as shown in Figure 1, the distinctive cues

(e.g. exhaust, stickers and ornaments) may appear in any

part of vehicle and this leads to the second challenge.

Recently, data augmentation such as complementary

views generation was applied to shrink the intra-instances

discrepancy. Zhou et al. [37] tried to handle the multi-view
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(a) Vehicle ID-1

(b) Vehicle ID-2

Figure 1. Toy examples from two different vehicles with the same

type and color in VERI-Wild. Each row indicates different views

of the same vehicle, which shows the challenge of large intra-

instance difference. Each column denotes the same view from dif-

ferent vehicles, which shows the challenge of subtle inter-instance

discrepancy. The red boxes represent the subtle discriminative dif-

ferences of the two vehicles.

problem based on generating the invisible views. The gen-

erated views are derived from the visible view, which are

unable to reconstruct additional discriminative features.

In vehicle ReID, different views usually present the dif-

ferent characteristics of a vehicle. We would acquire more

discriminative description of a vehicle by leveraging these

complementary characteristics. However, since the same

vehicle has large appearance discrepancy between different

views, how to effectively fuse such different characteristics

remains a challenging problem.

To tackle the above challenge, this paper proposes a

Parsing-based View-aware Embedding Network (PVEN) to

achieve the view-aware feature alignment and enhance-

ment for vehicle ReID. The PVEN consists of three mod-

ules: vehicle part parser, view-aware feature alignment, and

common-visible feature enhancement. First, we generate

four view masks (front, back, top and side) by training a

U-shape parsing network as shown in Figure 3. Because

the vehicle is a rigid body, the parsing network achieves

an impressive accuracy as it need not handle the deforming

problem. Second, based on global feature maps, local view-

aware features are aligned through mask average pooling.

Such alignment brings the vehicle the fine-grained represen-

tation with a complete spatial covering. Third, we propose

a common-visible attention to enhance the local features.

The mechanism tends to enlarge the effect of common visi-

ble views between two vehicles and suppress the non-salient

views. This helps to overcome the large intra-instance dif-

ference under different views and the subtle discrepancy

of inter-instances under similar type and color. Based on

common-visible attention, we modified the typical triplet

loss to avoid the mismatch of local features. We optimize

this local triplet loss and the global loss to learn the view-

aware feature embedding. As a result, the global semantic

and local subtle discriminative cues are jointly learned into

the final embedding of the vehicle.

In summary, our main contributions are three folds.

• To address the two key challenges in vehicles ReID,

we propose a view-aware feature embedding method,

where both feature alignment and enhancement of

common visible views help to learn more robust and

discriminative features.

• We introduce a common-visible attention to enhance

features under different views. This not only shortens

the distance among intra-instances, but also enlarges

the discrepancy of inter-instances.

• Experiments on three vehicle ReID datasets verify the

effectiveness of PVEN1. It achieves superior perfor-

mance over SOTA methods with a large margin.

2. Related Works

Vehichle Re-identification has become a hot topic re-

cently due to its wide using in intelligent transportation sys-

tems [16, 11, 18, 14, 2, 19, 8]. In previous works of vehicle

ReID, these methods can be summarized into three groups:

(1) Vehicle meta-information based feature fusion. The

meta information, such as spatial-temporal information,

vehicle attribute, are aggregated into global vehicle em-

beddings. Liu et al. [16] used a course-to-fine progres-

sive search to leverage the vehicle attributes and spatial-

temporal information. Shen et al. [24] considered the con-

straint of spatial temporal information and used visual-

spatial-temporal path to reduce searching space. Guided by

camera views, vehicle types and color, Zheng et al. [34] in-

troduced a deep model to fuse the features for vehicle ReID.

These approaches learn global representation for vehicle,

and they are sensitive to dramatic changes of view. So they

suffer from the challenge of large intra-instance difference

of the same vehicle under different views. (2) Local region

based vehicle feature learning. Besides global features, re-

cent works take advantage of local features to improve the

representation ability. For example, Wang et al. [27] gener-

ated orientation invariant feature based on pre-defined key-

points detection. He et al. [3] used the local region (e.g.,

window, brand and light bounding box) to learn more dis-

criminative regions. This type of methods usually depends

on pre-defined distinctive region or key-points. They ig-

nore the fact that the discriminative cues may appear in any

region of vehicle, and suffer from the challenge of subtle

inter-instance discrepancy of similar vehicles. (3) Gener-

ative Adversarial Network based feature alignment. With

GAN thriving, some works have started to introduce GAN

into vehicle ReID. For instance, Zhou et al. [37] handled

the viewpoint problem by generating the opposite side fea-

tures using a GAN. Lou et al. [18] proposed to generate the

1https://github.com/silverbulletmdc/PVEN
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Figure 2. The network architecture of PVEN. First, the image is fed into feature extractor and vehicle part parser. The former outputs

semantic feature maps while the latter generates the view mask of front, back, top and side. Then global feature of vehicle is extracted

to construct the ID loss and triplet loss. View-aware features are extracted by mask average pooling for each mask. We aggregate the

features by common-visible attention to formulate the triplet loss of local features. In inference stage, the distance of global feature and

local features are added to get the final distance.

hard samples by introducing a GAN. Due to the limitation

of generation ability of existing GAN and the insufficient

adversarial samples, there exists large gap between the gen-

erated features and reality features.

Vehicle re-identification is also related with person ReID

task, which aims to find target persons from various views

in a large set of persons. Recently, CNN-based features

achieved great progress on person ReID [25, 35, 6, 20, 33, 9,

32, 12]. Sun et al. [25] split the image with a uniform parti-

tion strategy and extract CNN features for each parts. Zhao

et al. [33] decompose the person by human body region to

acquire human pose information. Wei et al. [9] proposed

harmonious attention CNN to jointly learn attention selec-

tion and feature representation. The explosion of person

ReID methods lightens the vehicle ReID task.

3. Methodology

To address the challenges of large intra-instance differ-

ence and subtle inter-instance discrepancy in vehicle ReID,

we propose a Parsing-based View-aware Embedding Net-

work (PVEN). It consists of three modules: vehicle part

parser, view-aware feature alignment, and common-visible

feature enhancement. The PVEN focuses on the view-

aware feature learning, where the alignment and enhance-

ment of common visible regions helps learn more robust

and discriminative features.

3.1. Vehicle Part Parser

As one key challenge of vehicle ReID, view transforma-

tion under multiple cameras is unavoidable. Invariant fea-

ture learning under different views is an important insight

to improve the performance of vehicle ReID. We notice that

most vehicles have the following two characteristics. First,

the vehicle can be regarded as a cube, which can be divided

into different parts by view. Second, the vehicle is the rigid

body, so there are no physical deformations. The character-

istics imply that accurate vehicle parsing masks are capable

to be extracted. With these parsing masks, we can align

corresponding parts for different vehicles.

A vehicle can be roughly regarded as a cube with six

surfaces. The bottom of vehicle is usually invisible under

the camera. The left and right side of the vehicle usually

can not appear at the same time under a certain view and

are usually symmetry in visual. Based on these observa-

tions, we parse a vehicle into four parts: front, back, side

and top. The side indicates the left or right side of a vehi-

cle. In this paper, the above parsing scheme is designed for

vehicle view-aware representation. As shown in Figure 3,

there are two key advantages of this parsing scheme: First,

it covers the whole vehicle under the certain view, so that

every subtle differences between two vehicles can be cap-

tured. Second, under most view-points, 3 parts of a vehicle

are visible in an image, which means that there are at least

2 same parts appearing in both the query and gallery image.

Parsing Annotation for VeRi776 Dataset. We annotate

a subset of VeRi776 [16] dataset for training vehicle part

parsing network. To improve the adaptive capacity of the

parsing model for various views, we collect as many views

of a vehicle as possible. In detail, according the definition

of viewpoint in [27], we sample images for seven different

viewpoints of a vehicle. If the number of viewpoints is less
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Figure 3. Examples of our parsing result on three main vehicle

ReID datasets. The red, green, yellow and blue masks denote the

front, back, side and top view of the vehicle respectively.

than four, we evenly sample four images of this vehicle.

Totally, we annotated 3165 images. We select 2665 images

of the annotated dataset randomly as training set and 500

images as validation set.

Vehicle Parsing Network. To get an accurate parsing re-

sult, we train a segmentation model [21] using the above an-

notated dataset. The parsing model takes SeResNeXt50 [5]

as backbone and is trained with balanced cross entropy loss.

Our model achieves 81.2% IoU score in the validation set,

which is sufficient for solving the view transformation chal-

lenge. Figure 3 shows some of the parsing results in three

vehicle ReID datasets. It shows the impressive generaliza-

tion performance of the parsing model as the parser need

not handle the deforming problem.

3.2. View-aware Feature Alignment

Most of vehicle ReID models use deep global features

to represent a vehicle, which focus on learning high seman-

tic information. In this paper, we introduce the view-aware

local features to obtain the fine-grained representation with

a complete spatial covering. Further, view-aware feature

alignment is implemented to avoid the mismatch among dif-

ferent views.

Here, we use ResNet50[4] pre-trained on ImageNet[22]

dataset as our feature extractor. We reset the stride of last

pooling layer from 2 to 1 and obtain a 16× 16× 2048 fea-

ture map F. As shown in Figure 2, the feature extractor net-

work has two output branches. The first branch is the global

branch, where we apply the global average pooling to the

feature map to get global feature fg . The other branch is the

local branch for view-aware feature learning. First, we pool

the above view masks to 16 × 16 by max pooling, which

is defined as {Mi|i ∈ {1, 2, 3, 4}}. Second, we apply the

mask average pooling (MAP) to the feature map F to com-

pute four local view-aware features {f i
l |i ∈ {0, 1, 2, 3}}.

They represent the front, back, side and top view of a vehi-

View-aware

features

masks

local distance

View-aware

features

masks
visibility

score

visibility

scoreCommon 

Visible

Attention

Common-visible score

Figure 4. Illustration of common-visible attention. First, the visi-

bility scores of different parts are computed based on the vehicle

masks. Then, the common-visible scores of all parts are obtained

by the common-visible attention. Finally, we calculate the local

distance between two vehicles with their view-aware features and

the corresponding common-visible scores.

cle respectively. The f i
l is calculated by

f i
l =

∑
16

j,k=1
Mi(j, k)× F(j, k)

∑
16

j,k=1
Mi(j, k)

(1)

The global feature blend features of different views into

one feature. It leads to a mismatch of views when compar-

ing two vehicles. Differently, the local view-aware features

are aligned upon the above four views. It decouples the

information of different views into corresponding local fea-

tures, and provides view-aware embeddings for a vehicle.

3.3. Common-visible Feature Enhancement

After the above stage, we obtain the four view-aware lo-

cal features f i
l of the vehicle. In this section, we introduce

a common-visible attention to enhance the features of dif-

ferent views. This helps capture the stable discriminative

information of the same vehicle under different views.

Figure 4 shows the procedure of common-visible atten-

tion. Given two image p, q, and their masks M
p
i and M

q
i ,

we compute the visibility score v
p
i and v

q
i , which indicated

the size of corresponding area of each view. The visibility

score vi is defined as

vi =

16∑

j,k=1

Mi(j, k) (2)
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