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ABSTRACT

Image retrieval is a long-standing topic in the multimedia com-

munity due to its various applications, e.g., product search and

artworks retrieval in museum. The regions in images contain a

wealth of information. Users may be interested in the objects pre-

sented in the image regions or the relationships between them. But

previous retrieval methods are either limited to the single object of

images, or tend to the entire visual scene. In this paper, we introduce

a new task called expressional region retrieval, in which the query

is formulated as a region of image with the associated description.

The goal is to find images containing the similar content with the

query and localize the regions within them. As far as we know,

this task has not been explored yet. We propose a framework to

address this issue. The region proposals are first generated based

on region detectors and language features are extracted. Then the

Gated Residual Network (GRN) takes language information as a

gate to control the transformation of visual features. In this way,

the combined visual and language representation is more specific

and discriminative for expressional region retrieval. We evaluate

our method on a new established benchmark which is constructed

based on the Visual Genome dataset. Experimental results demon-

strate that our model effectively utilizes both visual and language

information, outperforming the baseline methods.
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Figure 1: Two examples of the expressional region retrieval.

The query is formulated as a region in an image with its lan-

guage description. The results tend to be corresponding re-

gions in image corpus.

1 INTRODUCTION

In recent years, as the amount of image data on the web has grown

significantly, it becomes increasingly difficult to satisfy different

user’s requirements to find desired images. Users need to tell the

system what kind of images they want, but how they describe

their need as perfectly as possible still remains a key problem.

They can use an image [10], a string [31], an object [8], a concept

[2, 13], or combinations of the elements above to formulate their

need as a query. The query is usually in a single modality, either

visual or linguistic, which cannot depict the retrieval requirements

satisfactorily. What’s more, many works concentrate on global

image retrieval which aims at finding images that are similar to the

given query. Actually, the region is of much importance in image

understanding and retrieval. Although previous works have tried to

retrieve images based on local similarity, they have either focused

only on local features [30] or on a single object in the image [12].

These methods do not take both visual and language information

into account. In this work, we consider the case where the regions

of images are concentrated on and the language information is also

utilized.

In this work, we focus on the task of expressional region retrieval

for images. An expressional region is an image region that can be

expressed by natural language. It’s better to use visual information

and language information together, because they can complement

each other. When it comes to visual content based image retrieval,

only using visual information may lead to ambiguity. Sometimes,

natural language can be used to provide more specific details. For

example, in Figure 1 (a), the query region can be described with

a sentence ’A man is riding a brown horse’. So the desired result

would not include the yellow dotted region in the image on the
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Table 1: Comparison with different image retrieval tasks

Tasks Query
Output

Results Level

Text-Based Image Retrieval [38, 45] A text string Images that match the query Image level

Scene Graph Based Image Retrieval [16] A scene graph Images related to the query semantically Image level

Concept-Based Image Retrieval [2] The concept layout The objects that match the query layout Object level

Instance Retrieval [34, 46] An object The same instance as the query Object level

Class Retrieval [40] An object The object of the same class as the query Object level

Near/Partial Duplicate Retrieval [19, 48, 50] An object The same object as the query Object level

Expressional Region Retrieval A region with a description Regions that match the query Region level

right, because the horse in it is black rather than brown. But if

we delete the word ’brown’ in the sentence, the yellow region be-

comes a positive result. Natural language can also help users to

describe what they really want. As shown in Figure 1 (b), the user

wants to retrieve regions that depict ’A person wearing an apron’.

However, if the system only takes the query region as input, it’s

very likely to get results that satisfy ’A person in green’. That is

not what the users really want. An image region that users are

interested in and want to find similar ones may include multiple

types of visual information, such as the attributes of objects, cate-

gories, and relationships between visual elements. The expression

of the region not only describes the properties of the objects in

the region, but also expresses the relationships between them. The

visual information can eliminate the ambiguity of the language, and

language can provide complementary information for visual scenes.

Unlike a global image which contains a lot of useless background

or misleading information, expressional region contains sufficient

visual information and are less redundant. Compared to a single

object in an image, an expressional region contains plentiful visual

information.

We propose the task of expressional region retrieval: given an

image and an expressional region (i.e., a region with a natural

language description) as search query, wewant to retrieve all images

that contain the regions with the similar content as the query region

and localize the regions in the images. The expressional region

retrieval task attempts not only to retrieve related images, but also

to localize the region within the image. The regions in expressional

region retrieval task are more complex than those in traditional

local retrieval task. As they are not limited to fixed categories of

objects, but are more about multi-object interactions.

Expressional region retrieval task is different from other image

retrieval tasks like text-based image retrieval [38, 45], instance re-

trieval [34], class retrieval [40] etc. Table 1 lists the comparison of

our work with related works. Firstly, expressional region retrieval

task is not a traditional cross-modal retrieval task like text-based

image retrieval, which takes text that describes the image as query.

The proposed retrieval task takes both visual and language infor-

mation into consideration. Secondly, expressional region retrieval

focuses on region level information not on image level or object

level. Scene graph based image retrieval tends to find images that

satisfy the query. Previous local image retrieval tasks only pay at-

tention to limited object categories. For example, instance retrieval

task [34, 46] aims at retrieving images containing the same ob-

ject that may be captured under different views, illumination or

with occlusions. And class retrieval task [40] is supposed to find

images of the same class. In addition, the purpose of near/partial

duplicate retrieval [19, 48, 50] is to make duplicate detection in

dataset. Thirdly, our task focus on interactions between objects

in the image region. Concept based image search [2, 21] takes the

concept layout as query, where the concept can be formulated as

tag, keyword, description or specific objects. The goal of concept

based image search is to find objects that satisfy the query concept,

and the spatial relationship of the objects needs to conform to the

given layout. Although our task and concept based image retrieval

both care about the interactions between multiple objects, our task

is more flexible in the spatial relationship. We do not necessarily

require that objects in the image region to be laid out exactly the

same way as the query.

The challenges of expressional region retrieval lie in the follow-

ing aspects. First, the expressional region retrieval task takes both

visual and language information into consideration, which allows

for more useful information to be utilized. So, how to integrate

two different modalities in an effective and suitable way to make

full use of the input information is worth considering. Second, we

need to compute the similarity between the query regions and the

candidate regions. How to make the feature representation more

discriminative for better similarity measurement is also an issue.

Third, the result we want for the retrieval task is the regions of

images. The problem of how to find the target regions from the

candidate images and localize them needs to be addressed.

In this paper, we propose a framework to solve the expressional

region retrieval problem. First, we need to retrieve the target region

from a set of candidate locations, which can come from proposal

methods such as EdgeBox [51], Selective Search [41] or Region Pro-

posal Network (RPN) [35]. In addition, we establish a new module

called the Gated Residual Network (GRN) that integrates visual

and language information to refine the visual representation for

retrieval. Finally, we compute the similarity between the query

region and all candidate regions, then sort them to obtain the re-

sults. Through experiments, we found that the feature matching

methods for image retrieval lead to bad performance, as expres-

sional region retrieval involves interactions and spatial relations

between objects. Some existing methods involve jointly modeling

visual and language information, such as simple concatenation and

visual-semantic embedding [6]. But the complexity of computing

the similarity between two different modalities results in poor per-

formance. So we put forward a new idea that we need to utilize

visual and language information at the same time. The language

information and visual information have different roles, so they

cannot be treated the same when combined. Simply merging or
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Figure 2: The framework of the expressional region retrieval. Given an image and a region in it with a description as query, we

first detect region proposals from image corpus and extract visual and language features. Then the Gated Residual Network

processes the representation by integrating visual and language features. The similaritymeasuremodule takes these proposals

as input and outputs the similarities of the query and candidate proposals. Finally, we sort the candidate proposals by the

similarity score.

mapping two kind of information into the common space fails to

take into account the different roles they play. And what we want

is to refine the visual representation guided by the language infor-

mation, as we believe the language is complementary to the visual

information. The key idea behind the GRN model is that the ex-

pression of the region is used as a gate to control what information

of the image region should be propagated, so that we can easily

find regions with similar expressions and visual characteristics. We

achieve this goal by using a gated residual connection to make the

control mechanism work.

We establish a new benchmark for expressional region retrieval

task. It is based on the Visual Genome(VG) dataset [17]. The exper-

imental results illustrate that our proposed method outperforms

exiting methods in this benchmark. To summarize, we make the

following contributions:

(i) We introduce a new retrieval task called expressional region

retrieval, which takes an image and a region of it with the associated

description as query. It aims at retrieving images containing the

similar content as the query and localizing the regions within them.

(ii) We establish a new benchmark based on the Visual Genome

dataset for the expressional region retrieval task. The benchmark

can be used for related experiments of expressional region retrieval,

as well as for image region matching task.

(iii) We propose a framework for expressional region retrieval

task. The Gated Residual Network (GRN) model is introduced for

integrating visual and language information to make the visual

representation more discriminative for measuring similarity. Exper-

imental results validate the effectiveness of the proposed method.

2 RELATEDWORK

Image Retrieval. Image retrieval is an important multimedia prob-

lem, it aims to retrieve relevant images from the image corpus

given a query. At first, images were retrieved by the visual cues,

such as texture and color [23]. Extracting global descriptors [7]

is a straightforward method. But global descriptors may be inef-

ficient when images are changed. Thus, the local feature based

image retrieval has attracted much attention. Many previous works

focus on instance-level image retrieval, such as instance/object im-

age retrieval [14, 34, 40, 46], near/partial duplicate image retrieval

[19, 48, 50] and logo retrieval [36]. SIFT-based methods [24] and

deep learning based methods [18, 29] are used to address the prob-

lem. Different from previous image retrieval tasks, the proposed

expressional region retrieval task focuses on the region level not

on image level or object level.

Cross-Modal Image Retrieval. Cross-modal retrieval means

that the query and the content to be retrieved are not in the same

modality. Cross-modal image retrieval takes various types of query

to retrieve images. For example, text to image retrieval [38, 45, 47]

is the retrieval of images given sentence query. Tag/concept based

image retrieval [2, 21] uses the tag of objects or the concept to

find corresponding images. In addition, sketch to image retrieval

[5], keyword to image retrieval [39], scene graph retrieval [16] and

cross view image retrieval [22] have attracted attention recently.

The mainly difference between cross-modal image retrieval and our

expressional region retrieval is that we do not refer to a different

modality from visual information as the query. The query in the

proposed task contains both visual and language information.

Referring Expressions. Referring expressions have attracted

research interest in multimedia and related areas. There are two

tasks which are closely related to referring expressions (i.e., com-

prehension and generation). The task of referring expression com-

prehension requires a system to localize the object described by a

given expression. Generative models [12, 26], embedding models

[33, 45] and attention mechanism [3] are used to locate the tar-

get object region when given the query language. The referring

�������	���
����
������������
�����������
���
�

�������
�������
���
������
���
���

����
� �!���"���#
$#% �
�
� �	������ �&� �'	�


()*





������ �����	�


��	� 	�����


�������� 	�����

������� �������
�� ����� ���
���� �������

���� 
� ��� 
�
�
�
�	 � 
���� ������


��	� ���
	������

������ �����	����

������ �����	����

��������
�����


������� 	�
��

������ �����	�

�������� �����	�

�
�����
�����	�


���������� �����	�


����������
�����	�

�

	��
��
� �����
 	�
��

������


��
��

�������

�����������
��

�����

��	
�
���

Figure 3: Overview of the proposed Gated Residual Network. The components of the GRN are language gating layer and

residual layer. The GRN model takes the visual feature and language feature as input and outputs a combination feature that

integrates the two input features.

expression generation task is to generate a natural language expres-

sion for a specified object within an image. Many approaches have

been proposed for generation task [11, 25]. In order to generate

more accurate descriptions, unlike most of the works only using

the whole images as the context, there are some methods adding

the instance-level visual information to obtain the context features

[20, 49]. The proposed expressional region retrieval task is different

from the referring expression comprehension task mainly in the

following two aspects. First, expressional region retrieval takes both

the visual region within an image and the corresponding language

as input, while referring expression comprehension only utilizes

the query language as input. The proposed task is more challenge

as it needs to integrate information from different modalities to rep-

resent the queries comprehensively. Second, referring expression

comprehension is trying to ground the query into a region of an

image, while the expressional region retrieval task aims to find the

corresponding regions from a set of images.

3 METHOD

Our proposed framework for expressional region retrieval is il-

lustrated in Figure 2. First, the proposal detection and feature ex-

traction module outputs candidate proposals and corresponding

features. Then the GRN module takes these features as input to

integrate visual information together with the language. This mod-

ule makes the visual features enhanced by the language features.

Finally, given the refined representation, the similarity measure

module computes the similarities between the query region and

candidate regions. We will discuss each module in this section.

3.1 Proposal Detection and Feature Extraction

Candidate region proposals are firstly generated by the proposal

detection module. There are many popular proposal generation

methods and we utilize the supervised RPN [35] in our framework

to get region proposals.

The feature extraction module is used to extract features from

the input including images and language. The module contains

two streams, one for visual information and another for language

information. As shown in Figure 3 (left), for visual input, we use a

convolutional neural network to obtain the spatial feature vector

for the query region and the candidate proposals generated from

images in the corpus. We adopt ResNet-18 without the last layer to

get the visual feature vector X ∈ RW×H×C, whereW is the width,

H is the height, and C = 512 is the number of feature channels.

For language input, we encode the expression of the query region

using a language model to get the feature vector L ∈ RD. We

compare two different language models for this task. The first

one is a standard LSTM architecture. Word representations are

individually passed through a LSTM cell, each producing their own

hidden state. LSTM can model the relationship between words in a

sentence and maintain the word ordering. In this way, we define

the feature vector L to be the hidden state at the final time step

whose size D is 512. The second language model is a Self-Attention

Language model [1]. The model uses the vector obtained by the

weighted sum of each word embedding to represent the sentence.

As shown in Figure 4, the model takes into account the contextual

information in the language, while we take the mean pooling of

each word as the context. The context vector is concatenated with

all word embeddings. It is then passed through a fully connected

layer with Softmax. So we can get the context score of each word.

Then the inner product of these weights and the original word

embeddings is used to produce the final representation of the given

sentence, which can be regarded as a context weighted sum vector.

3.2 Gated Residual Network

The GRN module is illustrated in Figure 3, which takes the visual

features and language features together to produce the final repre-

sentation. In this module, we aim to integrate the visual features

with the language features. Different with traditional multi-modal

image retrieval methods, we do not want to map the two kind of

information into the same space or simply merge them with each

other. We prefer to keep the visual features in its original embed-

ding space. So we try to use the language features to control the
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Figure 4: Self-Attention Language Model. A model which

builds a weighted context sum representation for the given

sentence.

enhancement of the visual features. Inspired by [9, 27], we use a

gated residual connection to achieve this goal.

1) Language Gating Layer. The language gating layer trans-

forms the input visual feature representation X and the input lan-

guage features L into a new representation Yд with the formulation

as

Yд = σ (Wд2 ∗ Relu(Wд1 ∗ [X , L])) � X (1)

where σ is the element-wise sigmoid function, � is element-wise

product, [X , L]means concatenating the featureX and the feature L,
∗ represents 2d convolution andWд1,Wд2 are 3x3 convolution filters

which are trainable parameters. σ (Wд2 ∗Relu(Wд1 ∗ [X , L])) ∈ [0, 1]

represents a set of learned gates which are applied to the input

visual features.

Our goal is to refine the visual features with the help of language.

We consider the gate mechanism to allow the network to control

what visual information should be enhanced according to the lan-

guage. Compared to previous gate mechanism, our language gating

mechanism takes the features of two modalities of visual and lan-

guage as input. We apply language gating layer on the query region

and candidate region with the same expression, and then the visual

features that match the expression have been strengthened. So that

we can make the visual representation more discriminative. The

language gating layer can capture dependencies among visual ele-

ments together with the language. For example, the query describes

‘a man is skiing’, and the candidate region shows a skiing person,

snow and some trees. In this example, trees might be less impor-

tant where the snow and skiing person is crucial for the retrieval

task. The language gating layer can learn to reduce the weight of

unimportant part and increase the weight of strongly related visual

parts. We utilize this architecture to learn discriminative features.

2) Residual Layer. Residual connections have been proved to

be useful in some visual tasks [9]. They demonstrate faster and

better training process as well as better performance to some extent.

We apply a residual connection which can be formulated as:

y = �(x, {Wi }) + f (x) (2)

where x and y are the input and output features. The function

�(x, {Wi }) represents the mapping to be learned and f (x) means a

transformation for the input feature x .
According to the above description, the function �(x, {Wi }) in

Equation 2 is regarded as the language gating layer, where the input

vector x represents the visual feature X and the language feature L.
So the Equation 2 can also be written as:

y = �(X , L, {Wi }) + f (X , L) (3)
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Figure 5: Several designs for the transformation function

in residual layer. X denotes the input visual feature and L
the input language feature. The two shortcuts are (a) Vi-

sual Transformation (b) Compose Transformation. The Lan-

guage Gating module is described in Section 3.2.

Several designed architectures are shown in Figure 5 for the

transformation function f (X , L) . The Visual Transformation

(Figure 5(a)) directly uses the original image feature X as the resid-

ual feature. The Equation 3 can be written as y = F (X , L, {Wi })+X .

This shortcut only takes the language information into account in

the language gating procedure. The Compose Transformation

(Figure 5(b)) combines the visual features and language features

together. The composition result can be computed by:

Yr = f (X , L) =Wr2 ∗ Relu(Wr1 ∗ ([X , L])) (4)

whereWr1,Wr2 represent the convolution operation.

The GRN module finally takes the gated feature and the compo-

sition feature together as:

Yf inal = wдYд +wrYr (5)

Different from the traditional residual connection, we apply two

weights to adjust the effect of the gated feature and the composition

feature for the final representation. Thewд,wr in Equation 5 are

learnable weights to balance two types of features. And we set

wд = 1,wr = 1 at beginning. The intuition of this module is that

we want to enhance the visual representation to better distinguish

the positive pairs from the negative ones, instead of simply fusing

two-modal features. The gated mechanismmakes it possible to keep

the input visual feature and output feature in the same meaningful

feature space [43]. And then the residual connection is added to

finetune the features in this feature space.

The Equation 1 and Equation 4 show the operation which is

applied to the convolutional layer, the visual feature X ∈ RW×H×C

denotes the feature map from CNN. So we expand the language

feature L ∈ RD along the width and height dimension to make its

shape compatible to the visual feature. Meanwhile, we can alter-

natively apply the operation on the fully connected layer, where

W=H=1 for visual feature X . In this way, theWд1,Wд2,Wr1,Wr2

change from convolution to linear projection.

3.3 Similarity Measure

The similarity measure module takes the refined feature to learn

the similarities between the query region and candidate region. We

employ distance between two features to measure their similarity.

In this module, the network computes matching loss of valid pairs
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Figure 6: Distributions of the width and height of the region normalized by the image size.

to learn discriminative features. The training objective is to push

closer the query region and positive candidate regions, while pulling

apart the features of non-similar regions.

We have a training minibatch of B queries, ϕi is the final repre-
sentation of the query region, and φ+i is the representation of the

positive region for the query. Meanwhile, there are N-1 negative ex-

amples φ−1 , . . . ,φ
−
N−1 of the query. The loss function is formulated

as

L =
−1

B

B∑

i=1

loд(
Sim(ϕi ,φ

+
i )∑N

j=1 Sim(ϕi ,φ
−
j )

) (6)

where Sim is the similarity function which is implemented as the

cosine distance in our experiments.When the value of N in Equation

6 is set to 2, the loss function is equal to the soft triplet loss [44].

3.4 Training and Inference

We minimize the loss function as Equation 6 in the training proce-

dure. During training, the query text simultaneously controls the

visual features of query region and candidate regions. The negative

examples of a given query are sampled from the positive regions

for other queries in the same minibatch.

While in the inference and retrieval procedure, the query text

not only affects the query, but also refines the visual representation

of all candidate regions generated from the images. After the repre-

sentation has been enhanced, we compute the similarity between

the query region and each candidate region as the score, and then

sort all candidate regions by their scores.

4 EXPERIMENTS

We evaluate our proposed method for expressional region retrieval

and demonstrate its necessity and superiority to several previous

methods.We perform our study on a new benchmarkwe established

based on the large scale Visual Genome dataset (VG) [17].

4.1 Dataset

Since existing benchmarks for image retrieval cannot be used for

expressional region retrieval task, we create a new one based on the

Visual Genome dataset. The VG dataset consists of about 108077 im-

ages, with every image including an average of 50 regions described

by a phrase or sentence [17]. The descriptions tend to be highly

diverse and can focus on a single object or multiple objects. They

encompass the most salient parts of the image while also capturing

the background.

For the proposed expressional region retrieval task, we expect

the image regions to contain richer information, so we first remove

the image region only describing a single object or with no object,

like ’A bag’ or ’The blue sky’. According to [17], the regions that

cover large portions of the image tend to be general descriptions

of an image while regions that cover only a small fraction of the

image tend to be more specific. What we want is image regions

with abundant information. So we have to avoid regions with too

little information that are too small, and also do not need too large

regions close to the whole image. Therefore we delete the regions

with the area less than one-tenth of the whole image and larger than

nine-tenth. In this way, the regions left tend to contain multiple

objects and at least one kind of relationship between objects, such as

’A man taking a photo of the elephant’ or ’Tall buildings surrounded

by trees’. Furthermore, regions of very similar sizes and locations

in the same image often contain highly similar information. So

we compute the Intersection over Union (IoU) ratio between two

regions in one image. If the IoU is larger than 0.9, we only keep the

one with the larger area. In Figure 6, we show the distribution of

the region width/height normalized by the entire image. We see

that the majority of the regions tend to be around 30% to 50% of

the entire image. We observe an increase in the number of regions

when the width of region is close to the entire image, but not the

height. The reason may be that there are often regions that span the

entire image in the horizontal direction, but rarely in the vertical

direction.

Next, we begin to look for similar regions and label them as a pair.

We determine their similarity based on the matching of the region

descriptions. To ensure the diversity for the image regions, we use

both BLEU score [32] and METEOR score [4]. We first compute the

BLEU score between two descriptions:

Sbleu = N
N∑

n=1

pn (d1,d2) (7)

where d1,d2 refer to two region descriptions and pn calculates the

percentage of n-grams matched in two descriptions. We set N=2

in Equation 7 to ensure the diversity of similar regions. Then we

compute the METEOR score between two descriptions with the

BLEU score higher than 0.7.

Smeteor = M(d1,d2) (8)

whereM(d1,d2) represents the METEOR score between d1 and d2.
We keep the positive pair when the METEOR score is higher than

the threshold 0.6.
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Table 2: The performance of expressional region retrieval. ’GT’ represents that the region proposals are got from ground truth

bounding boxes and ’RPN’ represents that the region proposals are generated with the pretrained RPN.

R@1 R@10 R@50 R@100 med r

GT RPN GT RPN GT RPN GT RPN GT RPN

Visual Feature 0.341 0.171 2.817 1.756 9.606 6.015 15.946 10.726 19 28

Visual-Language LSTM Feature 0.422 0.183 3.068 1.744 8.2 5.848 12.637 7.992 27 32

Visual-Language Concat Feature 0.534 0.323 3.063 1.915 11.358 7.186 20.442 15.772 18 20

GRN w/o Residual Layer (Ours) 1.184 0.688 4.328 2.211 14.447 10.824 24.394 19.39 13 16

GRN (Ours) 1.21 0.707 4.66 2.507 16.913 12.965 27.741 22.086 10 15

In total, we generate 35K images with 116K regions for train, 5K

images with 20K regions for validation and 5K images with 21K

ground truth regions for test. The training set contains 64K query

regions, while the validation set and the test set contain 5012 and

4967 query regions respectively. Each image we used contains at

least one positive region. Each query consists of a query region with

a language description, and several target regions. To be specific, we

integrate similar regions into a set according to the pairs generated

above. Then we randomly select one region from a set as the query

region where the rest is the target. We apply this process to training

set, validation set and test set respectively.

4.2 Experimental results

Experimental Setup. The main metric we used for retrieval is

recall at rank k (R@K), which is computed as the percentage of

test queries where at least one target is within the top K retrieved

results. We evaluate top 1, 10, 50, 100 results in our experiments.

What’s more, the median rank of the target image region (med r) is

also calculated, the lower the better. We complete our experiments

in PyTorch. We use ResNet-18 pretrained on ImageNet [37] as the

image encoder, and the Word2Vec [28] embedding pretrained on

Google News as the word embedding. We use the words that appear

more than once as the vocabulary and replace other words with an

<UNK> tag. The batch size B in Equation 6 is set to 32.

We conduct our experiments on two kind of proposal settings.

The first one is that the region proposals are got from ground truth

bounding boxes. When in the training procedure, we use 3 negative

examples for each query, where the negative ones are randomly

selected from the regions in the same minibatch but are not positive

for the given query. The second proposal setting is that the region

proposals are generated by detectors. We follow DensecCap [15]

and pretrain a separate RPN on the training data. The pretrained

RPN is followed by a RNN language model so that the regions

detected by it contain more information than proposals generated

by object detectors. We use the proposals got from the pretrained

RPN for training and inference. In this setting, the evaluation is

simply performed by measuring the IoU ratio between a ground

truth box and the extracted one. In training procedure, only if the

IoU is larger than 0.7, the region is considered to be true positive.

And we use the false positive regions as negative examples. In the

inference procedure, we regard the region as positive when the IoU

is larger than 0.5.

The experiments are carried out on a workstation with E5-2620,

64GB RAM, and GeForce GTX TITAN X. It takes 600ms to get

retrieval results for one query, where the time cost is obtained by

averaging over the whole test set.

Baseline Model. We compare our methods with some popular

approaches for multi-modal image retrieval. For a fair comparison,

we train all methods including ours using the same pipeline, with

the only difference being in the GRN module.

(a) Visual Feature. Features of the last fully connected layer

are extracted for each proposal. Then we directly use the extracted

visual features without the query text to calculate the similarity

scores. In this method, language information is not used.

(b)Visual-Language LSTMFeature.We use a CNN and a stan-

dard LSTM model to combine visual and language features. The

visual features for each proposal are extracted from a CNN. Then

the LSTM is used to encode the image and text by inputting the

visual features in the first time step, following by words in the query

text [42]. We take the final state of the LSTM as the final combined

representation.

(c) Visual-Language Concat Feature. In this setting, we first

extract the visual features for each proposal and encode the query

text. Then we concatenate the visual features and language features.

After passing it through a fully connected layer, we use the features

to measure similarity

The results are shown in Table 2 and some qualitative results

are shown in Figure 7. For fair comparisons, same proposals are

used for each method. It can be observed that our method which

uses the gate mechanism works much better than the baselines. We

see that most methods that take language information into account

outperform the methods that only consider visual information. But

there are exceptions that the effect of the Visual-Language LSTM

Feature may be even worse than the Visual Feature. Though we

input the visual features into the Visual-Language LSTM Feature

at first, the characteristic of the LSTM may result in the language

information occupying a more important position. Our method

gets a gain when the region proposals are ground truth (GT) and

also generated with the region detectors (RPN). Our approaches

using the same proposals get better performance than the baselines.

The results indicate that the language information plays a role in

controlling the transformation of visual information rather than

mapping to the same embedding space.

4.3 Ablation Studies

In this section, we report the results of various ablation studies, to

explore which parts of our approach matter the most.

Language models. As shown in Table 3, the language model

used to embed query text information may influence the retrieval

result. The performance of LSTM is not as good as the Self-Attention

model. When we retrieve for image regions in the dataset which

are similar to the query region and query text, the order of words
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Figure 7: Some retrieval examples. The red region refers to the positive results and the yellow ones are negative.

Table 3: The retrieval performance of different language

model.

model R@1 R@10 R@50 R@100 med r

LSTM 0.526 4.236 14.887 26.604 10

Self-Attention 1.21 4.66 16.913 27.741 10

Table 4: The retrieval performance of different residual

transformation.

model R@1 R@10 R@50 R@100 med r

w/o residual layer 1.184 4.328 14.447 24.394 13

Visual 1.004 3.893 12.817 21.273 15

Compose 1.21 4.66 16.913 27.741 10

Table 5: The retrieval performance of different dimension

of the feature.

model R@1 R@10 R@50 R@100 med r

fc 1.07 4.472 15.494 25.919 11

conv 1.21 4.66 16.913 27.741 10

in the description may not matter much. But the important words,

like the word that refers to the salient object, an action or spatial

relationshipmay influence the results more. The LSTMmay bemore

concerned about the sequential characteristic about the description,

but ignore the importance of the salient objects.What’s more, LSTM

is too complicated to converge, but the Self-Attention model is more

efficient and performs better.

Residual transformation.According to Table 4, the best result

is from the Compose Transformation of residual layer, indicating

that the residual connection is beneficial. What’s more, it can be ob-

served that combining the visual and language information together

in a proper way performs better than the original visual feature as

the composition feature. Actually, directly using the visual feature

is worse than without a residual layer. This could because the orig-

inal visual feature is not enhanced by the language information, so

the usage of it will cause a reduction in the result.

Conv or FC.We can apply the GRN module on last fc layer or

last convolutional layer (feature map). Table 5 compares the effect

of these two approaches. When the operation is applied to the last

convolution layer, it improves the performance. We believe that’s

because the feature map contains more information than fc layer,

such as spatial information, which may be useful for expressional

region retrieval.

5 CONCLUSIONS

In this paper, we introduce a new image retrieval task, expressional

region retrieval, where the query is formulated as an image re-

gion with a natural language description. The proposed retrieval

task focuses on region-level information and tends to find regions

with similar content as the query from image corpus. Based on

the observation that visual and language information should be

both taken into account to benefit retrieval, we introduce a Gated

Residual Network (GRN) model to integrate two kinds of informa-

tion. Our approach can properly deal with the combined visual and

language representation, which is more comprehensive, specific

and discriminative for expressional region retrieval. Furthermore,

we establish a new benchmark based on the Visual Genome dataset

for expressional region retrieval task. And our method achieves

promising results compared to baseline methods.

Our work for expressional region retrieval is relatively prelimi-

nary. First, the interrelationship between image and region needs

to be considered. We will take contextual information into account

to better understand regional content in future work. Thus, we

use proposals generated in advance for retrieval. If the proposal

detection process is carried out guided by the query, the retrieval

results may be more satisfying. In this way, the speed of retrieval

is becoming an issue. Exploiting the hashing methods will improve

the speed and boost the performance of retrieval.
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