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Know More Say Less: Image Captioning Based on
Scene Graphs

Xiangyang Li and Shuqiang Jiang , Senior Member, IEEE

Abstract—Automatically describing the content of an image has
been attracting considerable research attention in the multimedia
field. To represent the content of an image, many approaches
directly utilize convolutional neural networks (CNNs) to extract
visual representations, which are fed into recurrent neural
networks to generate natural language. Recently, some approaches
have detected semantic concepts from images and then encoded
them into high-level representations. Although substantial progress
has been achieved, most of the previous methods treat entities
in images individually, thus lacking structured information that
provides important cues for image captioning. In this paper,
we propose a framework based on scene graphs for image
captioning. Scene graphs contain abundant structured information
because they not only depict object entities in images but also
present pairwise relationships. To leverage both visual features and
semantic knowledge in structured scene graphs, we extract CNN
features from the bounding box offsets of object entities for visual
representations, and extract semantic relationship features from
triples (e.g., man riding bike) for semantic representations. After
obtaining these features, we introduce a hierarchical-attention-
based module to learn discriminative features for word generation
at each time step. The experimental results on benchmark datasets
demonstrate the superiority of our method compared with several
state-of-the-art methods.

Index Terms—Image captioning, scene graph, relationship, long
short-term network, attention mechanism, vision-language.

I. INTRODUCTION

IMAGE captioning is the task of automatically describing the
content of images with natural language sentences, which

has received increasing attention in the field of multimedia and
artificial intelligence [1]–[7]. This task not only connects com-
puter vision and natural language processing which are two
prominent ways to acquire knowledge, but also has many ap-
plications such as semantic image search [8]–[10], vision-and-
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language navigation [11]–[13], injecting visual intelligence into
chatbots, and helping visually impaired people to perceive the
visual world around them. Unlike image classification [14]–[16]
and object detection [17]–[19] which assign predefined labels
for images, image captioning aims to describe images with free-
form natural language.

Over the past few years, remarkable progress has been
achieved in image captioning. Most of the prominent approaches
[3], [20]–[25] are based on the encoder-decoder framework [26].
For example, Vinyals et al. [20] first extract image features from
the last fully connected layer of a convolutional neural network
(CNN), and then feed the features into a long short-term mem-
ory (LSTM) network to generate descriptions. In order to reveal
more details in images, different from [20], Xu et al. [21] use
feature maps from the last convolutional layer from a pre-trained
CNN to represent the image and then use attention mechanism
on spatial locations to obtain more representative features. Jin
et al. [22] utilize attention mechanism on detected objects when
generating language descriptions. Although prominent perfor-
mance can be achieved by these methods, they directly translate
visual features into sentences, ignoring high-level semantic fea-
tures that provide a deeper understanding of images and that
contain useful information for image captioning. To address
this issue, many methods explicitly exploit semantic features
for images [3], [5], [23], [27]–[29]. For example, Wu et al. [27]
treat the semantic features as an initial word for the decoder. You
et al. [23] employ the detected semantic concepts in images for
text generation.

The existing approaches for image captioning treat all the
identified entities (e.g., objects, semantic concepts) individually
without considering relationships among them. Note that in this
paper, we refer to the interaction between two objects as a re-
lationship (e.g., riding, under, and next to, as shown in Fig. 1).
However, relationships are the main linguistic components for
captionsbecause captions often describe multiple objects in im-
ages. For example, as illustrated in the top left of Fig. 1, we
prefer to describe the image as “a boy lying prone on a surf-
board” rather than as “ a boy and a surfboard”. We can note that
relationships often appear in image descriptions, which is con-
sistent with our habitual expression ways, as we often describe
objects with their relationships rather than describing them in-
dividually. The statistical information in the VG-COCO dataset
(which will be introduced in Section IV-A) also corresponds
to this observation. As shown in Fig. 2, ground-truth relation-
ships with high frequencies in images also appear with high
frequencies in ground-truth captions.
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Fig. 1. Examples of images that have the same compositional objects but
different relationships (e.g., holding, next to, and under). Different relationships
bring different holistic interpretations of the images. Text under the image is the
corresponding ground-truth caption (Best viewed in color).

Fig. 2. The ground-truth (GT) relationships and the ones in GT captions. This
figure shows that relationships with high frequencies in the images appear with
high frequencies in the GT captions. Because each image has 5 corresponding
sentences, the number of relationships in the captions is larger than the number
of GT relationships. For simplicity, we only show the top 10 relationships.

Relationships are of crucial importance for describing the
content of images. First, relationships reveal more information
contained in images compared to image classification and ob-
ject detection. Typically, a relationship is a structured knowledge
that inherently bundles two objects together. Therefore, it is a
kind of middle representation that connects local regions and
the global image. For example, as shown in the bottom row of
Fig. 1, given an image with persons and umbrellas, localizing
and recognizing individual objects in the image are not enough
to generate an appropriate description, as the persons in the im-
age may holding, next to, or under umbrellas. Reasoning the
relationships between objects can provide an in-depth under-
standing of the image thus forming the holistic interpretations.
Second, because relationships and their corresponding objects
are often skeletons of captions, their mutual information can
avoid generating unreasonable captions. For example, as shown

Fig. 3. Illustration of two image captioning schemes. The first row shows an
example generated by a baseline method that utilizes detected objects to generate
descriptions. The second row shows a more accurate description generated by
our method based on scene graphs that capture objects (blue nodes) and their
relationships (red edges).

in Fig. 3, only using the objects in the image, the baseline method
generates an improper caption (i.e., a man riding a skateboard
in a street), which falsely predicts the bike as a skateboard. With
the generated sequence “a man riding a”, it appearsto be reason-
able for the baseline method to generate the word “skateboard”
because there are many examples of “man riding skateboard” in
the training data. With the detected triples such as “man riding
bike”, our method which incorporates relationships in the image
is able to generate a more accurate caption (i.e., a man is riding
a bike in the park).

Whereas relationships are representations of local image re-
gions, scene graphs are structured representations for the whole
images [30]–[32]. In such graphs, the nodes correspond to object
bounding boxes with their object categories, and edges corre-
spond to their pairwise relationships between objects. They con-
tain rich relationships that pinpoint different aspects of images.
However, because a caption often describes parts of objects in
an image, different parts of a scene graph have different rele-
vance for generating a description. For example, as shown in
Fig. 3, the part which is composed of the relationship edge of
riding and its two object nodes (i.e., man and bike) are the most
relevant for generating the caption. Therefore, it is important to
select relevant information from scene graphs when describing
images.

In this paper, we propose a novel framework which is based
on scene graphs to generate descriptions for images, as shown
in Fig. 4. To the best of our knowledge, this work is the first
attempt to explicitly employs knowledge in scene graphs for
image captioning. We first extract CNN features of the corre-
sponding regions of object entities for visual representations.
Because relationships depict different aspects of images, we
extract triples (e.g., man riding bike) which are three lex-
eme sequences from scene graphs. These triples are then em-
bedded into semantic vectors, forming the semantic relation-
ship features. After obtaining these features, we introduce a
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Fig. 4. The framework of our proposed method. First, the scene graph for the input image is generated. To obtain visual features, we extract CNN features from
the corresponding regions of object entities. To obtain semantic features, we extract triples, which are three lexeme sequences that describe object relationships
from the graph, and embed them into fix-length vectors. To leverage both kinds of these information, a hierarchical-attention-based fusion module is introduced
to decide when and what to attend to during the sentence generation process.

hierarchical-attention-based module to automatically learn key
cues for word generation, as a caption is only related to some of
the rich information that is contained in an image. With the first-
level attention, it selectively attends to different visual features
and semantic features, forming the weighted visual and seman-
tic context vectors, respectively. Then it learns relevance scores
for these two modalities to integrate them with the second-level
attention. Our approach achieves promising results compared
with state-of-the-art methods.

In summary, our contributions are as follows:
� We propose an architecture based on scene graphs for

generating natural language descriptions. Because scene
graphs not only depict object entities but also present pair-
wise relationships, they provide abundant information for
describing images.

� We extract visual features from object entities and se-
mantic relationship features from triples extracted from
scene graphs. Additionally, we introduce a hierarchical-
attention-based module that adaptively attend to these fea-
tures during word generation. The results demonstrate the
effectiveness of our proposed method.

The remainder of this paper is organized as follows. We pro-
vide a brief overview of related work in Section II. In Section III,
we describe our method that explicitly utilizes the relationships
in scene graphs for image captioning. We then present the quan-
titative and qualitative results in Section IV. Finally, we con-
clude the paper in Section V.

II. RELATED WORK

Because this work is primarily related to the topics of im-
age captioning, visual relationship detection, scene graphs and

attention mechanism, we briefly review the most recent litera-
ture on these approaches.

A. Image Captioning

Image captioning is a complicated cognitive task that bridges
the gap between image understanding and natural language pro-
cessing. Some early approaches first retrieve images from a
corpus with image-caption pairs and then directly transfer the
corresponding human-written sentences for the query images
[33], [34]. Other pioneering methods are dedicated to exploring
bottom-up schemes that are based on templates. These methods
first detect elements with descriptive information (e.g., nouns,
adjectives, verbs) from images and then use predefined sentence
templates to generate descriptions [35], [36]. Recently, prevail-
ing methods based on neural networks have adopted convolu-
tional neural networks (CNNs) and recurrent neural networks
(RNNs) to address this task [3]–[6], [20], [22], [24], [28], [37]–
[39]. Karpathy et al. [40] and Mao et al. [41] use a deep CNN
to extract visual features and put these features into an RNN
as the initial start word to generate image descriptions. Vinyals
et al. [21] start to employ a long short-term memory (LSTM)
network to model language as it includes a memory cell that can
maintain information in memory for long periods of time. Jia
et al. [29] propose gLSTM which is guided with extra semantic
information extracted from images. Li et al. [42] utilize both
object and scene information in images. To address the issue
that LSTM units are complex and inherently sequential across
time, Aneja et al. [43] propose a convolutional image caption-
ing approach, which operates over all words in parallel. In order
to generate natural language explicitly grounded in the entities
found by object detectors, Lu et al. [44] propose a two-stage
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approach that first generates a hybrid template and then fills the
slots in the template based on categories recognized by object
detectors. Rennie et al. [45] and Liu et al. [46] utilize a reinforce-
ment learning (RL) approach to optimize their language model.
Lin et al. [47] modify their language model by integrating a gen-
erative adversarial Network (GAN) for generating high-quality
language descriptions. Although most of these approaches aim
to improve language models with more complicated submod-
ules or enhancing the training procedure, our work is orthogonal
to these methods. In this paper, we explore more comprehen-
sive image representations for image captioning. Similar to our
work, Chen et al. [5] obtain structured representations of images
based on simplified visual parsing trees with a fixed structure,
whereas our representations of images are more comprehensive
structured scene graphs.

B. Visual Relationship Detection

As the intermediate-level task that connects image caption-
ing and object detection, visual relationship detection (VRD)
not only recognizes objects in an image but also predicts their
relationships. Earlier approaches explore specific types of re-
lationships (e.g., spatial relations such as “below”, “above”)
and often utilize them to facilitate other tasks [48], [49]. In re-
cent years, new methods have been developed for generic VRD
[50]–[53]. Lu et al. [50] train a visual appearance module as
well as a prior language module and then combine them to
predict multiple relationships per image. Due to the massive
semantic space of visual relationships, Yu et al. [52] obtain
linguistic knowledge by mining from both training annotations
and publicly available text to regularize visual model learning.
Li et al. [54] propose a phrase-guided message passing struc-
ture to model the visual interdependence by refining features
among subject, predicate and object branches. Dai et al. [55]
propose deep relational networks to model the statistical depen-
dencies between objects and their relationships. Zhang et al. [56]
propose a visual translation embedding network for simultane-
ous object detection and relation prediction. Liang et al. [51]
apply the reinforcement learning method to sequentially dis-
cover object relationships and attributes in an image. Because
relationships are middle-level representations that connect local
regions and the global understanding of images, in this paper,
we explicitly employ semantic relationship features for image
captioning.

C. Scene Graphs

Beyond the visual relationship detection task that detects mul-
tiple local relationships for an image, the scene graph generation
task [30], [31], [57], [58] endows the image with an entire struc-
tured representation capturing both objects and their semantic
relationships, where the nodes are object instances in images
and the edges depict their pairwise relationships. Xu et al. [30]
propose a novel model that generates such a structured scene
representation from an input image by iterative message pass-
ing. Li et al. [31] leverage mutual connections across differ-
ent semantic levels of image understanding to help generate
scene graphs. Zellers et al. [57] analyze the role of motifs (i.e.,

regularly appearing substructures in scene graphs) in the Vi-
sual Genome dataset [59] and introduce strong baselines which
model these intragraph interactions. Klawonn et al. [60] pro-
pose an approach which is based on generating individual sub-
graphs called triples and exploiting an attention mechanism to
stitch triples together into a proper scene graph. Wang et al.
[58] introduce a new perspective and solution for the task of
generating scene graphs from textual descriptions. They first
align nodes in region graphs with words in the region descrip-
tions using simple rules, and then they use this alignment to
train their customized dependency parser. In our work, to obtain
structured representations from visual images, we use the ap-
proach proposed by Xu et al. [30] to generate scene graphs for
images.

Scene graph representations have been proven to be useful
in various visual tasks [32], [61], [62]. Johnson et al. [32] use
ground-truth scene graphs that are generated by humans and
grounded to real-world images as queries to retrieve semanti-
cally related images. Teny et al. [61] propose building graphs
over the scene objects and over the question words, and then
they describe a deep neural network that exploits the structure
in these representations for visual question answering. How-
ever, their experiments are implemented on a dataset of clip art
images, in which the corresponding graphs of the images are
provided. In our work, we perform experiments on real-word
images in which scene graphs are learned automatically. John-
son et al. [62] propose a method for generating images from
scene graphs which are obtained from textual descriptions. In
this work, we utilize scene graphs which are generated from
visual images to generate natural language descriptions.

D. Attention Mechanism

The attention mechanism is widely known in psychology and
neuroscience. This mechanism has recently been introduced in
machine translation [63] to generate weights of the individual
words of the sentence to be translated. Rather than encoding
the input sequence into a single fixed context vector, it allows
the decoder to attend to different parts of the source sentence
at each step of the output generation. Xu et al. [21] first pro-
pose a spatial attention model over feature maps of images to
generate sentences, in which the LSTM units update with the
weighted visual representation of image regions. In their work,
the attention weight for each region is determined based on the
previous state of the LSTM. Liu et al. [64] take a step further
by proposing a quantitative method to evaluate the consistency
between the generated attention maps and ground-truth anno-
tated regions. In their work, they also add explicit supervision
for the attention map learning procedure. Jin et al. [22] apply
attention on detected visual objects when describing images.
To further improve performance, You et al. [23] use attention
on rich high-level semantic concepts which are detected from
images. Yang et al. [65] add a reviewer module that improves
the representation passed to the decoder. Xu et al. [66] use the
attention mechanism to obtain useful context for video cap-
tioning. In our work, we propose a hierarchical-attention-based
module to automatically select visual features and semantic
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relationship features from scene graphs during the generation
of image captions.

III. OUR APPROACH

The overview of our image captioning pipeline is illustrated in
Fig. 4. To obtain structured representations of images, the scene
graphs of these images are generated. To take full use of infor-
mation contained in scene graphs, we extract both visual features
and semantic relationship features from scene graphs. Addition-
ally, we use a fusion module based on hierarchical attention to
automatically select these features for word generation. In this
section, we first describe the generic encoder-decoder frame-
work for image captioning, and then we introduce our approach
which explicitly leverages the information contained in scene
graphs for generating natural language descriptions of images.

A. Encoder-Decoder for Image Captioning

In this subsection, we briefly describe the encoder-decoder
image captioning framework [20], [21], [23]. Image captioning
takes an image I as the input, and generates a natural language
sentence s.

G : I → s (1)

In order to solve this problem, we design a model PG (s|I).
With PG , we have:

G(I) = argmax
s

PG (s|I) (2)

To optimize the parameters in PG , we need a dataset with a set of
image-sentence pairs {(Iisi)}. Since we often use an encoder-
decoder based model to represent PG (s|I), where the core idea
is generally to maximize the probability of the description given
the input image, we can generate the terms of s one after another
until the end of it. The entire model is trained to minimize cross-
entropy loss which is equivalent to maximizing the likelihood:

Lloss = −
N∑

i

T∑

t=1

(logPG (si,t |si, 1:t−1 , Ii)) (3)

where N is the total number of samples in the training, si,t is
the t-th word of the ground-truth caption si , and T is the length
of si .

In the encoder-decoder framework, a recurrent neural net-
works (RNNs) is often utilized as the decoder to generate cap-
tions. In this paper, we adopt a long short-term memory (LSTM)
[67] as our language model. It takes the output of the previous
time step, the input of the current time step and the context ex-
tracted from image I as its current inputs. The update equations
at time t are formulated as:

it = σ(Wixxt + Wim ht−1 + Wig kt) (4)

ft = σ(Wf xxt + Wf m ht−1 + Wf g kt) (5)

ot = σ(Woxxt + Wom ht−1 + Wog kt) (6)

ct = ft � ct−1 + it � φ(Wcxxt + Wcm ht−1 + Wcg kt) (7)

ht = ot � φ(ct) (8)

where t ranges from the start of the input sequence to the end
of it; it , ft and ot represent the input gate, forget gate, and
output gate at time step t, respectively; ct is the state of the
memory cell and ht is the hidden state; kt is the context at time
t; xt is the element of the sequence at timestep t; � represents
the element-wise multiplication, σ(·) represents the sigmoid
function, and φ(·) represents the hyperbolic tangent function;
and W[·][·] denote the parameters of the model. For simplicity,
in the next of our paper, the update procedure is simplified as:

ht = LSTM(xt, ht , kt) (9)

The context kt is an important factor in the encoder-decoder
framework, and it provides rich evidence for generating de-
scriptions [21]–[23], [29], [64]. The approaches which model
the context vector can be divided into two categories. The first
one is fixed context which is extracted from images [29], [41].
During word generation, the kind of context remains constant
and does not depend on the decoder. The second one is variable
context which depends on the hidden state of the decoder [21],
[23]. At each time step t, specific elements are selected from
a set of context vectors, thus forming discriminative context
which helps improve the performance of image captioning. In
this work, we use an attention-based approach to obtain useful
context from scene graphs. In the next subsections, we first in-
troduce how we generate scene graphs from images and then
describe the way we exploit both visual and semantic features
from scene graphs for image captioning.

B. Scene Graph Generation and Feature Extraction

Scene graphs not only depict object entities in images (with
bounding boxes and categories) but also present pairwise re-
lationships. They are structured representations which contain
rich relationships, providing abundant information for describ-
ing images. In order to generate a visually grounded scene graph
that most accurately correlates with an image, we use the method
proposed by Xu et al. [30] to generate scene graphs for images,
which is based on recurrent neural networks to predict objects
and their relationships.

To generate a scene graph for an image, a set of initial bound-
ing boxes should first be generated. In our paper, we use the
region proposal network (PRN) proposed by Girshick et al. [17]
to generate a set of object proposals for the image I . Second,
for each proposal, its object category as well as its bounding
box offsets need to be predicted. What is more, the relationship
between each pair of objects also needs to be considered. We
formulate the scene generation problem as follows. Given a set
of classes C (including the background class) and a set of rela-
tionship types R (including the none relationship), the variables
that need to be predicted in a scene graph are denoted as:

P =
{
pcls

i , pbbox
i , pi→j |i = 1, ..., n; j = 1, ..., n; i �= j

}

(10)
where n is the number of proposal boxes, pcls

i ∈ C is the class
label for the i–th proposal box, pbbox

i ∈ R4 is the bound-
ing box offsets of the i–th proposal box, and pi→j ∈ R is
the relationship predicate between the i–th and j–th proposal
boxes. At the holistic level, the inference task is to find the
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optimal P ∗ = argmax
P

Pr(P |I, BI ) that maximizes the fol-

lowing probability function:

Pr(P |I, BI ) =
∏

i

∏

j �=i

P r(pcls
i , pbbox

i , pi→j |I, BI ) (11)

Too employ contextual information among objects, the in-
ference procedure is based on RNNs, learning to interactively
improve its predictions via message passing. The probability of
each variable g (i.e., objects or relationships) in a scene graph is
denoted as Q(g|·), assuming that the probability only depends
on the current state of each node and each edge at every itera-
tion. Gated recurrent units [68] are used to compute the hidden
states of the variables due to their simplicity and effectiveness.
A gated recurrent unit is a simplification of the LSTM architec-
ture. The update equations of a GRU at time t are formulated
as:

zg
t = σ(Wzxxg

t + Wzhhg
t−1) (12)

rg
t = σ(Wrxxg

t + Wrhhg
t−1) (13)

h̃g
t = φ(Wvxxg

t + Wvh(rg
t � hg

t−1)) (14)

hg
t = (1 − zg

t )hg
t−1 + zg

t h̃g
t (15)

where zg
t is the update gate which decides how much the unit

updates its content; rg
t is the reset gate; and hg

t is the hidden state
at time t, which is a linear interpolation between the previous
hidden state hg

t−1 and the candidate hidden state h̃g
t .

The current hidden state of node i is denoted as hg
i and the

current hidden state of edge i → j is denoted as hg
i→j . Then the

inference procedure can be formulated as:

Q(P |I, BI ) =
n∏

i=1

Q(pcls
i , pbbox

i |hg
i )Q(hg

i |fv
i )

∏

j �=i

Q(pi→j |hg
i→j )Q(hg

i→j |fe
i→j ) (16)

where fv
i is the feature vector of the i–th node, and fe

i→j is the
feature vector of the edge connecting the i–th node and the j–th
node. In the first iteration, the GRU units take the visual features
fv

i (i.e., the visual features of the proposal box i) and fe
i→j (i.e.,

the visual features of the union box over the proposal boxes i
and j) as input. In later iterations, the inputs are the aggregated
messages from other GRU units of the previous step. Details
can be found in [30]. Based on hg

i and hg
i→j , a softmax layer

is utilized to produce the final scores for the object class and
relationship predicate. Meanwhile, a fully connected layer is
also used to regress to the bounding box offsets for each object
class separately.

After obtaining scene graphs for images, we then extract rep-
resentative and discriminative features based on them for gener-
ating image descriptions. Because visual features and semantic
features describe image content at different levels, we extract
low-level visual features as well as high-level semantic features
for each image, leveraging information from both objects and
their relationships. On the one hand, because objects are the core
building blocks of images, we extract objects with high predic-

tion scores from the generated scene graphs. Given an object oi

of an image I , we extract features from CNNs to represent it.
In this manner, we can obtain the visual features OI for image
I , where OI = {o1 , o2 , ..., oM }. On the other hand, because
a relationship inherently bundle two objects together and pro-
vides an in-depth understanding of the image, we extract triples
which are three lexeme sequences (e.g., man riding bike, man
holding umbrella) from scene graphs.

The reasons why we use such triples to represent knowledge
in scene graphs arise from the following three aspects: 1) To
extract information in graph-structured data, a triple which cor-
responds to two entities and an edge is generally treated as the
basic element. For example, Borde et al. [69] sample such triples
to reason the information contained in knowledge graphs. Kla-
wonn et al. [60] stitch such triples together to form the entire
scene graph for an image. 2) A relationship (i.e., a triple) is a
small subgraph of the entire scene graph. It describes a single
statement about a scene from a specific region. Meanwhile, a
caption often describes parts of objects in the image, thus, differ-
ent parts of the image have different relevances for generating
the description. Therefore, a triple in a scene graph provides
discriminative and informative cues for generating the caption.
3) Although individual predicates of relationships can provide
some kind of semantic information, they are somewhat ambigu-
ous. For example, given the predicate riding alone, we cannot
exactly imagine what kind of visual content is contained, as a
person can ride a bike or a horse. To encode a triple ri , similar to
previous approaches that represent a sentence or a phrase [29],
[70], we utilize word2vec [71] to obtain the 300-dimensional
vector for each word and then use mean pooling to obtain the
integral one. Then the semantic relationship features RI of an
image can be obtained, where RI = [r1 , r2 , ... rN ].

C. Hierarchical-Attention-Based Feature Fusion

Assuming that we have obtained the visual features OI and
the semantic relationship features RI of an image I , in this sec-
tion, we propose a hierarchical-attention-based module to han-
dle the fusion of these features, which can selectively attend to
specific features that are relevant to predicting each subsequent
word. The architecture of our feature fusion module is shown in
Fig. 5.

Although a scene graph provides a full structured representa-
tion of an image, in many cases, a caption is only related to some
of the information which is contained in an image. For example,
in Fig. 3, the key clues of the caption are only the man and the
bike. Using the global information to describe the image could
lead to suboptimal results due to the noises introduced from
information which is irrelevant to the potential caption. Thus, it
is important to automatically learn important clues from scene
graphs. With the first-level attention, our hierarchical-attention-
based fusion module first selectively attends to different visual
features and semantic features, forming the weighted visual
and semantic context vectors, respectively. Rather than simply
pooling these two kinds of context vectors into a single vector,
which neglects the inherent structure and differences among
them, it then learns relevance scores for these two modalities
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Fig. 5. Illustration of the hierarchical-attention-based feature fusion module
which can selectively attend to specific features that are relevant for predicting
the target word. It is composed of visual attention (Att-V), semantic attention
(Att-S), and multimodal attention (Att-M).

to obtain the final context vector with the second-level
attention.

To obtain the weighted visual context vector vt at each time
step t, we use visual attention (Att-V) to generate a normalized
attention weight α1,t,i for each of the M visual features oi as
follows:

a1,t,i = WT
o tanh(Wov oi + Woght−1) (17)

α1,t,i =
exp(a1,t,i)∑
i exp(a1,t,i)

(18)

vt =
M∑

i=1

α1,t,ioi (19)

where ht−1 is the previous hidden state of the decoding LSTM
(from Eq. 9); Wov , Wog and Wo represent the Att-V parame-
ters that are estimated together with all other parameters in the
decoding procedure. At the same time, to obtain the weighted
semantic context vector st , we employ semantic attention (Att-
S) to learn the relevance score α2,t,i for each relationship of
the N semantic relationship features, as shown in Fig. 5. The
update procedure of Att-S is:

a2,t,i = WT
r tanh(Wrv ri + Wrght−1) (20)

α2,t,i =
exp(a2,t,i)∑
i exp(a2,t,i)

(21)

st =
N∑

i=1

α2,t,iri (22)

where Wrv , Wrg and WT
r represent the Att-S parameters.

After obtaining vt and st , in the same spirit, we use multimodal
attention (Att-M) which learns relevance scores βt,1 for vt and
βt,2 for st to obtain context from both visual and semantic

modalities. The update procedure of Att-M is :

bt,1 = WT
m tanh(Wmvvt + Wmght−1),

bt,2 = WT
m tanh(Wmvst + Wmght−1) (23)

βt,i =
exp(bt,i)∑
i exp(bt,i)

(24)

kt = βt,1vt + βt,2st (25)

where Wmv , Wmg and WT
m are the learned parameters of Att-

M. The final context vector kt will be fed into the decoder to
generate captions.

D. Implementation Details

To obtain scene graphs for images, we train the scene graph
model on the Visual Genome dataset [59] (except the images in
the validation set of MS COCO [72]). We use the relationships
which are manually cleaned by Xu et al. [30]. In this way, our
scene graph model contains 150 object categories (excluding
the background category) and 50 relationship types (excluding
the none relationship). With the same settings asf [30], we also
use the VGG-16 [15] network to extract features from images.
To obtain scene graphs, the training procedure is almost the
same with [30]. For training the language model, we use an
LSTM network with a hidden state size of 512. We remove
the words that occur less than 5 times in the training and val-
idation sets, resulting dictionaries of size 9567 for MS COCO
and 5551 for VG-COCO. For each image, in order to compare
fairly with previous work, we extract M = 30 objects with high
confidence scores (which is the same with [22]). To train the
language model, we use the Adam optimizer [73] with a base
learning rate of 5e-4. The momentum and weight decay are 0.8
and 0.999 respectively. We train the model up to 50 epochs
with early stopping. We first train the language LSTM with
conventional cross-entropy loss and then retrain the model with
sentence-level reward loss. For a fair comparison with previous
work [25], [45], we utilize the CIDEr score to optimize our
model.

IV. EXPERIMENTS

A. Datasets and Evaluation Metrics

We conduct experiments on the Microsoft COCO dataset
[72] and the VG-COCO dataset (which is the intersection of
the Visual Genome (VG) dataset [59] and the Microsoft COCO
dataset) to evaluate the performance of our method.

Microsoft COCO: The Microsoft COCO dataset is currently
the most commonly used and the largest corpus for image cap-
tioning. This dataset contains 82,783 images for training, 40,504
images for validation and 40,775 images for testing, where each
image is associated with 5 sentences. In order to conveniently
compare with previous methods, we use the same splits as [40].
It contains 82,783 images from the training set for training,
5,000 images from the validation set for validation, as well as
another 5,000 images from the validation set for testing.
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VG-COCO: The VG dataset has a total of 108,077 images
with full annotation information such as objects, attributes, and
relationships among objects [59]. In order to obtain a dataset
with both captions and relationships for images, the intersec-
tion of VG and MS COCO is adopted in our paper, which is
named as VG-COCO. It contains a total of 51,208 images. In
our paper, we use the 33,848 images which are contained in
the training set of MS COCO for training, and we select 2,000
images for validation and 2,000 for testing from the remaining
images.

For evaluation, we use the most commonly used metrics:
BLEU [74], METEOR [75], ROUGE-L [76], CIDEr [77],
SPICE [78] and WMD [79]. BLEU evaluates a candidate sen-
tence by measuring the fraction of n-grams that appear in a
set of references, and METEOR evaluates a generated sentence
by computing a score based on word-level matches between
the generation and a set of references. ROUGE-L counts the
number of overlapping units between the generated description
and its references. CIDEr uses human consensus to evaluate
the similarity of a generated sentence against the references.
SPICE computes caption similarity based on the agreement of
the scene graph tuples of the candidate sentence and all ref-
erence sentences. WMD is calculated based on word2vec em-
beddings of the words. Similar to the work of [79], we also
convert the distance scores to similarities by using a negative
exponential.

B. Relationships for Image Captioning

Scene graphs not only depict object entities in images but
also present pairwise relationships. They are structured repre-
sentations which contain rich relationships, providing abundant
information for describing images. In this subsection, we im-
plement experiments on the VG-COCO dataset to verify that
relationships are useful for image captioning.

We first extract N relationships with high scores for each
image I , and then we decode them into relationship feature
vectors RI = [r1 , r2 , ... rN ] with the method introduced in
Section III-B. Based on these features, we use semantic atten-
tion (Att-S, as introduced in Section III-C) to generate captions.
Because each image has an average of 6.2 ground truth rela-
tionships [30], we set the numbers of relationships as 5, 10, and
15. As VG-COCO is proposed for the first time in our paper,
we use the method proposed by Vinyals [20] as our baseline
(Google NIC). Specifically, given an image, we first extract
CNN features of the last fully connected layer and then feed
these features into LSTM to generate captions. Fig. 6 illustrates
the performance with various numbers of relationships as well
as the baseline on the test set of VG-COCO. It can be observed
that representing the image with semantic relationship features
is considerably better than the CNN features of the whole im-
age. By automatically attending to relationships which describe
the interactions of local regions, our method can obtain bet-
ter performance. The results demonstrate that relationships are
useful for image captioning. With the increase of the relation-
ships, more details of the image are revealed, and thus, the
performance increases. However, excessive relationships will

Fig. 6. The effect of the number of relationships for generating natural lan-
guage descriptions on the VG-COCO dataset. Baseline denotes the method
which uses the CNN features of the whole image to generate captions.
Relationship_N denotes our methods which use top-N relationships to gen-
erate captions.

bring noise, leading to poorer performance. As shown in Fig. 6,
when the number of relationships is 10, the model achieves the
best performance. Therefore, we set N = 10 in the following
subsections.

As described in Section III-B, after obtaining the feature vec-
tor for each word, we use mean pooling to obtain the integral
one to represent each relationship triple (i.e., mean pooling).
We also try other approaches to encode each relationship triple.
First, we intuitively use max pooling to fuse these three vec-
tors (i.e., max pooling). Second, we feed the relationship triple
into an LSTM and use the last hidden state of the LSTM to
represent it (i.e., LSTM). The results are shown in Table I.
Because our relationship triples are fixe-length sequences, the
mean-pooling-based method has the best performance, which
is slightly superior to the LSTM-based encoding approach. In
the following subsections, we use mean pooling to encode the
relationship triples.

C. Effectiveness of the Proposed Method

In this subsection, we evaluate the effectiveness of our method
which utilizes hierarchical-attention-based method to leverage
visual features and semantic relationship features from scene
graphs for image captioning. The results on the test set of VG-
COCO are shown in Table II.

We report the approach which only uses visual attention (Att-
V) on the visual features (i.e., vt) from the nodes of scene graphs
to generate image descriptions (Obj). For comparison, we also
use semantic relationship features (i.e., st ) alone to generate
captions (Rel, the same method in Section IV-B). We experiment
with two approaches to combine visual features and semantic
features. The first one is to directly concatenate them (Obj+Rel-
C) and the second one is to employ our hierarchical-attention-
based model (Obj+Rel-A). As shown in Table II, the results
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TABLE I
RESULTS OF DIFFERENT ENCODING METHODS FOR OBTAINING SEMANTIC RELATIONSHIP FEATURES ON THE TEST SET OF VG-COCO DATASET. BLEU, METEOR,
ROUGE-L, CIDER, SPICE, AND WMD ARE USED AS THE METRICS, WHERE B-N DENOTES BLEU SCORES WITH N-GRAM (N = 1, 2, 3, 4). HIGHER IS BETTER

TABLE II
AUTOMATIC METRIC SCORES OF DIFFERENT METHODS ON THE TEST SET OF VG-COCO DATASET. B-N DENOTES BLEU SCORES WITH N-GRAM (N = 1, 2, 3, 4).

HIGHER IS BETTER

†indicates uses ResNet-101 features.

on the VG-COCO dataset demonstrate that our method which
uses hierarchical attention based approach to leverage both vi-
sual features and semantic relationship features (Obj+Rel-A)
achieves the best performance. Many conclusions can be ob-
tained from Table II. First, as Obj and Rel are both better than
Google NIC, it demonstrates that the extracted visual features
and semantic relationship features provide informative cues for
generating natural language descriptions. Second, because rela-
tionships inherently bundle two objects together by reasoning
their interactions, they inherently contain semantic information
and provide an in-depth understanding of images. For these rea-
sons, as the results show, Rel performs better than Obj. Third,
because both Obj+Rel-A and Obj+Rel-C perform better than
individual Obj and Rel, it is demonstrated that visual object
features (Obj) and semantic relationship features (Rel) are com-
plementary. At last, as Obj+Rel-A is better than Obj+Rel-C, it
demonstrates that directly connecting visual and semantic infor-
mation is less informative than using attention mechanism. For
words such as “woman” and “computer”, the language model
requires more information from the visual objects. However,
for words such as “sitting” and “down”, the language model
requires more information from the semantic relationship fea-
tures. Hierarchical attention can adaptively attend to these two
kinds of features, thus fusing useful features, so Obj+Rel-A per-
forms better than Obj+Rel-C. The results demonstrate the ef-
fectiveness of our hierarchical-attention-based approach. With
complementary visual object features and semantic relationship
features from scene graphs, our method can generate more ac-
curate captions.

We also compare our method with NBT [44], which uti-
lizes objects in images to generate natural language explicitly
grounded in entities found by object detectors. As shown in
Table II, Obj+Rel-A obtains slightly worse performance than
NBT. The reasons come from two sides. First, NBT utilizes a
two-stage process to generate language. Compared with our
method, NBT contains an additional module which decides

whether to generate a word from the textual vocabulary or gen-
erate a visual slot at each time step. Second, we use visual
features extracted from VGG-16 [14], while NBT uses ResNet-
101. For a fair comparison with NBT [44], we use ResNet-101
to extract visual features for the detected objects. With better vi-
sual features, Obj-R+Rel-A surpasses NBT with a gain of 0.014
in the BLEU-1 metric. Furthermore, we also utilize the CIDEr
score to optimize our model. After optimizing the CIDER score,
Obj-R+Rel-A+CIDEr obtains better performance. For example,
compared with NBT, we obtain a gain of 0.041 in the BLEU-1
metric and a gain of 0.165 in the CIDEr metric.

D. Comparison With State-of-the-Art

We compare the proposed method which use both visual and
semantic relationship features from scene graphs for image cap-
tioning with state-of-the-art image captioning models on the MS
COCO dataset. The results are shown in Table III. It can be ob-
served that the proposed method achieves promising results.
This is due to the fact that our model exploits visual features
as well as complementary semantic relationship features from
scene graphs. The method proposed by Jin et al. [22] (i.e., Ob-
jOnly) is similar to our Obj setting, which uses visual features
extracted from objects for image captioning. When using visual
object features alone (Obj), we obtain almost the same perfor-
mance as ObjOnly [22]. After incorporating semantic relation-
ship features, our Obj+Rel-A model surpasses ObjOnly with
large gains (e.g., 0.127 in CIDEr, 0.057 in BLEU-2). Mean-
while, our method also outperforms the approach proposed by
You et al. [23] which uses semantic concepts (Sem_ATT) with
large gains (e.g., 0.013 in METEOR, 0.39 in BLEU-2). With the
same visual features (i.e., ResNet-101 features), Obj-R+Rel-A
surpasses Adaptive-Attn [37] with a gain of 0.025 in the BLEU-
1 metric and a gain of 0.018 in the CIDEr metric. Meanwhile,
it surpasses NBT [44] with a gain of 0.012 in the BLEU-1
metric. After optimized for the CIDEr score, our method (i.e.,
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TABLE III
RESULTS COMPARED WITH STATE-OF-THE-ART METHODS ON THE TEST PORTION OF KARPATHY’S SPLITS ON MS COCO. B-N DENOTES BLEU SCORES

WITH N-GRAM (N = 1, 2, 3, 4). “-” INDICATES THE RESULTS ARE NOT REPORTED IN THE CORRESPONDING REFERENCES. HIGHER IS BETTER

†indicates uses ResNet-101 features and∗indicates optimizing the CIDEr score.

TABLE IV
LEADERBOARD OF THE PUBLISHED IMAGE CAPTIONING MODELS ON THE ONLINE MS COCO TESTING SERVER. B-N DENOTES BLEU SCORES WITH N-GRAM (N

= 1, 2, 3, 4). OUR METHOD WHICH UTILIZES VISUAL OBJECT FEATURES AND SEMANTIC RELATIONSHIP FEATURES ACHIEVES COMPARABLE PERFORMANCE.
HIGHER IS BETTER

†indicates that the results are obtained from an ensemble model.

Obj-R+Rel-A+CIDEr) obtains better performance. Obj-R+Rel-
A+CIDEr surpasses PG-BCMR [46] with a gain of 0.038 in the
BLEU-1 metric and a gain of 0.089 in the CIDEr metric. What is
more, Obj-R+Rel-A+CIDEr achieves comparable performance
with Up-Down [24], and it even achieves better performance in
the CIDEr metric.

We also evaluate our model on the MS COCO Image Chal-
lenge set by uploading results to the official test sever. The
results are shown in Table IV, where c5 and c40 indicate the
numbers of reference captions for evaluation. It can be observed
that our approach achieves very competitive performance, com-
pared to the state-of-the-art approaches. Our model outperforms
the other models in most cases. This is due to the fact that
our method exploits visual object features, semantic relation-
ship features, and hierarchical attention. The reason why our
method is slightly worse than Up-Down [25] is that Up-Down
utilizes an ensemble of 4 models, whereas our Obj-R+Rel-

A+CIDEr is a single one. Ensemble models can always obtain
better results than single model. The results on the online MS
COCO test server demonstrate the effectiveness of our proposed
method.

E. Qualitative Results

To demonstrate that our method which utilizes structured
scene graphs can generate better image descriptions, some qual-
itative results are presented in Fig. 7. By integrating both visual
features and semantic relationship features, our model can gen-
erate more comprehensive captions. For example, as shown in
the bottom of the first column of Fig. 7, even though Obj which
exploits visual features from the image can predict the correct
object categories (i.e., man and dog), it is unable to describe
them properly. The expression of “man with dog” is somewhat
improper. However, with both features from objects and their
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Fig. 7. Examples which are generated by different methods in the test set of the VG-COCO dataset. The scores in the parentheses are the METEOR values for
the generated captions, which are evaluated over the corresponding the ground-truth (GT) captions.

Fig. 8. Examples of generated captions and attention weights. The first and second columns show the original images and the extracted objects with the
corresponding relationships. The third column shows the weight for each object and relationship (top10 with high relevance scores) when generating the whole
target caption. We first accumulate the relevance scores for each item (i.e., object scores from visual attention and relationship scores from semantic attention)
at each time step, and then min-max normalization of the accumulated scores is used to represent the final weights (Indexes are just for convenient display). The
fourth column shows the changes of the attention weights for some objects (i.e., Oi denotes the object marked as i), relationships (i.e., Ri denotes the relationship
marked as i), and the weighted visual context vt at each time step (Best viewed in color).

relationships, Obj+Rel-A not only predicts the correct object
categories, but also describes them accurately (man holding
dog). The other examples in Fig. 7 also demonstrate that adap-
tively attending to visual object features and semantic relation-
ship features from structured scene graphs can generate more
accurate image captions.

F. Attention Analysis

In this subsection, we quantitatively show that our
hierarchical-attention-based feature fusion module can automat-
ically learn important cues from scene graphs for describing
images. As many approaches [3], [21], [23], [37] have shown
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that an attention-based encoder can selectively attend to visual
regions or semantic concepts, we illustrate that our model can
assign different weights for different relationships and objects,
which pinpoint different aspects of images. We first accumulate
the relevance scores for each relationship from the semantic
attention at each time step during the caption generation proce-
dure, and then min-max normalization of the accumulated scores
is used to represent the final weights. In the same spirit, we can
obtain the weight for each object from the visual attention. The
results show that our model can adaptively attend to important
information from scene graphs. For example, as shown in the
first row of Fig. 8, when generating the caption “a man riding a
skateboard down a sidewalk”, the relationship between the man
and the skateboard (i.e., relationship 4) is selected as the key
formation as it has the biggest weight. Meanwhile, correspond-
ing visual objects (i.e., object 9 and 10) are also selected with
large weights. The fourth column in Fig. 8 shows the changes
in the attention weights for some objects, relationships, and the
weighted visual context vt at each step of the language genera-
tion process. Several conclusions can be drawn. First, both Att-V
and Att-S can selectively attend to relevant cues. For example,
as shown in the second row and the fourth column of Fig. 8, to
generate the word “laptop”, Att-V mainly focuses on the object
instance of “laptop”. For the word “sitting”, Att-S mainly fo-
cuses on the relationship of “woman on bench”. Second, Att-M
can adaptively fuse the visual vt and semantic st context. For
example, for the visual words (i.e., “woman”, “bench”, and “lap-
top”), Att-M mainly focuses on visual context vt . Conversely,
for words such as “sitting” and “with”, Att-M mainly focuses
on semantic context because the attention weights for vt are
small. By assigning different weights for different objects, rela-
tionships, and the weighted context, our hierarchical-attention-
based model can automatically learn useful information from
structured scene graphs for image captioning.

V. CONCLUSION

In this work, we propose a framework that is based on scene
graphs for image captioning. Scene graphs contain abundant
structured information because they not only depict object enti-
ties in images but also present pairwise relationships. To lever-
age both visual features and semantic knowledge in structured
scene graphs, we extract CNN features from the bounding box
offsets of object entities for visual representations, and we ex-
tract semantic relationship features from triples for semantic
representations. After obtaining these features, we introduce a
hierarchical-attention-based module to learn discriminative fea-
tures for word generation at each time step. Our model is able to
learn important cues from scene graphs and achieves promising
results. In future work, we will learn scene graphs for images
with the supervision of the target captions to obtain better image
representations for generating natural language descriptions.
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