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Scene Recognition With Prototype-Agnostic
Scene Layout

Gongwei Chen , Xinhang Song , Haitao Zeng , and Shuqiang Jiang , Senior Member, IEEE

Abstract— Exploiting the spatial structure in scene images is
a key research direction for scene recognition. Due to the large
intra-class structural diversity, building and modeling flexible
structural layout to adapt various image characteristics is a chal-
lenge. Existing structural modeling methods in scene recognition
either focus on predefined grids or rely on learned prototypes,
which all have limited representative ability. In this paper,
we propose Prototype-agnostic Scene Layout (PaSL) construction
method to build the spatial structure for each image without
conforming to any prototype. Our PaSL can flexibly capture the
diverse spatial characteristic of scene images and have consid-
erable generalization capability. Given a PaSL, we build Layout
Graph Network (LGN) where regions in PaSL are defined as
nodes and two kinds of independent relations between regions are
encoded as edges. The LGN aims to incorporate two topological
structures (formed in spatial and semantic similarity dimensions)
into image representations through graph convolution. Extensive
experiments show that our approach achieves state-of-the-art
results on widely recognized MIT67 and SUN397 datasets without
multi-model or multi-scale fusion. Moreover, we also conduct the
experiments on one of the largest scale datasets, Places365. The
results demonstrate the proposed method can be well generalized
and obtains competitive performance.

Index Terms— Scene classification, convolution neural net-
works, graph neural networks, scene layout.

I. INTRODUCTION

SCENE images (e.g., “classroom,” “bedroom”) are usu-
ally composed of specific semantic regions (e.g., “desk,”
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“bed”) distributed in certain spatial structures. Exploring
the local regions and their spatial structures has been a
long-standing research direction and plays a crucial role in
scene recognition [1]–[3]. Due to the size and location changes
of semantic regions (see Fig. 1), the spatial structures of
images have great diversity, which makes it very difficult to
represent them so as to adapt various image characteristics.
Thus, how to build and model such structural layout into image
representations is an obstacle problem.
Most existing methods [3]–[6] model spatial structural infor-

mation based on predefined grid regions or densely sampled
regions. These regions are in fixed sizes located in a grid,
forming a simple and constant structure as a common proto-
type for all images, which results in rigid layout even with
the extension of multi-scale setting. Some earlier works [1],
[2], [7] have attempted to learn several prototypes for each
category images with different models, such as constellation
model in [1], Deformable Part-based Model (DPM) in [7] and
DPM’s variant in [2]. These prototypes can be regarded as tem-
plates with fixed topological structures for each scene category,
where the geometric relations of the components are obtained
through statistic learning. The spatial structure of each image
is constructed by conforming to the prototypes. Although
more than one prototype is usually used to characterize one
scene category, such limited variety is not comprehensive
enough to cover the large intra-class structural diversity of
scene images. In contrast, our motivation is to design a layout
modeling framework to flexibly capture the unconstrained
spatial structures and effectively obtain discriminative patterns
from them.
In this paper, we propose Prototype-agnostic Scene Lay-

out (PaSL) construction method, which builds spatial structure
for each single image without conforming to any prototype.
Given an image, PaSL is constructed with the locations and
sizes of discriminative semantic regions, which are detected
by only using the convolutional activation maps of this image.
Thus, PaSLs will vary from image to image and can flex-
ibly express different spatial characteristics of the images.
Considering the natural property of the graph to preserve
diverse and free topological structures, we frame the structural
modeling process as a graph representation learning problem.
More specifically, we propose Layout Graph Network (LGN)
where regions in PaSL are defined as nodes and two kinds
of relations between nodes are encoded as edges. Through
the graph convolution [8] and mapping operations of LGN,
the topological structure and region representations can be
transformed into a discriminative image representation.
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Fig. 1. Image examples from MIT67 dataset. Here shows the images from
three scene categories (“bathroom,” “bedroom,” and “classroom”). It can be
seen that the objects in each scene can vary greatly in size and location, like
“bathtub” in scene “bathroom,” “bed” in scene “bedroom,” “desk” in scene
“classroom.”

The main idea of PaSL construction method is inspired
by the ability of pretrained CNNs to localize the meaningful
semantic parts [9]. We make use of the convolution activation
maps extracted from pretrained CNNs to detect semantic
regions, and aggregate them to generate discriminative regions
and form PaSL in an unsupervised way. The advantages of
our method is two folds. One is that the whole process is
performed on each image independently and can be easily
extended to large scale datasets. Another is that PaSLs derived
from different pretrained CNNs can yield comparable per-
formances with same LGN, which demonstrates they have
considerable generalization ability. Besides constructing PaSL,
modeling it in graph structure is also an important contribution
in this paper. Conventional structural models in scene recog-
nition either have difficulty of optimization [2], [7] on large
scale datasets or simplify the structural information [3], [10].
In contrast, we build Layout Graph Network upon PaSL
by reorganizing it as a layout graph containing two sub-
graphs. These two subgraphs aim to capture different kinds
of relations, spatial and semantic similarity relations between
regions, respectively. Thanks to the independence between
these two kinds of relations, we can explore structural infor-
mation in a higher order space and easily encode it into
more discriminative features. Furthermore, the application of
graph convolution makes our model effectively handle various
topological structures and easy to be optimized with large
amounts of data.
We evaluate our model on three widely recognized scene

datasets, MIT67 [1], SUN397 [11], and Places365 [12]. The
ablation study shows that our method obtains up to 5%
improvements over baselines that neglect structural informa-
tion. Compared to current works on MIT67 and SUN397 that
benefit from multi-model or multi-scale fusion methods, our
model even outperforms them and obtains state-of-the-art
results with single model in single scale. When extending our
model to one of the largest scale dataset, Places365, it still
shows competitive performance.

II. RELATED WORK

A. Scene Recognition

Scene recognition is an important and challenging problem
and has been extended to diverse research directions, like
natural scene image recognition [13], RGB-D scene image
recognition [14], and dynamic scene video recognition [15].
In this section, we mainly focus on natural scene image
recognition methods and discuss their differences.
In early works, handcrafted features (like SIFT [16],

RHOG [17]) have been regarded as the fundamental com-
ponent in image classification. Based on these features, bag-
of-feature methods (like VLAD [18], Fisher Vector [19]) have
demonstrated great power on scene recognition. However,
these methods incorporate local information in an orderless
way, which loses spatial dependencies between local regions.
Then, some works further explore the spatial contextual depen-
dencies within bag-of-feature methods. Lazebnik et al. [20]
proposed Spatial Pyramid Matching to exploit approximate
spatial information in a predefined grid. Parizi et al. [21] used
a reconfigurable model operated on a grid to capture the spatial
information among regions.
Beyond this simple and fixed spatial information based on

grids, some works explore the complex and flexible spatial
structures formed by scene components in different ways.
These works [1], [2], [7] construct the scene structures in a
similar way to Deformable Parts Model (DPM) [7], DPM’s
variant [2], or a constellation model [1]. Based on these
structural models, a fixed number of structures for each scene
category, which can be named as scene prototypes, are learned.
Then the spatial structural information of each image is
discovered by conforming to the default structure of the most
matched scene prototype. The spatial structures derived from
scene prototypes have difficulty covering the intra-class variety
of scenes. Differently, our approach can model the structural
layout for each image following its own characteristics.
Recently, Deep Learning methods, especially Convolution

Neural Networks, have been widely used in scene recogni-
tion. Some works [6], [22]–[24] combine bag-of-feature meth-
ods (like VLAD, Fisher Vector) or dictionary-based method
with CNN to explore discriminative local information in an
orderless way. To model spatial contextual dependencies, the
works [3], [10] learn a sequential model (like LSTM [3]) or
a graphical model (MRF [10]) on fixed size regions. Further-
more, the multi-scale strategy is adopted to capture more pre-
cise local information. However, these works either encounter
the problem of noise regions caused by predefined grids, or
simplify the spatial structural information, while our method
can explore the complex spatial structural layouts and reform
them in graphs to generate discriminative representations.

B. Discriminative Region Discovery

To discover the discriminative regions has been a
long-standing study in visual recognition. Singh et al. [25]
use an iterative optimization procedure to alternately cluster
and train discriminative classifier on densely sampled patches.
Juneja et al. [26] first propose an initial set of regions based on
low-level segmentation cues, and then learn detectors on top
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of these regions. However, these works all use the handcrafted
features as region representations.
Benefited from Deep Learning methods and large scale

datasets, there has been significant progress in image clas-
sification [13], [27], object detection [28], semantic segmen-
tation [29], and many other vision tasks [30]–[32]. Some
researchers try to use object detection or semantic seg-
mentation models for localizing discriminative regions (like
objects or stuff). Wang et al. [33] use an existing object
proposal extractor to obtain region proposals, and apply
Fisher Vector methods to encode these region features.
López-Cifuentes et al. [34] propose to use semantic segmen-
tation model to extract semantic regions, and encode these
region representations with attention mechanism to enhance
the image feature maps. The main issue of this kind of works
is that extra models trained on different tasks are required and
need other expensive label annotations.
Recently, Some works take advantage of CNN activations

as region descriptors for discriminative region discovery.
Wu et al. [4] obtain region proposals by performing MCG,
and screen the regions by using one-class SVM and RIM
clustering. Cheng et al. [35] sample a set of local patches in a
uniform grid with their object scores extracted from ImageNet-
CNN, then discard the patches containing non-discriminative
objects by applying Bayes rules. One common characteristic
of these works is that they generate the candidate regions
independently of the CNN classifiers, which will incur much
additional computational cost.
Besides these aforementioned approaches, some recent

works explore the convolutional responses from CNNs to
directly discover discriminative regions for fine-grained object
recognition. Zheng et al. [36] group the convolutional chan-
nels to localize object parts in the well constrained spatial
configurations. Zhang et al. [37] propose to integrate LSTM to
CNN for extracting local age-sensitive regions. Wei et al. [38]
use a simple thresholding method to discover object parts
and select the largest component to represent the desired
foreground object. In contrast, we formulate the discovery pro-
cedure for scene recognition, where more complex semantic
regions and unconstrained spatial structures exist. Similarly,
the work of [5] also uses a pretrained CNN classifier to
generate discriminative regions for scene images. However,
it needs extra scene category cue for each image and the CNNs
with a specific architecture.

C. Graph Neural Networks in Computer Vision

Graph Neural Networks (GNNs) are designed to deal
with the graph structured data, which were first proposed
in [39]. Recently, some variants have been applied in program
verification [40], molecular property prediction [41], docu-
ment classification [8] and made significant progress. Inspired
by the success of GNNs on graph structured data, some
researches apply them in computer vision task, like multi-label
classification [42], situation recognition [43], scene graph
generation [44], zero-shot recognition [45], and etc. These
works apply GNNs to natural graph data (like knowledge
graph [42], [43], [45]), or constructed graph data with the

supervision of annotated object regions (like scene graph [44]).
In contrast to them, we perform GCN [8], a variant of GNN,
on the structural layouts in scene images without external
knowledge or object annotations.

III. OUR APPROACH

In this section, we first introduce how to construct
Prototype-agnostic Scene Layout (PaSL) from pretrained
CNNs in an unsupervised way. Then we build Layout Graph
Network upon PaSL to integrate structural information into
visual representations. The whole process is shown in Fig. 2.
In the following, we will go into details about our approach.

A. Prototype-Agnostic Scene Layout Construction

PaSL is constructed by the locations and sizes of discrimi-
native regions (including objects, object-parts, and other visual
patterns) in each image. To form PaSL, we first need to
discover discriminative regions. Unlike previous works that
use many selected image patches (from manual annotation [2]
or region proposal [4]) to train region detectors, we only
need the convolutional units from a pretrained CNN, without
detector training.
Recently, Zhou et al. [46] have shown the convolutional

units from a CNN pretrained on Places [13] dataset can be used
as object detectors. And Bau et al. [9] extend this conclusion
to more pretrained CNNs and more visual concepts. They
demonstrated the individual convolutional units in CNN can
be aligned with semantic concepts across a range of objects,
parts, textures, scenes, materials, and colors. Inspired by these
works, we utilize the convolutional units in pretrained CNNs
as region detectors. In practice, given an image, we feed it
into a pretrained CNN to extract the convolutional activation
maps A (A ∈ RH×W×C ) from the last convolutional layer
(For VGG16, max pooling need to be employed). The c-th
activation map in A is represented as Ac ∈ RH×W , while
c ∈ {1, . . . , C}. For instance, if the resolution of the input
image is 224 × 224, we obtain 7 × 7 × 512 activation maps
as A, where H = W = 7 and C = 512, by adopting a
pretrained VGG16 model.
Based on the same assumption of [9], [46] that the desired

regions (e.g., semantic regions) in feature maps have high
response values, we propose an adaptive threshold T in Eq.1
to detect the candidates of discriminative regions.

T = 1

C

C∑
c=1

Ȧc, Ȧc = max (Ac) (1)

For efficient computing, any activation map whose maxi-
mum value is under T is discarded, then a subset Ã of
activation maps A is produced. Each activation map in
Ã is scaled up to the input image resolution and then
thresholded into a binary map B by using the threshold T .
We take the connected components in B as the candidates of
discriminative regions. The algorithm from [47] is adopted
to generate bounding boxes of the connected components
in each binary map. By performing the same operations on
all activation maps in Ã, we obtain bounding box set M
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Fig. 2. Overview of our approach. A pretrained CNN model (like VGG16 or ResNet50) is used as the backbone to extract the candidates of discriminative
regions. The desired discriminative regions are clustered from these candidates, and fed into ROI Align Layer to generate the node representations. Two
subgraphs are constructed by treating regions as nodes and designing spatial or similarity relation as edge. Then, we perform graph convolution on two
subgraphs and combine them to obtain the final node representations. Finally, node weak-supervision mechanism makes each node predict global image
category by feeding it into a fully-connected layer. Meanwhile, the averagely pooled node representations, regarded as the global image representations, are
exploited for scene recognition by a fully-connected layer.

of all candidates of discriminative regions. The element m
in M is composed of the left-up and right-bottom coordi-
nates, e.g., m = {xmin, ymin , xmax, ymax}, where (xmin, ymin)
denotes the coordinate of left-up point in bounding box, and
(xmax, ymax) is the coordinate of right-bottom point.
In practice, the number of elements in M is large,

e.g., ∼ 500 for VGG16 and ∼ 1500 for ResNet50. If we
construct PaSL with all regions from M , it will cause expen-
sive computational cost in the later process. Meanwhile,
the regions from M have two characteristics. One is that
although adaptive thresholding can discard some small noise
parts, there also have several wrong detected results imposed
by the unsupervised process. Another one is that discovering
from each activation map independently may bring many
visually similar regions. In order to avoid the wrong or similar
regions, we choose a simple yet effective way, e.g., clustering,
to find the most representative regions in M as the desired
discriminative regions. Accordingly, the discriminative regions
D could be obtained by:

L = C(M, N) (2)

D = Aggre(M, L) (3)

where C(·) denotes hierarchical clustering method. N stands
for the number of clusters, which also means the number of
discriminative regions. L corresponds to the cluster labels of
the elements in M . Given cluster labels L, we perform mean
pooling method (Aggre) on bounding boxes of elements in
the same cluster to obtain bounding boxes of discriminative
regions D = {d1, . . . , dN }. Specifically, clustering method
can be k-means or spectral clustering. If choosing k-means,
cluster centers can be directly used as discriminative regions.
Given discriminative regions, we define Prototype-agnostic

Scene Layout (PaSL) as a collection of the locations and sizes
of these regions in each image. The spatial structure, that is
implicit in PaSL, requires to be represented in a certain form.
To form the diverse and free topological structure of PaSL of

each image, the graph is adopted as data structure. Following
the common setting of graph structured data, we define the
discriminative regions as nodes and encode two kinds of
independent relations between regions as edges. The details
will be described in the following section.

B. Layout Graph Network

For modeling the spatial structure of PaSL, we reorganize
it as a layout graph, which is better for incorporating the
structural information into visual representations. Given PaSL
with discriminative regions, a layout graph G = {V , Asp, Asim}
is constructed, which contains a node set V , and two adjacency
matrices Asp, Asim. For clarity, we decompose the layout
graph into two subgraphs with the same nodes but different
adjacency matrices: spatial subgraph Gsp = {V , Asp} and
similarity subgraph Gsim = {V , Asim}. More specifically, these
two subgraphs share the same node set V = {v1, . . . , vN },
where vi corresponds to the representation of discriminative
region i . We apply RoIAlign [48] to extract the representation
of each region from a pretrained CNN as the initial state
vector of vi . This pretrained CNN can be regarded as a feature
extraction model, which is the same as the pretrained model
for generating PaSL, unless otherwise stated.

1) Spatial Subgraph: The spatial information is vital in
PaSL, because it implies the functions or properties of regions.
One way to take advantage of this information is to exploit
the spatial relations between regions. Specifically, we define
a kind of spatial representation to encode this relation and
then generate the spatial edge to form the adjacency matrix.
As mentioned above, each discriminative region i has a bound-
ing box di = {xmin, ymin , xmax, ymax}. Inspired by [49],
we extract the spatial feature of each region as follows:

dsp
i =

[
xmin

Wimg
,

ymin

Himg
,

xmax

Wimg
,

ymax

Himg
,

Ar

Arimg

]
(4)

where Ar and Arimg are the areas of the region i and the
image respectively. Wimg and Himg denotes the width and
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height of the image. We concatenate dsp
i and dsp

j to obtain
the spatial representation dsp

i j of spatial relation between the
regions i and j . After generating the spatial representation, we
employ an edge function Fe, implemented as one-layer fully
connected network, to generate the spatial edge asp

i j as:
esp

i j = Fe(d
sp
i j ) (5)

asp
i j = exp(esp

i j )∑
j �=i exp(e

sp
i j )

(6)

Then the spatial adjacency matrix Asp is obtained to form
spatial subgraph Gsp . The diagonal values in Asp are zero.

2) Similarity Subgraph: To explore the spatial information
in PaSL is an obvious requirement. But there exists an problem
in the spatial subgraph that the spatial relation overlooks
the semantic meanings of regions. To address this problem,
we propose the similarity subgraph as a complement to the
spatial subgraph. Due to the lack of explicit labels for the local
regions, we take the region representation as a substitution for
the semantic label. Then, we model the similarity between
these region representations to capture the semantic similarity
relations between regions.
Given the node set V , we can obtain the state vector vi ∈ Rh

of each node. In similarity subgraph, we aim to obtain the
strong connection between semantic similar regions. So the
semantic similarity relations between regions are measured by
the cosine similarity, which is defined as follows:

esim
i j = φ(vi )

T φ(v j ), φ(v) = ωsimv∣∣∣∣ωsimv
∣∣∣∣
2

(7)

where φ represents the transformation of the state vector and
following �2 normalization, ωsim ∈ Rh/2×h is the transforma-
tion weights. The dot product esim

i j of two �2 normalized vector
denotes the cosine similarity between regions. To balance the
impact of neighbor nodes, we perform the softmax function
on each row of the cosine similarity matrix as:

asim
i j = exp(esim

i j )∑
j �=i exp(e

sim
i j )

(8)

where Asim is used as the adjacency matrix for similarity
subgraph. The diagonal values in Asim are zero.

3) Graph Convolution: After building the layout graph,
the next step is to incorporate the spatial and semantic sim-
ilarity information into the representations of regions, and
generate discriminative image representations. Considering
the superior performance of Graph Convolution Network
(GCN) [8] on graph structured data, we adopt Graph Convolu-
tion (GC) on spatial and similarity subgraph, then combine two
subgraphs. Given a graph G = {V , A}, where V ∈ R

N×h is
the node set and A ∈ RN×N is the adjacency matrix. One GC
layer aims to combine the information of neighbor nodes and
target node through relation edges to update the state vector
of target node, which can be formulated as:

V t = σ(Z V t−1�t )

Z = �−1 Ã

�ii =
∑

j

Ãi j , Ã = A + IN (9)

where V t is the updated state vectors of nodes in GC layer t ,
�t ∈ Rht−1×ht denotes weight matrix, and h0 is the input
vector dimension while ht (t > 0) means hidden size of GC
layer t . We utilize the non-linear function ReLU as σ .

4) Combination of Different Subgraphs: Now, we can
employ graph convolution to generate the updated state vectors
V t

sim , V t
sp for spatial, similarity subgraphs, with Asim , Asp

obtained above, respectively. Then, we investigate how to
effectively combine these two subgraphs. First, we define the
combination of two subgraphs as:

V t = V t
sim ⊕ V t

sp (10)

where ⊕ means the combination operator. Intuitively, we can
combine the updated state vectors from two subgraphs by
using element-wise addition or maximum. Beyond them,
we also consider an alternative to improve the sparsity of
combined representations, which is element-wise product.
we conduct a comparison experiment in section IV-D2, which
confirms that the element-wise product is a better choice to
combine two subgraphs.

5) Global Information: PaSLs in most images cannot cover
the whole areas of images, which may lose some useful
information. So we decide to add global information into the
layout graph. We define a global node that represents the whole
image, and perform average pooling on the convolutional
activation maps from the last convolutional layer to generate
the initial state vector of the global node. As a result, the node
set V will be {v0, v1, . . . , vN }, where v0 denotes the global
node. For spatial subgraph, We set the bounding box of global
node as d0 = {xmin = 0, ymin = 0, xmax = Wimg , ymax =
Himg}, where Wimg and Himg denote the width and height of
the whole image. The global node is connected to all local
nodes, and we apply the same operations described above to
obtain the new adjacency matrices Asp, Asim .

6) Output: To avoid overfitting, we only utilize one GC
layer. We obtain the final state vectors V 1 ∈ RN×h1 from
the GC layer and following �2 normalization as node repre-
sentations. When only using local regions as nodes, we apply
average pooling on node representations to generate the image
representation as a h1-dimensions vector. And if adding global
node, we only treat the global node representation as the
image representation. Besides, we have tried to averagely
pool all global/local node representations to obtain the image
representation, which hurts the performance. And we have also
tried to concatenate the global node representation with aver-
agely pooled local node representation to produce the image
representation, while it has similar performance but needs
more parameters in the later process. For scene recognition,
we feed image representation into one layer fully connected
network to predict the image category. And we utilize softmax
function with cross entropy as the loss function to obtain the
image classification loss lg .

7) Node Weak-Supervision Mechanism: Specifically,
we propose a node weak-supervision mechanism to improve
the discriminative performance of each node (except global
node). For the representation of each node, we force it to
predict the scene category of image by using one layer
fully-connected network in a weakly supervised way, which
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can make the node representations more suitable for image
recognition and produce the node classification loss ln .
We combine the two classification loss to form the total
loss l as,

l = lg + λln (11)

where λ is a hyperparameter. Specifically, this branch is only
used in the training process.

IV. EXPERIMENTS AND DISCUSSIONS

In this section, we evaluate our method on three
widely recognized datasets, MIT67 [1], SUN397 [11], and
Places365 [12].

MIT67 Dataset contains a total of 15620 images belonging
to 67 indoor scene categories. Following the standard evalua-
tion protocol, we use 80 images of each category for training
and 20 images for testing. We report accuracy as evaluation
metric.

SUN397 Dataset is a more challenge scene dataset, which
contains 397 scene categories and 108,754 images. The
dataset is divided into 10 train/test splits, each split consists
of 50 training images and 50 test images per category. The
average accuracy over splits is presented as evaluation metric.

Places365 Dataset is one of the largest scale scene-centric
datasets, which has two training subsets, Places365-standard
and Places365-challenge. In this paper, we only choose
Places365-standard as training set, which consists of around
1.8 million training images and 365 scene categories. The
validation set of Places365 contains 100 images per category
and the testing set has 900 images per category. We report
experimental results on its validation set, because its test set
has no available ground truth. Both top1 and top5 accuracy
are reported as evaluation metric.

A. Implementation Details

Our model can be implemented with different pre-
trained models as backbone CNNs. For fair comparison
with other methods, we adopt three pretrained models,
which are VGG-IN, VGG-PL205, ResNet-PL365. VGG-IN,
VGG-PL205 are the VGG16 models pretrained on Ima-
geNet dataset [50] and Places205 dataset [13] respec-
tively, ResNet-P365 is the ResNet50 model pretrained on
Places365 dataset [12]. To construct PaSL, we extract the
convolutional activation maps from the last convolutional layer
(max-pooled in VGG16). Inspired by [51], we fix the input
image resolution as 448× 448 for VGG16-IN and ResNet50-
PL365, 352×352 for VGG16-PL205, which leads to 14×14×
512, 14×14×2048 and 11×11×512 activation maps respec-
tively. The number of clusters N , the hidden size h1 and the
λ are set to {32, 8192, 4.0} for LGN with backbone VGG-IN
and VGG-PL205, {64, 8192, 1.0} for ResNet-PL365.
The initial state vectors of nodes are normalized with two

normalization function (Layer Normalization [52], �2 Normal-
ization), then fed into LGN. Specifically, the Layer Normal-
ization is not trained in our experiments. We train LGN using
Adam [53] with an initial learning rate of 10−3 (decayed by
a factor of 0.1 at 10/15/18th epoch), a batch size of 32 and

TABLE I

COMPARISON OF LGN WITH PREVIOUS METHODS BASED ON SINGLE
VGG16 MODEL IN SINGLE SCALE. CLASSIFICATION ACCURACY (%)
IS REPORTED AS EVALUATION METRIC ON MIT67 AND SUN397

DATASETS. THE BEST RESULT OF EACH COLUMN
IS MARKED IN BOLD

weight decay of 10−5. All parameters are randomly initialized
following Xavier initialization method [54]. We use the model
trained at 20th epoch as the final model in all experiments.
Dropout is only applied on the output prediction layer with a
ratio of 0.2. The �2-norm of gradients is clipped to a maximum
value of 0.25. All experiments are conducted on a single
NVIDIA 1080 Ti GPU by using open-sourced framework
Tensorflow.

B. Experimental Results

In this subsection, we first report the performances on
MIT67, SUN397. These two datasets are the most popular
benchmark for evaluating scene recognition methods. Thus,
we can provide the comprehensive and detailed comparison
with existing works about scene recognition. Meanwhile, we
also conduct experiments on one of the largest scale scene
dataset, Places365, to demonstrate the generalization of our
model.

1) Comparison on Single Model in Single Scale (MIT67 and
SUN397): Most existing scene recognition methods obtain
their best performances based on multi-model or multi-scale
fusion. However, to perform the fusion needs more compu-
tational time and memory usage, which will cause expensive
cost. The idea of multi-scale representation is presented to
alleviate the problem of the various sizes of the semantic
components in scene images. Benefiting from the flexible
structure of PaSL, our model can efficiently capture the
different locations and sizes of semantic components, to pro-
duce the better image representations for scene recognition.
To prove it, we compare the previous works with our model
on single VGG16 model in single scale in Table I. The two
pretrained VGG16 models, pretrained on ImageNet (VGG-IN)
and Places205 (VGG-PL205) are adopted as backbone CNN
models in the comparison. The backbone VGG-PL205 show
impressive performance on MIT67 and SUN397, generally
outperforming the VGG-IN. Compared to existing works using
the same VGG-PL205 backbone, our model obtains better
performance with a clear margin (1−2%). While based on the
VGG-IN, the LGN surpasses the most previous works, except
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TABLE II

COMPARISON OF LGN WITH STATE-OF-THE-ARTWORKS ON MIT67 AND
SUN397. CLASSIFICATION ACCURACY (%) IS REPORTED

AS EVALUATION METRIC. THE BEST RESULT OF
EACH COLUMN IS MARKED IN BOLD

MFAFVNet and LSO-VLADNet. The lower performance of
VGG-IN can be concluded into two possible reasons: 1) these
two previous works report better accuracy benefiting from
the refinement of low level convolutional features. 2) The
PaSL derived from VGG-IN has less power for capturing
the spatial structure in scene images, which is verified in
subsection IV-C3.

2) Comparison With the State-of-the-Art Works (MIT67 and
SUN397): Table II presents the results of our best model and
state-of-the-art works. Our best model is based on ResNet-
PL365 pretrained model in single scale setting. Compared
to the methods [5], [59], [60] based on the same pretrained
model, our model achieves the best performance. Most impor-
tantly, the work [5] utilizes the similar technique to extract
discriminative regions and even multi-scale regions to generate
the image representations. However, it ignores the relations
(either spatial or similarity relations) between local regions,
leading to an inferior performance. This confirms that the
relations between local regions are useful for scene recog-
nition, and our LGN can take advantage of them. We also
report state-of-the-art works that involve various combination
techniques to achieve better performance. Even though these
works contain multi-scale information [5], [6], [23], [35], [55],
[61], [62] or multi-model combination [23], [35], [55], [60],
our model still outperforms them and achieves the state-of-
the-art performance for scene recognition, to the best of our
knowledge.

3) Experimental Results on Places365: To make more
convincing results, we report the result of our best model
on Places365 in Table III. The experimental setting is same
as above, except the input resolution changes to 224 × 224
and the number of clusters changes to 32. Compared to the
baseline Places365-ResNet [12], our model can gain 1.76%
improvement of Top1 accuracy, which demonstrates the effec-
tiveness of the proposed PaSL and LGN. It is worthy to note
that the proposed LGN can outperform previous works with
single model in single scale, although they report better results
obtained by multi-model or multi-scale combination.

C. Analysis of PaSL

We provide a deep analysis of PaSL based on MIT67, and
discuss its properties.

TABLE III

CLASSIFICATION ACCURACY (%) ON PLACES365 VALIDATION SET

1) The Visualization of PaSL: Fig. 3 show the images
with PaSL derived from the backbone VGG-PL205. All the
images are plotted with 32 bounding boxes of regions in PaSL.
To avoid an unclear display, we firstly sort all the local regions
in PaSL, and then emphasize the top 8 regions in the yellow
and thick rectangles and downplay other regions in the red and
thin rectangles, when plotting PaSL on an image. Specifically,
we choose the edge values of all local regions connected
to the global node in two adjacency matrices for sorting
these regions. In Fig. 3, the left 3 columns show the regions
emphasized by similarity edges, and the right 3 columns show
the regions emphasized by spatial edges in same images. It’s
easy to see that the regions in PaSL can vary greatly in size and
location to suit the large diversity of structural layouts in scene
images. Importantly, PaSL can localize some semantic regions
specified for the corresponding scenes, like “liquor cabinet”
in “bar,” “bed” in “bed room,” “meeting table” in “meeting
room,” and so on. When comparing the regions emphasized
by spatial and similarity edges, the obvious difference is that
the regions emphasized by spatial edges tend to focus on the
aggregated semantic components (like a lots of chairs), and the
regions emphasized by similarity edges usually concentrate on
the contents similar in visual details (like texture of parts of
floor or wall). This difference demonstrates that two subgraphs
can explore the local information in different aspects and be
complementary to each other.

2) The Difference of PaSL: Although each image has its
own spatial structure, PaSLs derived from the same pretrained
model will have some similar properties. From the point
of view of PaSLs in the whole training data, we define a
metric named Coverage Ratio, which is the ratio between the
coverage area of PaSL and the area of the image, to analyze
the properties of PaSLs. In Fig. 4, the boxplots show the
distributions of Coverage Ratio for all training image PaSLs
derived from three different pretrained models. Note that the
number of regions in PaSL is fixed to 32 for a fair compar-
ison. We find that PaSLs derived from models pretrained on
scene-centric datasets (Places205 or Places365) focus on larger
regions compared to them derived from the model pretrained
on object-centric dataset (ImageNet). And also PaSLs derived
from the model pretrained on ImageNet may focus on the
regions with high objectness. So, the values of their Coverage
Ratio have a larger diversity due to the wide variety of size
and location of objects in scene images.

3) The Generalization of PaSL: Considering the indepen-
dence between PaSL construction and LGN, we can explore
the generalization of PaSL by combining PaSL with LGN
when they are based on different or same pretrained models.
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Fig. 3. Visualization of PaSL. We choose some examples with PaSL from five scene categories. Each example shows the image with 32 rectangles representing
the local regions in PaSL. For better visualization, we sort all 32 local regions and emphasize the top 8 regions in yellow and thick rectangles and downplay
other regions in red and thin rectangles. The left 3 columns show the images with the regions emphasized by similarity edges. The right 3 columns show the
same images with the regions emphasized by spatial edges.

There are three kinds of PaSLs derived from different pre-
trained models, and three kinds of LGNs based on differ-
ent pretrained models. Therefore, we conduct combination
experiments on MIT67, and report nine combination results
in Table IV. When the pretrained models are different for
PaSL and LGN, the performance can yield a change of no
more than 1.04%. Besides different combination of PaSL
and LGN, we also evaluate another spatial layout formed
by regions generated by Faster RCNN [28] pretrained on
MSCOCO dataset. For a fair comparison, we set the number
of regions in this layout to 32. Based on Table IV, we can
have three observations. 1) Compared to PaSLs derived from
other pretrained models, the one from VGG-PL205 has the
better ability to represent the spatial structure of scene images.
2) Despite having some fluctuations in performance, PaSLs
derived from different pretrained models have comparable

value for scene recognition, which demonstrates their consider-
able generalization capability. 3) The spatial layout generated
by object detection obtains the worst performances with all
LGNs. One possible reason is that this layout mainly focus
on some common objects, and is not suitable to capture the
complex structural layouts of scene images.

D. Experimental Study of LGN

1) Configuration of Hyperparameters: Three hyperparame-
ters are important to determine the performance of our method,
the number of clusters N in constructing PaSL, the hidden size
h1 in graph convolution, and the λ in node weak-supervision
mechanism. To investigate these three hyperparameters, we
conduct several experiments on MIT67 dataset. Because
the architectures of VGG16 and ResNet50 are different,
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Fig. 4. The distributions of Coverage Ratio of PaSLs derived from different
pretrained models (VGG-IN, VGG-PL205, and ResNet-PL365). Coverage
Ratio is the ratio between the coverage area of PaSL and the area of the
image.

TABLE IV

THE GENERALIZATION OF PASLS DERIVED FROM DIFFERENT
PRETRAINED MODELS. WE SHOW CLASSIFICATION
ACCURACY (%) OF THE COMBINATIONS OF PASL

AND LGN, WHEN THEY ARE BASED ON
DIFFERENT OR SAME PRETRAINED
MODELS. THE BEST RESULT OF
EACH ROW IS MARKED IN BOLD

Fig. 5. The effect of hidden size h1 and the number of clusters N . We report
the results on spatial subgraph without global information and node weak-
supervision. (a) and (b) show the classification results of our methods based
on the pretrained models, VGG-PL205 and ResNet-PL365, separately.

especially the processes from the last convolutional layer to
output prediction layer, we analyze these hyperparameters on
VGG-PL205 and ResNet-PL365 pretrained models, separately.
We do not show the analysis on VGG-IN, since it has a similar
behavior with VGG-PL205.

TABLE V

THE INFLUENCE OF λ IN NODE WEAK-SUPERVISION MECHANISM.
WE SHOW THE CLASSIFICATION ACCURACY (%) BASED ON SPATIAL

SUBGRAPH WITHOUT GLOBAL INFORMATION. THE BEST
RESULT OF EACH ROW IS MARKED IN BOLD

TABLE VI

A COMPARISON OF DIFFERENT SUBGRAPH COMBINATION METHODS
WITHOUT GLOBAL INFORMATION. CLASSIFICATION ACCURACY (%)

IS REPORTED AS EVALUATION METRIC. THE BEST RESULT
OF EACH COLUMN IS MARKED IN BOLD

We evaluate the effect of hidden size h1 and the number of
clusters N on spatial subgraph without global information and
node weak-supervision in Fig. 5. It can be observed that the
trends of accuracy caused by hidden size h1 are different with
VGG-PL205 and ResNet-PL365. In Fig. 5 (a), the accuracy
has a significant increment when hidden size h1 is lower than
8192, and then tends to be stable as hidden size h1 increases.
However, in Fig. 5 (b), we can see that the accuracy has a
slight change as hidden size h1 changes. These differences
can be attributed to the aggregation techniques for generating
the global image representation in different CNNs. In VGG16,
the local spatial features are concatenated to produce the global
representations, while they are averagely pooled in ResNet.
Thus, in LGN based on VGG-PL205, aggregating the local
features need to substantially enlarge the projection dimension
(hidden size h1) to prevent the information loss from averagely
pooling, but not for ResNet-PL365. For instance, the ratios
of hidden size h1 to input dimension h0 are 16 and 4 for
VGG-PL205 and ResNet-PL365, respectively.
As illustrated in Fig. 5, when the number of clus-

ters N = 32, we obtain better performances by using
VGG-PL205, and the similar observation can be found at
N = 64 with ResNet-PL365. Thus, we set hidden size and the
number of clusters {h1, N} to {8192, 32} and {8192, 64} for
VGG-PL205 and ResNet-PL365 respectively in all subsequent
experiments. Besides h1 and N , the hyperparameter λ in
node weak-supervision mechanism is also important. The node
weak-supervision mechanism aims to force each local node to
predict the image category, which makes local representations
more specific for generating discriminative image represen-
tations. We report the results on spatial subgraph without
global information for different values of λ in Table V.
It can be observed that, the best performances are obtained
at λ = 4.0 and λ = 1.0 for VGG-PL205 and ResNet-
PL365, respectively, which are set as default hyperparameters
in subsequent experiments. We set the same hyperparameters
{h1 = 8192, N = 32, λ = 4.0} for VGG-IN pretrained
models.
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TABLE VII

ABLATION STUDIES ON MIT67. CLASSIFICATION ACCURACY (%) IS REPORTED AS EVALUATION METRIC.
THE BEST RESULT OF EACH COLUMN IS MARKED IN BOLD

2) Effect of Different Subgraph Combination Methods: We
perform a comparison of three different subgraph combination
methods, e.g., element-wise addition, maximum and product.
Table VI illustrates the results of LGN without global infor-
mation on MIT67 dataset. The product combination method
outperforms other methods. Compared to addition and maxi-
mum combination methods, the product method will produce
more zero elements in output representations when the inputs
are generated from the ReLU layer. This confirms that the
sparsity of representation is helpful for the improvement of
recognition performance.

3) Ablation Study: We conduct detailed ablation studies of
our LGN on MIT67 dataset in Table VII. We analyze the
effect of four components, two subgraphs, global information,
and node weak-supervision mechanism across three different
pretrained models. The �2 normalized input representations of
local regions are averagely pooled as the inputs to a linear
SVM classifier, and then produce the classification results as
baselines. In Table VII, the best results are marked in bold,
which show the improvements of up to 5.23% over baselines.
When applying node weak-supervision mechanism, LGN with
VGG-IN has a better improvement. It can be attributed to the
worse local representations for scene recognition. Moreover,
it can be observed that the global information is useful for
VGG16 pretrained models, but not for ResNet50 pretrained
model. This may be caused by the better representations of
local regions from ResNet-PL365 for capturing the whole
image information. We also validate that the spatial and simi-
larity subgraphs are both important to boost the performances
and have similar improvements over the baselines. Further-
more, when combining these two subgraphs, there still have
improvements, which demonstrates that the two subgraphs
exist a complementary relation.

V. CONCLUSION

We propose to construct Prototype-agnostic Scene Lay-
out (PaSL) for each image, and introduce Layout Graph
Network (LGN) to explore the spatial structure of PaSL for
scene recognition. The pretrained CNN models can be used
as region detectors to discover discriminative regions, then
form PaSL for each image. To preserve the diverse and
flexible spatial structures of PaSLs, we reform each PaSL as
a layout graph where regions are defined as nodes and two
kinds of independent relations between nodes are encoded as
edges. Then, LGN applies graph convolution on the layout

graph to integrate spatial and semantic similarity relations
into image representations. The detailed ablation experiments
demonstrate that LGN has a great ability to capture the
spatial and similarity information in PaSL. With the qualitative
and quantitative analyses, we prove that PaSLs can capture
the useful and discriminative information of the images and
have the considerable generalization capability. Experiments
on three widely recognized datasets, MIT67, SUN397, and
Places365, demonstrate that our approach can achieves supe-
rior performances in the setting of a single model in a single
scale, and even obtains state-of-the-art results on MIT67 and
SUN397.
In the future, we consider jointly learning scene layout and

structural models, which may bring better optimization results.
Another interesting direction is to explore the multi-scale
information from different convolutional layers to help con-
struct more precise and useful spatial structures of scene
images.
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