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This article considers the problem of few-shot learning for food recognition. Automatic food recognition

can support various applications, e.g., dietary assessment and food journaling. Most existing works focus

on food recognition with large numbers of labelled samples, and fail to recognize food categories with few

samples. To address this problem, we propose a Multi-View Few-Shot Learning (MVFSL) framework to ex-

plore additional ingredient information for few-shot food recognition. Besides category-oriented deep visual

features, we introduce ingredient-supervised deep network to extract ingredient-oriented features. As gen-

eral and intermediate attributes of food, ingredient-oriented features are informative and complementary to

category-oriented features, and thus they play an important role in improving food recognition. Particularly

in few-shot food recognition, ingredient information can bridge the gap between disjoint training categories

and test categories. To take advantage of ingredient information, we fuse these two kinds of features by first

combining their feature maps from their respective deep networks and then convolving combined feature

maps. Such convolution is further incorporated into a multi-view relation network, which is capable of com-

paring pairwise images to enable fine-grained feature learning. MVFSL is trained in an end-to-end fashion

for joint optimization on two types of feature learning subnetworks and relation subnetworks. Extensive ex-

periments on different food datasets have consistently demonstrated the advantage of MVFSL in multi-view

feature fusion. Furthermore, we extend another two types of networks, namely, Siamese Network andMatch-

ing Network, by introducing ingredient information for few-shot food recognition. Experimental results have

also shown that introducing ingredient information into these two networks can improve the performance

of few-shot food recognition.
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1 INTRODUCTION

Food recognition has received a significant amount of attention in various fields, such as computer
vision [9], data mining [4], and multimedia communities [26, 58], motivated by many applications
in automated food monitoring and dietary management [1, 13], food trend and popularity anal-
ysis [2], smart home [66], and food safety [38]. For example, people’s diet and eating behavior
have been shown to affect their health issues [42]. This fact has fostered the emergence of many
approaches to monitor diet. With the fast development of mobile devices, more and more dietary
management systems resort to vision-based methods [5, 43]. One necessary and important step is
to automatically recognize the type of food displayed in the image. Another example is that food
image recognition is a key enabler for many smart home applications such as smart kitchen and
smart personal nutrition log [66].

There are more than 8,000 food categories according to Wikipedia [8]. Like other object cat-
egories, there is a long-tailed distribution for real-world food data, where many categories have
few food samples. For example, when you search some food names, such as “Wagafi bread” and
“Babute” using existing popular search engines, such as Google and Bing, very few relevant images
are returned. In other words, we can only obtain few examples for these food categories. A robust
food recognition system not only recognizes usual food images but also unusual ones. However,
existing methods for food recognition need large-scale labeled samples for effective model training
[9, 40]. As a result, they cannot handle food categories with few samples. To solve this problem,
in this article, we focus on few-shot learning for food recognition, which aims to recognize novel
visual food categories from few examples.
There has been a recent resurgence of interest in one/few-shot learning [10, 19, 34, 51, 56, 57,

60]. Various methods, such as Matching Network [60], Prototypical Network [56], and Relation
Network [57] have been proposed for few-shot learning. These methods are applied to different
domains, such as alphabet recognition and general object recognition. However, besides category
information, most existing few-shot learning methods do not explore other types of context infor-
mation, such as rich attributes and other side information, to enhance the performance of few-shot
learning. In addition, as far as we know, there is no work on few-shot learning for food recognition.
Few-shot learning for food recognition is not trivial. The challenges derive from three-fold:

First, food image recognition belongs to fine-grained classification [18, 65]. Similarly, food image
recognition encounters the same problem as fine-grained classification, such as subtle differences
among different food categories. In addition, we cannot directly use existing fine-grained classi-
fication methods for food recognition. Existing fine-grained classification methods generally first
discover common semantic parts (such as head and breast in the bird dataset), and then fuse fea-
tures from both global object and semantic parts as final representation. However, the concept
of common semantic parts for fine-grained classification methods does not exist in food images.
Second, food images do not have any distinctive spatial layout in many cases. Although some food
categories such as fruits and hamburgers have regular shapes, many food dishes are lack of rigid
structures. Third, few-shot learning for food recognition brings new challenges, such as how to
utilize limited samples from some categories to train a robust food recognition model.
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Fig. 1. Examples of food images and associated ingredients from VIREO Food-172.

In many recipe-sharing websites, there are also associated ingredients available. Ingredients can
be one constituent part of food as intermediate attributes. It plays an important role in food recog-
nition. For example, Figure 1 shows two groups of food images. In Figure 1(a), these two images
from the same category have larger difference in the visual appearance. However, if we consider
their ingredient attributes “Minced green onion,” “Fish,” and “Sweet and sour sauce,” and com-
bined the visual representation supervised by ingredient attributes with ones supervised by the
category, then the probability of these two images belonging to the same category increases. In
Figure 1(b), it is difficult to distinguish between two categories from these two images. However, it
is easier to distinguish between them from different ingredient attributes “Fish” and “Pork slices,”
which are their main characteristics of food categories. If we can use these ingredients to learn to
localize relevant image regions, then the probability of these two images belonging to the same cat-
egory probably decreases. Therefore, ingredient information provides discriminative information
for food recognition. Particularly for few-shot food recognition, there are many categories with
few samples. As general food attributes, ingredients can serve as important complementary infor-
mation to improve the performance of few-shot food recognition, and also build the connection
between disjoint food categories.
Taking these factors into consideration, we propose a novel Multi-view Few-shot Learning

(MVFSL) framework to exploit rich food ingredients for few-shot learning in the food domain.
As shown in Figure 2, MVFSL mainly consists of three components: (a) Category and ingredient
oriented feature learning; (b) Multi-view feature map fusion; and (c) Multi-view relation learning.
Particularly, MVFSL first extracts feature maps from both category-supervised deep network
and ingredient-supervised one, respectively. As mid-level attributes, ingredient-oriented features
are capable of capturing other details of food, which are complementary to category-oriented
features. More specifically, the feature maps of a deep convolutional layer tend to be selective
of visual concepts [63]. Therefore, we deem feature maps from ingredient-supervised deep
networks focus on salient image regions, which are different from category-oriented feature
maps. Then, multi-view feature map fusion is conducted to fuse these two types of feature maps.
It first combines extracted feature maps from their respective deep networks, and then convolves
combined feature maps. Such convolution is finally involved in multi-view relation learning,
which is used to compare pairwise images for metric learning. In multi-view relation learning, a
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Fig. 2. The proposed architecture for Multi-View Few-Shot Learning (MVFSL), which mainly consists of

three components: (a) Category and ingredient oriented feature learning, which is mainly to extract cate-

gory oriented feature maps C and ingredient oriented feature maps I from Deep Neural Networks (DNN);

(b) Multi-view feature map fusion, which can combine different types of feature maps via ζ and then conduct
the convolution on combined feature maps, which is tightly associated with (c) Multi-view relation learning,

which first combines image-pair features via τ , and then obtains the image-level relation score via h for pre-
diction. In our work, τ is used to concatenate two feature maps according to certain dimension. h generally
consists of some convolutional blocks and full-connected layers, and thus can be used for both combined

feature maps within each image for multi-view feature fusion and feature maps between two images for

image-level relation-score calculation.

multi-view relation network with convolutions and full-connected layers is utilized to apply the
convolution to both combined feature maps within each image for multi-view feature fusion and
feature maps between two images for image-level fine-grained feature learning. Furthermore,
MVFSL can be trained end-to-end to enable joint optimization on different subnetworks.
We conduct comprehensive experimental evaluation on various food benchmarks including

western food datasets, such as Food-101 [9] and eastern food datasets, such as VIREO Food-172
[11] and ChineseFoodNet [12]. The experimental results demonstrate the effectiveness of MVFSL
in multi-view feature fusion. Furthermore, we extend another two few-shot learning networks
including Siamese Network and Matching Network by introducing ingredient information for
few-shot food recognition. The experimental results also demonstrate the advantage of these two
few-shot learning methods using ingredient information.
The contributions of our article can be summarized as follows:

• To the best of our knowledge, this is the first attempt to apply few-shot learning for food
recognition, where rich ingredient information is utilized to improve the performance of
few-shot food recognition.

• We propose a Multi-View Few-Shot Learning (MVFSL) framework to exploit rich food in-
gredients for few-shot food recognition. In MVFSL, multi-view feature map fusion is devel-
oped to effectively fuse both ingredient-oriented features and category-oriented ones via
the convolution on fused feature maps from multi-view relation subnetwork learning. Fur-
thermore, MVFSL can be trained in an end-to-end manner to enable joint optimization on
different subnetworks.

• We conduct comprehensive experimental evaluation on various food benchmarks and ex-
perimental results verify the effectiveness of MVFSL. Furthermore, we extend another
two few-shot learning methods by introducing ingredient information for few-shot food
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recognition. The experimental results again demonstrate the advantage in exploiting ingre-
dient information. The source code can be available1.

The rest of this article is organized as follows. Section 2 elaborates the proposed Multi-View
Few-Shot Learning (MVFSL) framework, where three components are introduced in details,
respectively. Section 3 introduced another two types of extended few-shot learning methods
using ingredient information, namely, Siamese Network and Matching Network, respectively.
Experimental results and analysis are reported in Section 4. Section 5 reviews related work.
Finally, we conclude the article and give future work in Section 6.

2 MULTI-VIEW FEW-SHOT LEARNING (MVFSL)

As shown in Figure 2, MVFSL mainly consists of three parts: (a) Category and ingredient oriented
feature learning; (b) Multi-view feature map fusion; and (c) Multi-view relation learning. We first
briefly introduce few-shot learning for completeness before diving deep into MVFSL.

2.1 Few-shot Learning

For few-shot image learning, there are two types of sets, namely, support set S and query set Q. C
unique classes withK labeled images for each ofC classes are randomly sampled from the training
set to form S = {(xi ,yi )}

m
i=1 (m = K × C), where xi is one sample image and yi is its label. The query

set Q = {(x j ,yj )}
n
j=1 is constructed using remaining samples of selected C classes. The support set

and query set together form a training episode. Typically,K is a small number for few-shot setting,
e.g., K = 1 or 5. The task is denoted as C-way K-shot learning. In the training, pairwise images
from Q and S are constructed for model learning. In the test stage, we adopt similar strategy to
construct both Q and S from the test set and classifies the images from a query set by assigning
each image with a label. Note that categories from both training set and test set are disjoint. The
time cost of few-shot food recognition does not depend on the number of the whole class, but
depends on the value of selected K and C. Therefore, there is no direct relevance between the time
cost of few-shot food recognition and the number of the whole classes for each test sample in the
test phrase. Generally, image pairs from Q and S constructed from the training set can be very
large, and deep learning networks thus can be utilized for few-shot learning [37, 57].

2.2 Category and Ingredient-oriented Feature Learning

For food category oriented feature learning, we use the training set with categories to fine-tune
one deep network. We then extract feature maps fμ (xi ) of the last convolution layer, where μ are
model parameters. In addition, we use images from the training set and their associated multi-label
ingredients to fine-tune another deep network for multi-label ingredient attribute learning, and
extract ingredient-oriented feature maps fν (xi ), where ν denotes parameters of the ingredient-
oriented deep network. In multi-label ingredient attribute learning, we consider multi-label ingre-
dient learning with M ingredients as M binary attribute classification tasks, where M is the size
of ingredient vocabulary. Note that any deep networks can be used in this stage. Without loss of
generality, we adopt VGG-16 [55] as the backbone network to introduce our method.

2.3 Multi-view Feature Map Fusion

Feature maps of a deep convolutional layer are usually sparse and tend to be selective of higher-
level visual concepts, as observed in References [54, 63]. To introduce our method, we first

1https://github.com/minweiqing/Few-Shot-Food-Recognition-via-Multi-View-Representation.
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Fig. 3. Discriminative localizationmaps from some food images. Grad-CAM [54] is adopted to implement the

category and ingredient discriminative localization region visualization(the warmer the color of the overlay

image, the more discriminative that pixel is). From left to right: (1) Category and its ingredients, (2) Original

images, (3) Category-discriminative localization maps, and (4) Ingredient-discriminative localization maps.

demonstrate three images from VIREO Food-172 and their visualization results in Figure 3, where
the visualization is realized via Grad-CAM [54]. Note that for ingredients, we train a multi-label
classification model and then obtain discriminative localization regions via gradients for each in-
gredient label. From Figure 3, we find that activated regions of many feature maps (highlighted
in warm colors) are semantically meaningful. For example, the activated region of “Rice” tends to
localize at the rice region of “Fried Sweet and Sour Tenderloin” and “Barbecued Pork with Rice.”
The activated region of “Parsley” tends to localize at the parsley region of “Braised Intestines in
Brown sauce.” Therefore, ingredient-oriented features are capable of capturing additional details,
which are complementary to category-oriented features. For example, for “Braised Intestines in
Brown sauce,” the ingredient region covers different parts of the image, such as activated regions
of “Parsley” and “Minced green onion,” which are complementary with activated regions of the
category.
Based on above-mentioned observation and analysis, we could combine category and ingredient

activated regions for enhanced feature representation. Particularly, we calculate the combined
feature map representation ζ ( fμ (xi ), fν (xi )) via the operator ζ (·). There are many ways for feature
combination. In this article, the operator ζ (·) is the concatenation of feature maps in depth. For
example, the extracted feature maps form the last convolution layer with 14×14×512 from two
types of fine-tuned deep networks, the size of combined features will be 14×14×1024 via ζ (·).

After the combination between feature maps from two different types, we then conduct the
convolution on these combined feature maps. Meanwhile, the convolution is conducted with
the following multi-view relation learning together for parameter learning and will give more
details in the following subsection. Our adopted multi-view feature map concatenation and
convolution fusion is similar to Reference [16]. However, they focus on spatiotemporal fusion
from video for activation classification. In contrast, we conduct both ingredient-oriented and
category-oriented fusion for few-shot food image recognition. In addition, the fused features
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contain richer information from food attributes, and thus bridge the gap between disjoint training
categories and test categories for the performance improvement of few-shot food recognition.

2.4 Multi-view Relation Learning

Multi-view relation learning is used to compare query images against labeled sample images to
determine if these images are from matching categories or not based on the image-level relation
score.
For multi-view relation learning, we sample the fused multi-view representation ζ ( fμ (xi ),

fν (xi )) from the support set S and ζ ( fμ (x j ), fν (x j )) from the query set Q. These feature maps
ζ ( fμ (xi ), fν (xi )), and ζ ( fμ (x j ), fν (x j )) are combined via τ (·), where the operator τ (·) is also the
concatenation of feature maps in depth. For example, the fused feature maps from both xi and x j
are ζ ( fμ (xi ), fν (xi )), and ζ ( fμ (x j ), fν (x j )), respectively. Their size is 14×14×1,024. After concate-
nation τ (·), the final dimension is 14×14×2,048. The combined feature maps of samples from the
query and support set are further processed via the relation subnetwork hϕ with some convolu-
tional blocks and full-connected layers to generate the relation score:

γi, j = hϕ (τ (ζ ( fμ (xi ), fν (xi )), ζ ( fμ (x j ), fν (x j )))). (1)

The mean-square error is then used to train the model, regressing the relation score γi, j to the
ground truth: matched pairs have similarity 1 and mismatched pairs have similarity 0. The final
objective is as follows:

argmin
ϕ

m∑

i=1

n∑

j=1

(γi, j − 1(yi == yj ))2, (2)

wherem is the number of images from the support set S and n is the number of images from the
query set Q.
Note that the proposed MVFSL is inspired by Relation Network (RN) [57] for few-shot learning,

but with two important differences: (1) RN only learns category oriented visual features for few-
shot learning, while MVFSL can further utilize ingredient-oriented features for few-shot learn-
ing. (2) RN only applies convolution to category oriented feature maps. In contrast, we utilize
the convolution on fused multi-view feature maps for multi-view relation learning. Through the
convolution on feature maps with two different types, category-oriented and ingredient-oriented
features are effectively fused. In addition, the convolution is further conducted based on feature
maps between two images for image-level relation learning.

2.5 Optimization

We introduce two settings for trainingMVFSL. In the first setting, we first fine-tune food category-
supervised deep network and ingredient-supervised deep network, respectively. The correspond-
ing feature maps are extracted. These two types of feature maps are then fused and the fused
features are finally fed into the relation network for multi-view relation learning. Such setting is
Loosely Combined and named as MVFSL-LC. In the second setting, after fine-tuning both food
category-supervised deep network and ingredient-supervised deep network, the whole training
on these two types of subnetworks and relation subnetworks in MVFSL are further conducted
in an end-to-end fashion for joint optimization. This setting is Tightly Combined and named as
MVFSL-TC.
In the test stage, we obtain combined features from the support set and query set via multi-view

feature map fusion, and hϕ is then used to generate the relation score between query set and each
of support set. Finally, we can make the prediction according to the maximum relation score.
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3 BASELINE METHODS OF INGREDIENT-BASED FEW-SHOT

LEARNING NETWORKS

The ingredients can also be fused to other few-shot learning methods. In this section, we introduce
ingredients into another two popular networks of few-shot learning methods, namely, Siamese
Network (SN) [34] and Matching Network (MN) [60], where multi-view relation learning is re-
placed with fixed cosine distance calculation between two images.

3.1 Siamese Network

When Siamese Network (SN) is used for few-shot learning, it first randomly samples image pairs
with the same class or different classes from the training set to learn the model. In the test stage,
the trained model is used to classify the unlabelled image X into one of C categories from the
test set. Given an unlabeled image X and other images {Xc }Cc=1, where Xc represents one example

with the label c . The image pairs (X ,Xc )
C
c=1 are fed into the trained model to make the predic-

tion for X according to the cosine similarity between this image and other samples from those C
categories.
To exploit ingredient information, for category oriented feature learning, we replace the original

network of SN with VGG-16 for fair comparison, and then fine-tune the network under the few-
shot learning setting to extract more discriminative visual features fμ (xi ) for each test image xi .
For ingredient oriented feature learning, each food image is associated with multiple ingredients.
However, SN cannot be trained for multi-label classification. To solve this problem, we first fine-
tune this network for multi-label ingredient classification. We then initialize SN using this fine-
tuned network, and further fine-tune the last layer of SN for few-shot food recognition. Finally,
we use the fine-tuned SN to extract ingredient-oriented features fν (xi ) for each test image xi . A
multi-view feature fusion ζ (·) is used to combine these two kinds of features fμ (xi ) and fν (xi ) into
a unified representation. Because we adopt fixed cosine similarity calculation, the corresponding
features from the fine-tuned network are from the fc7 layer. We finally use the fused features to
predict the unlabelled image x according to the cosine similarity between this image and other
images from C categories.

3.2 Matching Network

Matching Network (MN) learns a network that maps a small labelled support set and an unlabeled
query example to its label. In the training stage, it learns a classifier cS (x ) from the support set
Strain that constructed from the training set. The classifier can be defined as one mapping function
Pθ (x |y, Strain ), where θ are parameters of the model, and should be learned in the training. In the
test stage, given an unlabeled example xt and a support set Stest from the test set, MN uses learned
Pθ (.|xt , Stest ) to predict its label yt .

We adopt similar strategy to extend MN by exploiting ingredient information. We obtain fused
features for each test sample under the subjective function of MN. Then cosine similarity between
the query sample and each sample in the support set is calculated to make prediction.

4 EXPERIMENT

In this section, we first describe the experimental setting including the dataset and implementa-
tion details. We then evaluate the performance of MVFSL qualitatively and quantitatively on dif-
ferent food datasets. Next, we evaluate the performance of another two extended few-shot learn-
ing methods Siamese Network and Matching Network. Finally, we give additional analysis and
discussions.
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Fig. 4. Some examples from Food-101, VIREO Food-172, and ChineseFoodNet.

4.1 Experimental Setting

4.1.1 Dataset. Since there is no food dataset for few shot learning, we use the following three
food datasets, namely, Food-101 [9], VIREO Food-172 [11], and ChineseFoodNet [12] to simulate
few-shot food recognition.
Food-101 contains 101,000 images with 101 classes in total, where most categories belong to

the western food. To use the dataset to simulate few-shot food recognition, similar to References
[57, 60], we randomly split Food-101 into 71 classes and 30 classes for the training set and test set,
respectively. For ingredient information, we adopt the ingredients from Ingredients101 [8] with
446 ingredients in total and 9 ingredients for each image on average.
VIREO Food-172 contains 172 categories. All the images in the data set are Chinese food.

Similarly, we randomly split the data set into 132, 40 classes for the training and test set. There are
353 ingredients in total with 3 ingredients for each image on average.
ChineseFoodNet covers many popular Chinese food items from different styles of cooking.

This dataset contains 185,628 images with 208 Chinese dish categories. We randomly split the
data set into 158 classes for training and 50 classes for testing, respectively. Both VIREO Food-172
and ChineseFoodNet belong to Chinese cuisine, and thus share lots of ingredients. Considering
the ingredient information is not provided in ChineseFoodNet, we adopt the trained ingredient-
supervised deep network from VIREO Food-172 as the ingredient model for ChineseFoodNet.
Figure 4 shows some samples with ingredients from three datasets, respectively. Note that many

works, such as References [57, 60] conduct few shot learning in the miniImageNet dataset with
100 classes, each having 600 examples. Eighty classes are used for training and the remaining
20 classes for test. The few-shot food recognition belongs to this scenario. These food dataset is
similar to this miniImageNet with similar scale and similar training-test class split, and therefore
can be regarded as in real scenarios for few-shot learning.

4.1.2 Implementation Details. In MVFSL, there are three subnetworks, category-oriented sub-
network, ingredient-oriented subnetwork, andmulti-view relation subnetwork. The first two types
of subnetworks adopt VGG-16 network without fully-connected layers and the classification layer.
Similar to Reference [57], multi-view relation subnetwork consists of two convolutional blocks and
two fully-connected layers, where each of convolutional blocks is a 3 × 3 convolution with 64 fil-
ters followed by the batch normalization, the ReLU non-linearity and 2 × 2 maxpooling. The two
fully-connected layers are eight- and one-dimensional, respectively.
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Table 1. Performance Comparison on MVFSL

Model Food-101 VIREO Food-172 ChineseFoodNet
RN-Category [57] 53.9% 74.0% 63.8%
RN-Ingredeint 53.5% 70.5% 64.0%
MVFSL-LC 55.1% 74.8% 65.8%
MVFSL-TC 55.3% 75.1% 66.1%

For ourmodel, following existing few-shot learning setting [57], an episode-based training strat-
egy is adopted. We randomly selectC = 5 classes and sample one image K = 1 from each selected
category as the support set S. That is, a common five-way one-shot setting is adopted in the train-
ing stage. For the query set Q, 15 query images are sampled from each selected category. There are
15 × 5 + 1 × 5 = 80 images in each episode. In the training stage, we sample 100,000 episodes from
the training set. The Adam [33] is used to perform stochastic optimization over few-shot learning
with the initial learning rate 10−4 and reduced by half for every 20,000 episodes. The accuracy of
few-shot classification is computed by averaging over 1,000 episodes randomly generated from the
test set.

4.2 Experimental Evaluation for MVFSL

4.2.1 Quantitative Evaluation. Considering there are nomethods for few-shot food recognition,
we design the following baselines to demonstrate the effectiveness of MVFSL:

• Relation Network-Category (RN-Category) [57]: This baseline uses images and their cate-
gories to train the Relation Network.

• RelationNetwork-Ingredient (RN-Ingredient): This baseline uses the ingredient information
and images to train the Relation Network.

We conduct comprehensive evaluation on three datasets, respectively. Note that we should uti-
lize samples from VIREO Food-172 to learn ingredient-oriented model for ChineseFoodNet. In the
training stage, we first remove test classes of ChineseFoodNet from the training set of VIREO Food-
172 dataset, and then use the rest training images and their corresponding ingredients from VIREO
Food-172 to learn ingredient-based model, which can be used to extract ingredient-oriented fea-
tures for ChineseFoodNet. Table 1 summarizes the experimental results. We can see that MVFSL-
LC and MVFSL-TC on three datasets perform better than their corresponding baselines. Partic-
ularly, for Food-101, MVFSL-LC achieves better performance compared with RN-Category and
RN-Ingredient, and outperforms those two baselines by 1.2% and 1.6%, respectively; MVFSL-TC
achieves best performance compared with MVFSL-LC. We can see similar trends for both VIREO
Food-172 and ChineseFoodNet. All these experimental results validated the effectiveness ofMVFSL
in fusing both category-oriented and ingredient-oriented feature representations. In addition, in-
gredient oriented information can bridge the gap between disjoint training categories and test
categories to enable the performance improvement. In addition, MVFSL-TC jointly optimizes pa-
rameters from all subnetworks and thus can achieve the best performance.

4.2.2 Qualitative Evaluation for MVFSL. We further demonstrated the effectiveness of MVFSL
by showing some cases. Figure 5 shows some examples from MVFSL. We can see that (1) RN-
Ingredient could make more reasonable predictions compared with RN-Category in many cases.
For some cuisines, such as “Mixed rice,” “Duck neck,” and “Spinach and pork liver soup,” RN-
Category failed to make the correct prediction, while RN-Ingredient made the correct prediction.
(2) MVFSL could make accurate prediction for some cuisines that are quite difficult to recognize
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Fig. 5. Some experimental results from MVFSL and other two baselines. From left to right: (1) category and

its ingredient list, (2) query images, and (3) images from the support set. In each example, we show the

relation scores from MVFSL and other two baselines. The higher relation score, the more relevant the image

is. The ground truth of food images is highlighted with red box.

from the support set, such as “Spring rolls,” “Clam chowder,” and “Fired Sweet and Sour Tender-
loin.” Both RN-Category and RN-Ingredient failed to make the correct prediction while MVFSL has
made the correct prediction by fusing category-oriented and ingredient-oriented visual feature in-
formation. This further verified that category oriented features and ingredient oriented features
are complementary, and MVFSL is capable of fusing these two types of information to improve the
performance of few-shot food recognition.

4.2.3 Multi-view Relation Learning with Different Convolution Layers. For RelationNetwork, the
combined feature maps are fed into the relation subnetwork to obtain the relation score. In this
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Table 2. The Performance of MVFSL-LC and MVFSL-TC

with Different Relation Network Settings on Food-101

Model 64 filters 128 filters
MVFSL-LC (1 Conv layer) 54.7% 55.9%
MVFSL-TC (1 Conv layer) 55.1% 56.0%
MVFSL-LC (2 Conv layers) 55.1% 56.3%
MVFSL-TC (2 Conv layers) 55.3% 56.4%
MVFSL-LC (3 Conv layers) 56.1% 56.9%
MVFSL-TC (3 Conv layers) 56.6% 57.6%

MVFSL-LC (4 Conv layers) 54.6% 55.6%
MVFSL-TC (4 Conv layers) 55.7% 56.3%

Table 3. The Performance with Different Networks for Feature Learning

on Food-101, VIREO Food-172, and ChineseFoodNet

Model
Food-101 VIREO Food-172 ChineseFoodNet

AlexNet VGG16 VGG19 AlexNet VGG16 VGG19 AlexNet VGG16 VGG19

RN-Category [57] 48.6% 53.9% 54.7% 68.8% 74.0% 74.6% 59.5% 63.8% 62.9%

RN-Ingredient 51.4% 53.5% 55.1% 70.3% 70.5% 73.6% 59.4% 64.0% 65.6%

MVFSL-LC 51.8% 55.1% 55.9% 70.8% 74.8% 75.2% 59.9% 65.8% 66.5%

MVFSL-TC 52.1% 55.3% 56.5% 71.0% 75.1% 75.3% 60.2% 66.1% 66.7%

experiment, we conducted the performance analysis when varying the number of convolution
blocks and filters. Table 2 shows experimental results on Food-101 from MVFLS-LC and MVFLS-
TC. We can see that: (1) When we fix the number of filters, with the increase of the number of
convolution layers, there is a consistent increase in the performance. (2) The network with 128
filters achieves better performance than the one with 64 filters. For example, in MVFLS-LC, with
the increase of the number of convolution layers, the network with 128 filters achieves better
performance than the network with 64 filters and outperforms it by 0.2%, 1.2%, 0.8%, and 1.0%
for different convolutional layers, respectively. (3) At every group of parameter setting, MVFLS-
TC achieves better performance than MVFLS-LC. (4) MVFSL achieved the best performance at
the setting of 3 convolution layers and 128 filters, With the increase of the number of layers and
filters, the performance of MVFSL reduces. This is because the increased complexity of the model
probably leads to overfitting.

4.2.4 The Depth of Basic Network for MVFSL. We show that the performance of our method
with different layers of deep networks. As shown in Table 3 on Food-101, we can see that: (1) With
the increase of layers, there is consistent increase in the performance. For example, our method
and baselines with the VGG16 network achieve better performances than AlexNet, and outperform
AlexNet-based RN-Category, RN-Ingredient, MVFSL-LC, and MVFSL-TC by 5.3%, 2.1%, 3.3%, and
3.2%, respectively. The reason is that the deeper network can extract more discriminative features,
which are helpful for few-shot food recognition. (2) The performance of MVFSL is always better
than other baselines for the same deep architecture. Particularly, for the AlexNet network, the
performance of MVFSL-LC outperforms RN-Category and RN-Ingredient by 3.2% and 0.4%. For
the VGG16 Network, there is also the performance improvement compared with RN-Category
and RN-Ingredient, and outperforms those two models by 2.1% and 1.6%, respectively. We can
see similar performance improvement for the model with VGG19 Network. (3) MVFSL-TC with

ACM Trans. Multimedia Comput. Commun. Appl., Vol. 16, No. 3, Article 87. Publication date: July 2020.



Few-shot Food Recognition via Multi-view Representation Learning 87:13

different layers of deep networks achieves consistent increase in the performance compared with
MVFSL-LC. For example, for VGG19-based MVFSL, MVFSL-TC outperforms MVFSL-LC by 0.6%.
Table 3 also provides comparative results on VIREO Food-172 and ChineseFoodNet. Though

there are different categories between ChineseFoodNet and VIREO Food-172, both of them are
Chinese food and their ingredients are similar, and we thus could still obtain the ingredient repre-
sentation of ChineseFoodNet using the trained ingredient model. We can observe that: (1)With the
increase of layers, MVFSL and other baselines similarly obtain consistent performance increase.
The MVFSL and other baselines with the VGG16 network outperform those models with AlexNet
by 0.2% to 5.2%. Similarly, in most cases, the performance of MVFSL and other baselines with
VGG19 network is better than those model with VGG16 network. There is only one exception
that RN-Category with VGG19 achieves lower performance compared with VGG16. One probable
reason is that there is overfitting in the network training on this dataset. (2) There is consistent
increase for MVFSL compared with the baselines for each architecture with the same layers. (3) For
MVFSL-TC with AlexNet, VGG16, and VGG19, there is consistent performance increase compared
with MVFSL-LC. This again verified the effective of end-to-end training.

4.3 Experimental Evaluation for SN and MN

For the evaluation setting of SN, MN, and RN, we conduct the comparison according to Refer-
ence [57] for fair evaluation. For SN, we need to construct positive image pairs and negative im-
age pairs, which should conform the setting of five-way one-shot with one query. Participially, we
randomly select five categories and sample one image from each selected category as the support
set. One query image is sampled from one of those selected categories. We construct the positive
image pair and negative image pair by combining the query image with each image from the sup-
port set, where the positive image pair means these images are from the same class and negative
image pair means they are from different classes. There are four negative pairs and one positive
pair in each five-way one-shot with one query setting. We randomly sample 50,000 image pairs
with 10,000 positive pairs and 40,000 negative pairs in each training epoch. The classification ac-
curacy is computed by averaging over 5,000 randomly generated image pairs from the test set.
Under the five-way one-shot with one query setting, 5,000 randomly generated image pairs are
equivalent to 1,000 tasks. Nesterow Momentum is used to perform stochastic optimization with
the initial learning rate 5 × 10−5 and momentum value 0.9.

For MN, we randomly select five categories and sample one image from each selected category
as the support set, and also one query image from one of those selected categories as the query
set, which means there are 5 × 1 + 1 = 6 images in each episode. In the training stage, we sample
100,000 episodes from the training set. Adam [33] is used for stochastic optimization with the
initial learning rate 5 × 10−4 and half the learning rate for every 20,000 episodes. The few-shot
classification accuracy is computed by averaging over 1,000 randomly generated episodes from
the test set.
To further demonstrate the effectiveness in introducing the ingredient information, we use the

following baselines to evaluate SN-Multiview and MN-Multiview:

• Siamese Network-Category (SN-Category) [34]: This baseline uses images and their cate-
gories to train the Siamese Network.

• Siamese Network-Ingredient (SN-Ingredient): This baseline uses images and their ingredi-
ents to train the Siamese Network.

• Matching Network-Category (MN-Category) [60]: This baseline uses images and their cat-
egories to train the Matching Network.

• Matching Network-Ingredient (MN-Ingredient): This baseline uses images and their ingre-
dients to train the Matching Network.
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Table 4. Performance Comparison on SN

Model Food-101 VIREO Food-172 ChineseFoodNet
SN-Category [34] 49.1% 60.3% 50.5%
SN-Ingredient 54.5% 65.5% 62.5%
SN-Multiview 55.0% 65.8% 64.4%

Table 5. Performance Comparison on MN

Model Food-101 VIREO Food-172 ChineseFoodNet
MN-Category [60] 45.6% 73.6% 48.9%
MN-Ingredeint 46.8% 65.9% 52.0%
MN-Multiview 47.5% 74.1% 53.0%

Table 6. Performance Comparison on Different Methods

Model Food-101 VIREO Food-172 ChineseFoodNet
SN-Multiview 55.0% 65.8% 64.4%
MN-Multiview 47.5% 74.1% 53.0%
MVFSL-LC 55.1% 74.8% 66.5%
MVFSL-TC 55.3% 75.1% 66.7%

Tables 4 and 5 provide the comparative results.We can observe that there is a consistent increase
for both SN-Multiview and MN-Multiview compared with their corresponding baselines. Partic-
ularly, for SN-Multiview, we can achieve performance improvement compared with the baselines
and outperforms them by 4% to 5%. Similarly, MN-Multiview also achieves performance improve-
ment compared with the baselines, and outperform them by 0.4% to 8.2%. This further verified the
effectiveness of our proposed method in exploiting ingredient information.
Table 6 further summarized experimental results among MVFSL-TC, MVFSL-LC, SN-Multiview,

and MN-Multiview. We can see that (1) The performance of SN-Multiview is better than
MN-Multiview in most cases. This trend is consistent with experiment results on other datasets
[57]. (2) The performance of MVFSL-TC is better than MVFSL-LC. The reason is that MVFSL-TC
is capable of making deep feature learning and relation learning reinforce each other. (3) MVFSL-
TC achieves the best performance compared with other three methods. For Food-101, MVFSL-TC
achieves the best performance compared with MVFSL-LC, SN-Multiview and MN-Multiview, and
outperforms them by 0.2%, 0.3%, and 7.8%. Similarly, MVFSL-TC achieves the best performance for
VIREO Food-172 and ChineseFoodNet.

4.4 Experimental Evaluation for Different C-way K-shot

In this section, we conducted the comparison under different C-way K-shot settings. Table 7 pro-
vides experimental results on three datasets. We can observe that (1) there is consistent increase
for MVFSL-LC andMVFSL-TC on different C-way K-shot setting compared with RN-Category and
RN-Ingredient. Furthermore, there is marginal improvement for end-to-end training and MVFSL-
TC achieves best performance. For example, on the Food-101, for the five-way one-shot setting,
MVFSL-LC achieves better performance compared with RN-Category and RN-Ingredient, and
outperforms those two baselines by 1.2% and 1.6%, respectively, and MVFSL-TC achieves better
performance compared with MVFSL-LC. Also similar trends for other C-way K-shot settings.
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Table 7. The Performance on Different Networks with Different C-way K-shot Settings on Three Datasets

Model
Food-101 VIREO Food-172 ChineseFoodNet

5-way 1-shot 5-way 5-shot 20-way 1-shot 5-way 1-shot 5-way 5-shot 20-way 1-shot 5-way 1-shot 5-way 5-shot 20-way 1-shot

RN-Category [57] 53.9% 67.4% 25.5% 74.0% 83.0% 47.5% 63.8% 72.9% 34.1%

RN-Ingredient 53.5% 67.5% 25.8% 70.5% 76.4% 40.5% 64.0% 73.0% 34.3%

MVFSL-LC 55.1% 68.1% 26.5% 74.8% 83.5% 48.2% 65.8% 73.5% 34.4%

MVFSL-TC 55.3% 68.3% 26.8% 75.1% 83.6% 48.6% 66.1% 73.9% 34.6%

Fig. 6. Examples of Food-101 and VIREO Food-172.

4.5 Discussions

4.5.1 What Causes the Different Performances? We notice that the performance on both VIREO
Food-172 and ChineseFoodNet are better than the Food-101 dataset. The probable reason lies in
the difference between the training set and test set. In the few-shot learning, the classes from the
training set and test set are disjoint. Although introducing the ingredient information can release
this problem, if there is larger difference between the distribution of the training set and the test
data, then the method only learns less information for the test set in the training stage. Conversely,
if there are more similar distributions between them, such as the appearance and shape, then the
performance can increase. Figure 6 shows some examples selected from Food-101 andVIREO Food-
172. For Food-101, the appearance of the training set are quiet different from test set. In contrast,
for VIREO Food-172, there is a more similarity in some aspects (e.g.,the appearance and color) for
some categories, such as “Roast Leek” from the training set and “Salt Green Tender” from the test
set, and “Fired Sweet and Sour Tenderloin” of the training set and “Braised Pork” of the test set.
Such similar distribution between training set and test set enables transfer learning between these
two sets for performance improvement.

4.5.2 Visualization. In this section, we qualitatively analyze the results of relation learning.
We randomly sample two categories with 100 images from the Food-101 dataset and all the im-
ages are projected to 2D by PCA [57]. Figure 7(a) shows real sample images colored by matching
(red) or mismatching (green) images and query image (yellow). We can see that comparing em-
beddings of original images are very challenging. In Figures 7(b)–7(d), we then qualitatively show
the relation representations of RN-Category, RN-Ingredient and MVFSL-LC-based matched (red)
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Fig. 7. Examples of Food-101 few-shot problem visualizations. (a) Matched (red) and mismatched (green)

sample embedding for a given query (yellow); (b) RN-Category: Matched (red) and mismatched (green)

relation module pair representations; (c) RN-Ingredient: Matched (red) and mismatched (green) relation

module pair representations; and (d) MVFSL-LC: Matched (red) and mismatched (green) relation module

pair representations.

and mismatched (green) query-sample pairs, respectively. Similar to Reference [57], we plot each
query-sample pair that represented by relation module pair representations. We can see that rela-
tion network has mapped query-sample pairs into a linearly separable space. In addition, MVFSL-
LC-based (mis)matched query-sample pairs are more linearly separable.

5 RELATEDWORK

Our work is closely related to the following two research areas: (1) food image classification and
(2) few-shot learning.

5.1 Food Image Recognition

Recently, Min et al. [45] provided a comprehensive survey of food recognition and other food-
related works. Food recognition is a difficult problem, since foods can dramatically vary in ap-
pearance. Such variations may arise not only from changes in illumination and viewpoint but
also from non-rigid deformations, and intra-class variability in shape, texture, color, and other vi-
sual properties. Existing food recognition researches can be categorized into two major directions:
(1) conventional approaches and (2) deep-learning approaches. For conventional approaches, Yang
et al. [62] exploited the spatial relationship among different ingredients. The food items are repre-
sented by pairwise statistics between local features of the different ingredients of the food items.
This approach is bound to work only for standardized meals. Bossard et al. [9] used the random
forest method to mine discriminative parts of food images for recognition. Except the such works,
plenty of researches has been carried out to find the optimal hand-crafted representation for food
recognition. Joutou et al. [29] exploited several kinds of image features together with a multiple
kernel learning. They combined Bag-of-SIFT with color histograms and Gabor filters to discrim-
inate between images. Martinel et al. [41] proposed a complex scheme that can independently
classify each feature response through an extreme learning machine, and combine the classifi-
cation results by using a structured SVM. Kawano et al. [32] developed a real-time mobile food
recognition system that it performs HoG and color patch feature encoding via fisher vector.
Compared with the conventional approaches, many deep-learning-based methods have been

developed for food recognition [14, 30, 31]. For example, Kawano et al. [31] found that deep
features performed significantly better than hand-crafted features. Kagaya et al. [30] extracted the
deep visual features for food detection and recognition. These approaches only used deep visual
features, but ignored the context. Someworks [5, 7, 28, 47, 61] developed context-based recognition
by introducing additional information, such as GPS, restaurant menus and ingredients. For exam-
ple, Xu et al. [61] explored the geolocation and external information about restaurants to simplify
the classification problem. Those works can confirm that the contextual knowledge is crucial to
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improve recognition. Recently, Min et al. [47] utilized ingredients as supervised signals to localize
multiple regions with different scales and fused these regional features into the unified feature
representation for recognition. There are also some works [49, 50], which developed mobile food
recognition systems for dietary management. In addition, our work is relevant to ingredient-recipe
correlation learning and cross-modal retrieval [11, 39, 44, 46]. In contrast, we take food attributes
into account for few-shot food recognition.

5.2 Few-shot Learning

Few-shot learning has received more and more attention for recognizing novel visual categories
from very few labeled examples. The seminal work [15] proposed a variational Bayesian frame-
work for few-shot learning, which utilized previous learned classes to predict new ones when only
one or very few examples are available. A hierarchical Bayesian program learningmethod [36] was
later proposed to match the human level error on the few-shot alphabet recognition task. Recent
works have adopted different strategies to deal with the few-shot problem [6, 17, 34, 48, 53, 56, 57,
60], which can be summarized into two main kinds of approaches. The first one is meta learning
[3, 59], which tries to extract some transformable information to avoid overfitting in the few-shot
learning stage. Different mechanisms, such as attention mechanism [19], memory mechanism [10]
and category-agnostic activations-parameters mapping learning mechanism [51], are introduced
to improve the performance of few-shot learning. The second type is metric-learning-based meth-
ods [34, 57, 60], which aim to learn a set of projection functions such that when represented in
this embedding, images are easy to recognize using simple nearest neighbor or linear classifiers.
In addition, some works [48, 53] leverage recurrent neural networks with memories to solve the
few-shot learning problem.
Recently, there are metric-learning-based methods for few-shot learning [34, 57, 60]. For exam-

ple, Koch et al. [34] employed the Siamese Networks as the embedding networks, and focused on
learning the embedding to transform the data such that it can be recognized with a fixed nearest-
neighbor. Later, Vinyals et al. [60] proposed theMatchingNetwork, which transformed the support
set and query samples into a shared embedding space such that it can be recognized with a fixed
classifier. More recently, Sung et al. [57] proposed a model called Relation Network, which uses
convolutional neural networks as a nonlinear classifier, and need not manually choose the metric,
such as the cosine or Euclidean distance [19] to adapt the model or data. Furthermore, through
learning a nonlinear similarity metric jointly with the embedding, this model achieves a great per-
formance on miniImageNet [60] and Omniglot [35]. Our work belongs to metric-learning-based
method for few-shot learning. However, all of those works focus on using category information
to solve the few-shot learning problem. In this article, we consider the problem of few-shot learn-
ing for food recognition and enhance the few-shot food recognition by leveraging ingredient at-
tributes. In addition, few-shot learning is relevant to weakly supervised learning with small subset
of training data, such as object detection and classification in optical remote sensing images [20,
21, 64]. This is because they should cope with the problem of very small subset of training data.
Note that our proposed multi-view learning method focuses on learning different types of features
from one image, not multiple images rendered from a 3D shape [22, 23, 24].

6 CONCLUSIONS

In this article, we have proposed a Multi-view Few-shot Learning (MVFSL) framework to explore
ingredient information for few-shot food recognition. To take advantage of ingredient informa-
tion, these two kinds of features are effective by first combining their extracted feature maps from
the last convolution layer of their respective fine-tuned deep networks and then conducting the
convolution on the combined feature maps. In addition, this convolution is incorporated into a
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multi-view relation network, which is used to compare query images against labeled samples to
obtain the image-level relation score. MVFSL can be trained in an end-to-end way to enable joint
optimization. The comprehensive experimental evaluations on three different food datasets have
validated the effectiveness of MVFSL. In addition, we have extended another two types of few-shot
learning methods, namely, Siamese Network and Matching Network by introducing ingredient in-
formation. The experimental results on these food datasets have also demonstrated the advantage
in utilizing food ingredients for few-shot food recognition.
There are a number of issues for further study: (1) Exploringmore information from food dataset

to improve the performance of few-shot food recognition. For example, besides ingredient informa-
tion, cooking instructions [52] and other types of attribute information, such as regional attributes
and cuisine types [44] can also be utilized. (2) In our work, we have found that the difference be-
tween the distribution of training set and test set affects the performance of few-shot learning.
Therefore, how to deal with this difference is worth studying. (3) We plan to use other types of
advanced deep architectures such as ResNet [25] and Densenet [27] in our framework to continue
improving the performance. In addition, different feature fusion strategies can also be explored,
such as summation and max pooling.
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