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Abstract— Video face retrieval (VFR) is an appealing and
practical computer vision task, which aims to search partic-
ular character from masses of videos like in TV-Series. The
challenges of this task mainly lie in two aspects, i.e. faces
in such videos contain complex appearance variations with
uncontrollable shooting environment and searching from big
data usually requires high efficiency in both space and time.
To fulfill this task, current works typically proceed in a learning
to hash manner by fusing single-frame features within a video
to obtain the video representation and further embedding it into
Hamming space to yield video binary codes. The feature fusion
stage has inevitably discarded too much frame information
and leads to less discriminative video codes. In this paper, we
propose Hybrid Video and Image Hashing (HVIH) to learn
more effective binary codes for face videos. Specifically, we fully
exploit the dense frame features rather than simply discarding
them after the video level fusion and jointly optimize binary
codes for the video and its composed frames in adapted super-
vised manners. To achieve more robust video representation,
we introduce a module of video center alignment to ensure
the binary codes location of the video and its frames to be
as compact and consistent as possible in the Hamming space,
which naturally facilitates both tasks of video-to-video retrieval
and image-to-video retrieval. Extensive experiments on two
challenging video face databases demonstrate the superiority
of our approach over the state-of-the-art.

I. INTRODUCTION

Given one video track of some specific characters, video

face retrieval aims to search shots containing the corre-

sponding person [34], as demonstrated in Fig. 1. It is a

promising research topic with gradually increasing attention.

Technically speaking, video face retrieval deals with video

understanding and data retrieval technology, both of which

are crucial for computer vision. This task has a wide range of

potential applications, such as: ‘only look him/her’ - where

the video can be automatically skipped to the corresponding

shot containing the specific character; retrieve all clips con-

taining a particular family member from thousands of short

videos [35]; and fast spotting and tracking criminal suspects

from masses of surveillance videos.

Intriguingly, the basic technique for video face retrieval is

face recognition, which has made remarkable progress with

the promotion of deep learning in recent years [27], [10],

[16]. Compared with still-face retrieval, video face retrieval

has its unique characteristics. Specifically, one video tends

to contain rich variations caused by illumination, pose, ex-

pressions, resolution and occlusion [34], [3]. Therefore, how

to integrate these complementary information from single
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Fig. 1. A schematic diagram of video face retrieval. With a query of a
desired celebrity’s video clip, all shots relevant with him/her in database are
retrieved and ranked according to their similarities to the query.

frames to obtain a comprehensive and robust representation

for the video needs to be considered adequately.

There have been substantial efforts devoting to fuse dense

frame features to represent a whole video and then embed it

into Hamming space leveraging hashing function [24], [25],

[31], [11]. However, most of them obtain video representa-

tion by fusing single-frames features before hashing layer,

which means that single-frame information has been early

discarded after feature fusion and cannot be optimized by

supervised signals directly. Nevertheless, the CNN feature

of each frame provides very helpful information for distin-

guishing videos from different identities, which has been

totally ignored by above scheme. Besides, treating video

as an isolated point in Hamming space lacks of robustness

especially when the variations are large within one video. In

this paper, we propose Hybrid Video and Image Hashing

(HVIH) to alleviate the above problem and yield robust

video codes. Specifically, we embed both video-level and

frame-level real-valued features into Hamming space and

then distinguish each frame from multiple identities, which

aims at exploiting dense frames to guide video modeling

and roughly determine different video’s location in Hamming

space. After such procedure, the video-level binary codes

can be obtained by temporal feature pooling. Because of the

retention of frame-level binary codes, our scheme naturally

facilitates both tasks of video-to-video retrieval and image-

to-video retrieval. Based on the roughly location determined

by dense frame information, we further increase the video

codes’ discriminability, which is crucial for video-level re-
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Fig. 2. An illustration of video representation learning procedure. The
pentagram denotes the video and face motifs denote its composed frames.
Each color denotes one character.

trieval, by combining metric learning techniques [40], [46].

Considering the robustness of video codes and the ability

of image-to-video retrieval, we rectify the location of video

and composed frames in Hamming space as compact and

consistent as possible. Fig. 2 gives an intuitive understanding

for this procedure.

To verify the validity of the proposed method, we conduct

video face retrieval experiments on two datasets. The results

show the effectiveness of the proposed HVIH against state-

of-the-arts retrieval methods.

II. RELATED WORK

Recent years have witnessed more and more investigation

on video face retrieval [34], [35], [24], [1], [2], [25], [11],

[13], [12], [18]. For example, [1], [2] proposed a cascade

of processing steps to normalize the effects of the changing

image environment and used the signature image to retrieval

a face shot. [8] investigated the identification problem for

face clips of TV-Series; [5] leveraged fan transcripts and

subtitles to achieve person identification in TV-Series. Ac-

tually, most of these previous works tried to construct an

end-to-end system, including shot boundary detection, face

detection, face tracking, and face retrieval, to accomplish

comprehensive face video analysis. It is admittedly believed

that paramount technical components for this task lie in two

aspects, i.e. the video modeling and fast retrieval, which are

also the main research subjects in this paper.

Actually, face video can be treated as an image set.

Given a face video, for identity retrieval task, we mainly

focus on its frame appearance other than temporal mo-

tion information [31]. As for image set modeling, holistic

modeling approaches empirically have an advantage over

processing each frame separately. Traditional representative

methods include linear subspaces [20], affine subspaces [7],

bilinear matrices [24], [25], etc. However, these methods

mainly rest on hand-crafted features. More recently, CNN

based methods gradually exhibit the superiority on many

vision tasks, such as video classification [44], [41], video

face recognition [43], [29], [33], [47], video face retrieval

[24], [25], [31], [11], [12], [18], event detection [41], pose

estimation [30]. The core technique of these methods is

frame-level feature extraction and aggregation. The main

shortage of above holistic modeling schemes is that they

discard the frame-level imformation which is beneficial to

enhance the robustness of video representation and boost

the video retrieval performance when video representation

is obtained. The second drawback that lies in most existing

methods is high dimensionality which severely limits their

applicability in large-scale video retrieval.

Hashing is an efficient tool for large-scale data retrieval.

Compared with traditional searching methods [9], hashing

has lower time and space complexity. The classical work

contains the family of methods known as Locality Sensi-

tive Hashing (LSH) [14] and its variants [32]. It is worth

noted that LSHs always need much longer codes to obtain

better performance in real searching task. To reduce the

major shortcoming, data-dependent hashing methods try to

embed either data structure or semantic similarity to compact

binary codes. These methods can be further partitioned

into unsupervised and (semi-) supervised methods. Impor-

tant unsupervised methods include Spectral Hashing (SH)

[39], Iterative Quantization (ITQ) [15], K-Nearest Neighbors

Hashing (KNNH) [17], etc. Without any label information,

unsupervised methods are usually inferior to supervised

methods. Representative (semi-) supervised methods include

Semi-Supervised Hashing (SSH) [37], Kernel-based Super-

vised Hashing (KSH) [28], etc. Please see [38] for a more

comprehensive survey. More recently, deep hashing methods

become more and more popular. Simultaneously learning

image feature and hash function in a end-to-end manner is

the key to deep hashing over traditional methods. Most deep

hashing methods are similar in feature extracting module,

hash function learning module reflects difference instead.

Representative methods include DSH [26], DPSH [23],

DNNH [22], DSRBH [45], HashNet [6], SSDH [42], Greedy

Hash [36]. Thanks to the extensive application of hashing,

binary based VFR methods gradually attract the attention

of researchers. Representative methods include [24], [31],

[18]. These works make video face retrieval more fast and

practical.

III. PROPOSED METHOD

In order to efficiently search specific character by a query

video from masses of databases, what we need firstly is to

get a robust and powerful representation for each face video.

Actually, a face video can be considered as a set of face

frames containing various head poses and appearance. How

to mine complementary information from these frames and

jointly optimize the feature extraction and fusion procedure

is the core of the face video representation.

A. Hybrid Video and Image Hashing

For this target, we propose HVIH as illustrated in Fig. 3.

Let V = {I1, I2, ..., IN} be a face video with N frames,

where Ii denotes the i-th frame. We firstly propagate each

frame through the stacked convolution network F and then

the deep features for each frame are obtained as fi =
F(Ii), fi ∈ Rd.

Secondly, we leverage a compact embedding model, which

maps a high-dimensional floating feature to a succinct rep-

resentation which lies in Hamming space.
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Fig. 3. Illustration of the whole framework of the proposed method. The input of the model is batches composed of set triplets. Each set triplet passes
through the feature extraction module to generate hidden representations, which will be fed to hashing layer to generate frame-level binary codes and
set-level binary codes. Then two different supervised manner are devised for two types of binary codes accordingly. The anchors, positive instances and
negative instances are denoted by different colors. In addition, the dot denotes frame-level binary codes and pentagram denotes set-level binary codes.

At last, considering the scalability of the video represen-

tation and comparability of videos with different number

of frames, we get fixed dimension representation by using

temporal feature pooling. Temporal feature pooling has been

widely used for video face retrieval and video classication

[31], [44], the output vector of which can be used to achieve

video-level retrieval. Above all, the HVIH can be formulated

as follows:

bVi = σ(WT fi),W ∈ Rd×K , bVi ∈ RK (1)

bV = σ(
1

N

N∑
i=1

WT fi), b
V ∈ RK (2)

The W in (1) denotes hashing function, which acts as the

compact embedding module mentiond above. σ(·) denotes

the threshold function, which quantizes real-value feature to

be binary. The bV and bVi denote the binary codes of the

video and its composed i-th frame respectively. Considering

the optimization in an end-to-end manner, we relax the binary

constraints to range constraints of [0,1], i.e. use sigmoid to

approximate sgn as threshold function. In order to reduce the

quantitative loss caused by this approximation, we conduct

additional binary regularizations on the thresholded outputs

introduced in Section III-B.

B. BINARY CODE LEARNING

In terms of a coming face video, we can get compact

binary-like representation with relaxation mentioned in pre-

vious section. As we all known, there are two advantages

leveraging binary features, i.e. the concise space demand,

the low time cost. These two points are very helpful for

fast large-scale video face retrieval. However, the HVIH

formulated as above does not incorporate any supervision

information, which will definitely enhance the retrieval ac-

curacy. To solve this problem, we drive the discriminative

binary codes learning in two different supervised manners

respect to video and frame. Next we will dicuss how to

optimize these two different representations guided by the

provided identity signals.

1) Frame-wise Supervision: In previous representation

learning process, we have preserved the frames in the Ham-

ming space. The goal is to make these frames discriminative

by imposing identity constraints on them. There is no doubt

that the discriminability of binary codes in Hamming space is

crucial most, i.e. each frame can be distinguished from mul-

tiple identities, which has an impact on semantic retrieval.

For another, once these frames become much discriminative,

they will support the videos’ surroundings in Hamming space

and guarantee the correct direction of video discriminative

learning in future steps. It is so-called supported frames.

Formally, let bij denotes the binary code of the j-th frame of

the i-th video instance. Then frame-wise supervision Lframe

can be formulated as,

Lframe =
1

M

M∑
i=1

⎧⎪⎪⎨
⎪⎪⎩

1

|Vi|
∑
Ij∈Vi

exp(θTcib
i
j)

C∑
c=1

exp(θTc b
i
j)

⎫⎪⎪⎬
⎪⎪⎭

(3)

where M is the number of video instances in a batch, C is the

number of person identities, Vi denotes i-th video instance

and |Vi| indicates the number of frames in Vi, θci denotes

ci-th hashing hyperplane and ci indicates that the i-th video

instance belongs to ci-th person identity.

2) Set Pair-wise Supervision: Once we differentiated sup-

ported frames from each identity, it is equivalent to establish-

ing the image set partition in Hamming space. According to



our video modeling scheme, a video point tends to locate in

the center region of a image set partition. It merits attention

that if we utilize the same supervised manner for video,

it may have limited contribution on further boosting the

model’s integral discriminability, which results from that

most of video cases have satisified the hashing hyperplane

partition principle. To address this problem, we turn to metric

learning techniques. Considering image set as an entirety, we

combine two types of discriminability constraint, i.e. intra-

class compactness and inter-class separability. Specifically,

the codes of semantically similar videos should be as close

as possible, while the codes of dissimilar videos being far

away. Formally, let a, p, n as a set triplet (Actually, a triplet

can be understood as a set of pairs) where a denotes the

anchor, and p, n denote positive and negative samples, then

their distance correlations can be formulated as,

Lvideo =
1

|T |
∑

(a,p,n)∈T

β ·max(dH(ba, bp)− dH(ba, bn)

+m, 0) + γ · dH(ba, bp)
(4)

where ba, bp, bn denote K-bit binary codes of video instance

in a set triplet and they can be computed using (2). dH(·, ·)
denotes Hamming distance between two binary vectors, |T |
denotes the scale of set triplets, m > 0 denotes margin

threshold parameter and β, γ denote balancing coefficient

of the two loss terms.

3) Video Center Alignment (VCA): Until now, we have

access to optimized binary codes of the face video and their

composed frames. However, the set pooling is occured in

the same-dimension real-valued space before thresholding,

which may cause that the video shifts from the center of

their composed frames especially when large variations occur

within the video. In order to get robust video representation

that can leverage the frame-wise variations, we introduce a

video center alignment module to rectify the video’s location

to make images and videos constrain each other. Please see

Fig. 2 for more intuitive understanding. Formally, the video

center alignment module can be imposed as follows:

Lvca =
1

M

M∑
i=1

∥∥∥∥∥∥
bVi − 1

|Vi|
∑
Ij∈Vi

bVi
j

∥∥∥∥∥∥
p

(5)

where arbitraty norm can be assigned by setting the subscript

p. In our experiments, we choose the L2-norm (i.e. p = 2).

It is worth noting that VCA not only enhances the power of

video representation but also endows the ability of retrieval

across image and video. Besides, VCA is only used during

training phase. When new test videos coming, we only

need to propagate their frames or key frames after sampling

through the stacked convolution network and directly execute

set pooling in a scalable way to get videos’ binary codes.

4) Binary Structure Constraint: It would be advisable if

(3) and (4) can be optimized directly with binary constraint,

whereas it is nonviable because getting binary codes needs

to threshold the model outputs with sgn operator. This will

bring trouble to the network training with back propagation

algorithm. To alleviate this issue, the general process is to

relax the strict binary constraint using sigmoid operator as

the threshold function. Nevertheless, working with such non-

linear functions would precipitate suboptimal binary codes

due to the heterogeneity between the continuous real-valued

space and Hamming space. As a compensation, we impose

a binary structure constraint term on thresholded features to

reduce the approximation cost. To be specific, we force the

network outputs to approach the desired discrete values (0/1)
as well as maximize the variance of each hash bit, which is

motivated by [37], [42] and formulated as:

Lbsc =
1

M

M∑
i=1⎧⎨

⎩
1

2 |Vi|
∑
Ij∈Vi

(∥∥mean(bij)− 0.5
∥∥2
2
− ∥∥bij − 0.5I

∥∥2
2

)
⎫⎬
⎭

(6)

In pratice, we also impose such binary structure constraint

on binary codes of videos. After above narrations, our overall

loss function can be reached by combining (3), (4), (5) and

(6):

L = Lframe + λ1 · Lvideo + λ2 · Lvca + λ3 · Lbsc (7)

C. Implementation Details

Network parameters. We implement our method with

Caffe platform1. For fair comparison, we use the same

backbone for comparative methods. In this paper, our

backbone consists of four doubled-convolution followed

max-pooling layers and one doubled-convolution followed

average-pooling layer. The convolution layers include (64,

32, 16, 8 and 4)×2 3×3 filters with stride 1 respectively, the

size of max-pooling window is 2×2 with stride 2, the size of

average-pooling window is 4×4 with stride 1. In practice, the

backbone can be any type of deep architecture. This is not

the focus of our discussion here. Following the frame-level

feature extraction module, we achieve hash layer by several

fully connected layers. Then, we impose the loss functions

on the feature after threshold function sigmoid. Besides, all

the convolution layers are followed by the ReLU activation

function.

Before the training phase, we initilize hash layer with

”Gaussian” method and corresponding initial variance is set

as 0.01. The other parametric layers are initialized with

”Xavier” method. We set batch-size as 240 (the video num-

ber in a batch is 24, i.e. M=24), momentum as 0.9, and

weight-decay as 0.0005. The model is trained with 100,000

iterations. The learning rate is set as 0.001 and decreased by

a tenth every 50,000 steps.

Training methodology. To speed up the training process

and better use of storage space, we construct each mini-batch

formed by set triplets in a off-line way. More concretely, we

randomly take out 2 ∗M/3 characters as the candidate pool

for each mini-batch in the first step. Then anchor person

IDs and positive person IDs are selected from former half

1Our source codes are available at http://vipl.ict.ac.cn/resources/codes.
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Fig. 4. Face clip examples of the two large scale video face datasets,
where left four columns are sampled from YTC while right four columns
are sampled from UMDFaces. Frames in the same row are from one video.

TABLE I

DATA STATISTICS AND DIVISION OF TWO LARGE SCALE VIDEO FACE

DATASETS.

Dataset YouTube Celebrities UMDFaces

Identities 47 200
Training videos 7,190 6,614
Testing videos 3,101 3,422

Training frames 206,195 189,051
Testing frames 89,234 97,735

of the candidate pool while negative person IDs are selected

from the other half of the pool, in such way, M/3 triplets

can be obtained in each mini-batch. Thirdly, for each triplet,

we randomly select one video according to its ID as triplet

element, so there are M videos in one mini-batch. At last,

since the frame count of video is different, for each video,

10 frames are randomly selected from the whole video to

form a set. There are two major advantages to constructing

a mini-batch in this way: firstly, the offline configuration

save the time overhead of online enumeration; Imagining that

above complicated sample scheme is implemented online,

the training efficiency will be greatly reduced. Secondly, the

distribution of each ID will be relatively uniform with the

candidate pool. Another trick in training phase is the use

of finetuning. Specifically, the feature extraction module is

fixed while the hash layer and subsequent parameter layers

are trained in first stage. Then the whole network will be

finetuned in a decay learning rate in the second stage.

IV. EXPERIMENTS

A. Datasets

We conduct experiments on two large scale video face

databases : YouTube Celebrities (YTC) [19] and UMD-

Faces [4]. YTC is a widely investigated and challenging

benchmark containing 1,910 videos of 47 characters col-

lected from YouTube. In practice, the final face tracks are

parsed from raw videos leveraging several technologies, e.g.

shot boundary detection, face detection, tracking, and facial

landmark localization. Large variations such as illumination,

background, yaw, among shots remarkably increase the chal-

lenge for accurate retrieval. The second dataset UMDFaces

is a recently released large scale video face benchmark,

which contains both still-images and videos. Concretely, the

original video settings contains 22,075 raw videos for 3,107

characters (about 7 videos per character). To guarantee the

purity of databases, we select a subset with 200 subjects for

the experimental evaluation. Some exemplar face tracks of

the two video databases are shown in Fig. 4. The statistical

information and splits of two datasets can be found in Table

I.

B. Experimental Settings

In the experiments, the input resolution of the face is set as

64×64 pixels. The margin m in (5) is empirically set as 2.0.

Besides, β, γ and λ2 are set as 0.1, 0.5 and 0.01, the balance

parameters λ1 and λ3 are both set as 1.0 without elaborate

configuration. For all comparative methods, crucial param-

eters are carefully tuned according to the recommendations

in the original literatures and source codes. For quantitative

evaluation, we use two standard criteria, i.e. mean Average

Precision (mAP) and the precision recall (PR) curve.

C. Evaluation on Different Video Representation

As discussed in Section III-A, the video modeling is a cru-

cial technical component of video face retrieval. In this sub-

section, we will validate the effectiveness of the proposed

video representation algorithm. We mainly focus on three

baselines, i.e. single-image, single-video and joint image and
video. Concretely, single-image denotes that we treat each

video as image set and fuse corresponding frame-level binary

codes as final video binary codes. In this baseline, we only

leverage frame-wise supervision mentioned in Section III-B.

Another noteworthy point is the batch construction strategy,

since that there is no need to generate sample pairs or triplets

for single-image, we randomly select frames for each batch

where the probability of selecting each frame is uniform.

single-video denotes that we only preserve video-level binary

codes in Hamming space, i.e. we only leverage set-pair-

wise supervision mentioned in Section III-B. joint image
and video denotes that we jointly optimize binary codes of

video and its composed frames. joint image and video ++
denotes that we jointly optimize binary codes of video and

its composed frames with VCA module. For single-video
and joint image and video, we both adopt the same batch

construction scheme introduced in Section III-C.

The results of different video modeling strategy are listed

in Table II. From the comparison, we have made two

consistent foundings: 1) Our joint image and video performs

superiorer than other baselines as expected in most cases.

This may partly attribute to our video representation learning

scheme, i.e. improving the discriminabilities of frame-level

representations is beneficial to boost the robustness of the

video representation and set-pair supervision further boosts

the discriminability of the video-level binary codes. Notice

that our approach is more advanced on the UMDfaces dataset

with large appearance variations, which sidely shows that

our scheme is more suitable for processing complicated

variations in face videos. 2) The performance of single-image
is better than single-video. On one hand, fully discarding

the information after video fusion is harmful to the learning

of video representations. On the other hand, the scale of



TABLE II

EVALUATION ON DIFFERENT VIDEO REPRESENTATION LEARNING PARADIGMS WITH MAP ON TWO DATASETS.‘JOINT IMAGE AND VIDEO ++’

DENOTES RESULTS WITH VCA.

Video Modeling
Strategy

YouTube Celebrities UMDFaces
12-bit 24-bit 36-bit 48-bit 12-bit 24-bit 36-bit 48-bit

single-image 0.5925 0.6226 0.6451 0.6599 0.4645 0.6064 0.6456 0.6667
single-video 0.5085 0.5230 0.5786 0.5815 0.3165 0.3685 0.3729 0.3800

joint image and video 0.5579 0.6475 0.6804 0.6885 0.5645 0.6745 0.7233 0.7568
joint image and video ++ 0.5602 0.6483 0.6989 0.7042 0.5570 0.6846 0.7398 0.7628

available training samples for frames is much larger than

that of videos, which further leads to the huge performance

difference. We can also note that, in some specific bits on

YTC, single-image even surpasses joint image and video.

Actually, single-image aims to optimize binary codes for

each frame and aggregate them to form an integrated video

code, which may work well when face variations among

frames are relatively small.

D. Comparison with the State-of-the-art Hashing Methods

To demonstrate the effectiveness of the proposed method,

we compare it with several binary code learning methods,

including LSH [14], SH [39], ITQ [15], SITQ [15], BRE

[21], KSH [28], DNNH [22], DSH [26], DVC [31], HashNet

[6] and SSDH [42]. For fair comparison, we adopt totally the

same backbone with comparative deep hashing methods and

extract corrspondingly deep feature for all traditional hashing

methods. Please note that most of the competitive hashing

methods except DVC cannot apply for VFR task directly.

Following DVC, we reproduce them by regarding each face

frame as a sample and fuse these frame-level binary codes

to obtain video-level binary codes by hard-voting.

Table III and Fig. 5 give the comparison performance in

mAP and PR curve. Overall, we have the following three

observations: 1) Deep hashing methods generally achieve

higher retrieval performance than traditional hashing meth-

ods with deep features on two datasets, which suggests

that simultaneously learning image feature and optimizing

hash function in an end-to-end manner is predominant.

2) Compared with state-of-the-art deep hashing methods,

ours achieves the highest performance in most cases and

especially superior on the UMDFaces dataset which con-

tains more characters and complex appearance variations

than YTC. A possible interpretation is our model leverages

dense-frame supervision and video supervision jointly, which

results in larger model capacity. We can also review this

phenomenon from hashing perspective. The performance

differences among other deep hashing methods mainly come

from the their supervised manners. DSH and HashNet adopt

pair-wise supervision while DNNH adopts triplet-wise super-

vision. SSDH belongs to point-wise supervision and achieves

generally more excellent performance than former two types.

Our method imposes more reasonable supervised manner on

different modality, i.e. video and frame, which belongs to

a hybrid supervised manner. 3) As for DVC, it optimizes

smooth upper bound on triplet loss which leads to stable
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Fig. 5. Comparison of precision recall curve on two databases, i.e. (a)
YouTube Celebrities (YTC) and (b) UMDFaces. Without loss of generality,
we show the results with 48-bit for a demonstration.

convergence and obtain better performance than pair-wise

and triplet-wise methods. However, it is still inferior to our

method. We attribute it to our sufficient exploitation of dense

frames in Hamming space.

E. Evaluation on Cross-modality Retrieval

As pointed before, our method can also deal with image-

to-video retrieval. In order to verify the superiority of our

method under this protocol, we compare with several com-

petitive retrieval methods. Specifically, for all comparative

methods, we sample one frame from each testing video

to construct new query set and original training videos as

database. The comparison results are listed in Table IV.

We can see that our method significantly outperforms other

methods in most cases. This is mainly due to the fact that

our method optimizes frame-level binary codes in Hamming

space and align them with videos such that the learned codes

can be applied to this cross-modality retrieval task. It is worth

noting that DVC cannot obtain frame-level binary codes, and

thus it cannot apply for image-to-video retrieval.

F. Parameter Sensitivity Analysis of Video Center Alignment

As discussed in III-B, we aim to rectify the location of

video and composed frames in Hamming space as compact

and consistent as possible with VCA. From the last two lines

of Table II, we can see that VCA authentically boosts the

retrieval performance in most cases. In this subsection, we

analysis the parameter sensitivity of VCA, i.e. λ2. Without

loss of generality, we only test the case under 48-bit. More

specifically, we fix all other unrelated parameters, only

research the performance variation tendencies of λ2. Fig.

6 shows that our method achieves better performance than

baseline (i.e. setting without VCA) when λ2 varies over a

relatively large range. In other words, our method is not

sensitive to λ2 in a large range.



TABLE III

MAP COMPARISONS FOR VIDEO-TO-VIDEO RETRIEVAL TASK ON TWO DATABASES.

Method
YouTube Celebrities UMDFaces

12-bit 24-bit 36-bit 48-bit 12-bit 24-bit 36-bit 48-bit

LSH [14] 0.1023 0.1360 0.2048 0.2078 0.0745 0.1360 0.2164 0.2690
SH [39] 0.1878 0.2289 0.2485 0.2490 0.1339 0.2070 0.2368 0.2563
ITQ [15] 0.3411 0.4751 0.5021 0.4990 0.2201 0.3652 0.4450 0.4746

SITQ [15] 0.3545 0.4521 0.5172 0.5745 0.2099 0.3639 0.4207 0.4587
BRE [21] 0.2646 0.2837 0.3590 0.3794 0.1689 0.2905 0.3396 0.3765
KSH [28] 0.4375 0.5427 0.6142 0.6442 0.2493 0.3738 0.4189 0.4522

DNNH [22] 0.5711 0.5722 0.6050 0.6743 0.4141 0.5620 0.6162 0.6213
DSH [26] 0.5148 0.5303 0.5578 0.5419 0.3418 0.5006 0.5599 0.6049

HashNet [6] 0.5005 0.6376 0.6655 0.6475 0.3391 0.4633 0.5431 0.5635
SSDH [42] 0.5925 0.6226 0.6451 0.6599 0.4656 0.6064 0.6456 0.6667

DVC [31] 0.5460 0.6632 0.6704 0.6820 0.5656 0.5837 0.6146 0.6204
HVIH 0.5602 0.6483 0.6989 0.7042 0.5570 0.6846 0.7398 0.7628

TABLE IV

MAP COMPARISONS FOR IMAGE-TO-VIDEO RETRIEVAL TASK ON TWO DATABASES.

Method
YouTube Celebrities UMDFaces

12-bit 24-bit 36-bit 48-bit 12-bit 24-bit 36-bit 48-bit

SITQ [15] 0.3133 0.3944 0.4375 0.5005 0.1548 0.2790 0.3278 0.3469
KSH [28] 0.3885 0.4851 0.5410 0.5702 0.1882 0.2700 0.3070 0.3302

DNNH [22] 0.4670 0.4960 0.5267 0.5882 0.3160 0.3983 0.4242 0.4735
DSH [26] 0.4181 0.4753 0.5091 0.5005 0.2312 0.3378 0.3957 0.4412

HashNet [6] 0.4182 0.5558 0.5874 0.5774 0.2282 0.3240 0.3985 0.4270
SSDH [42] 0.5468 0.5784 0.6024 0.6120 0.3709 0.4876 0.5221 0.5464

HVIH 0.5159 0.6023 0.6443 0.6569 0.4383 0.5428 0.5986 0.6237
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Fig. 6. Retrieval performance variation tendencies on two datasets, i.e.
(a) YouTube Celebrities (YTC) and (b) UMDFaces, when parameter λ2

changes. Red dotted line denotes mAP results of baseline, i.e. setting without
VCA module. The results are obtained with 48-bit binary codes.

V. CONCLUSIONS AND FUTURE WORKS

To address the problem of video face retrieval, we pro-

pose a compact and robust video representation learning

framework. The superior retrieval performance of our method

mainly deriveds from three aspects: Firstly, we retain frame-

level feature in Hamming space and impose dense frame-

wise supervision on them which improves the power of

frames for subsequent video fusion. From the experimental

results, we can see fully exploiting frame information en-

hances the performance remarkably. Secondly, we leverage

metric learning technologies on video-level representation,

which boosts the discriminability of video binary codes.

Thirdly, our VCA module fine-tunes the position of videos,

which results in better performance and more retrieval sce-

narios of learned codes (e.g. retrieval across image and

video). For future work, three promising extensions would

be investigated: 1) Compatibility with different video lengths

in training phase, which can be handled by devising multi-

similarity supervision manner to build more comprehen-

sive and principled framework; 2) Exploitation of temporal

context information with informative video modeling; 3)

Application to the specific complicated event retrieval from

massive surveillance videos.
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