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Abstract—State-of-the-art classification models are usually considered as black boxes since their decision processes are implicit to

humans. On the contrary, human experts classify objects according to a set of explicit hierarchical criteria. For example, “tabby is a

domestic cat with stripes, dots, or lines”, where tabby is defined by combining its superordinate category (domestic cat) and some

certain attributes (e.g., has stripes). Inspired by this mechanism, we propose an interpretable Hierarchical Criteria Network (HCN) by

additionally learning such criteria. To achieve this goal, images and semantic entities (e.g., taxonomies and attributes) are embedded

into a common space, where each category can be represented by the linear combination of its superordinate category and a set of

learned discriminative attributes. Specifically, a two-stream convolutional neural network (CNN) is elaborately devised, which embeds

images and taxonomies with the two streams respectively. The model is trained by minimizing the prediction error of hierarchy labels on

both streams. Extensive experiments on two widely studied datasets (CIFAR-100 and ILSVRC) demonstrate that HCN can learn

meaningful attributes as well as reasonable and interpretable classification criteria. Therefore, the proposed method enables further

human feedback for model correction as an additional benefit.

Index Terms—Interpretable model, visual attributes, convolutional neural network, classification criteria

Ç

1 INTRODUCTION

WHILE state-of-the-art classification / categorization
models [1], [2], [3], [4], [5], [6], [7], [8], [9], [10]

achieve excellent accuracies on given object sets, most of
them are purely trained to deal with a closed world. As a
result, the classification processes of such models are
implicit to humans, and incorporating prior knowledge
(either from known objects or from human beings) into the
model still remains an open research problem. Moreover, a
major drawback of previous models is that they are easy
to be cheated, for example as DeepFool [11]. As a result,
it’s hard to be trusted in vital tasks such as self-driving
cars and medical care.

On the contrary, humans can explain the rationale
behind their decisions on complex object recognition in an
interpretable way, even though the decision process hap-
pens unconsciously. For example, for some classification
tasks, especially those simple and familiar ones such as rec-
ognizing faces, humans can easily make decisions without
explicit criteria. However, as shown in [12], the “criteria”
(i.e., different characteristics of faces and the way they com-
pose a whole face) have already been encoded into the
human brain (neurons), and thus humans recognize faces

“without thinking” thanks to such implicit criteria. For
more general perception tasks, take the object recognition
task as an example, the most commonly adopted criteria
system defines each category as the combination of its
superordinate category and a set of visual attributes (as
shown in Fig. 1, which is adopted by Wikipedia and many
other encyclopedias). For example, a tabby cat is “a domestic
cat that has a coat featuring distinctive stripes, dots, lines or
swirling patterns” and a domestic cat is “a small, typically
furry, carnivorous mammal, and the only domesticated spe-
cies in the family Felidae (i.e., feline)” (Fig. 1b). By substitut-
ing the definition of domestic cat into the definition of tabby
cat, tabby cat can also be defined as “a domesticated, small,
furry, carnivorous mammal with stripes, dots, etc.” or equiv-
alently “a domesticated, small feline with stripes, dots, etc.”
Furthermore, by recursively tracing back to the root of the
hierarchy as above, each category can be represented as a
certain combination of just attributes, which is termed as
the prototype of the corresponding category [13]. The above
example shows that attributes can well characterize the
nature of each individual category and the connections
among categories. More importantly, attributes are not only
human-understandable but also machine-learnable, making
it possible to learn interpretable classification models that
are in the same form as the expert-defined criteria. Besides,
similarly to “category”, “attribute” is also a kind of semantic
feature for clustering / classifying.

Recently, researchers have paid more and more attention
to improve the interpretability of classification models [14],
[15], [16], [17], [18], [19]. Although these methods have cer-
tainly achieved some successes, most of the interpretations
obtained by these methods are not as explicit as the expert-
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defined criteria described above, which limits their interpret-
ability to some extent. One exception is the method proposed
in [14]. [14] decomposes each category into the linear combi-
nation of its superordinate category and a series of manually
defined attributes. Although this provides amethod to embed
predefined attributes, as the number of categories grows,
some new attributes have to be developed for dealing with
the new categories, which inevitably limits its scalability.

To tackle the scalability problem of manually defined
attributes, we propose to automatically learn the attributes
with only image-level category labels and class hierarchy,
instead of relying on manually-defined ones. This is invalu-
able for open-world recognition. To this end, the method is

proposed to find the visual attributes that relate to each
known category and how the category is described by these
attributes as shown in Fig. 2. Specifically, the visual attrib-
utes are learned from images, and the images are repre-
sented by the learned attributes in return. Moreover, the
learned attributes are also used to bridge the prototypes of
the hierarchically organized categories, so that we could
obtain the classification criteria that are similar to the
expert-defined ones (e.g., tiger is a feline with stripes). Note
that since the attributes are purely mined from images in
the proposed method, we do not expect them to have an
exact one-to-one correspondence with manually defined
ones. For example, the “felineness” attribute illustrated in
Fig. 2 has hardly been defined by humans but could be vital
for defining the category feline.

Inspired from recognition/categorization in psychology
and the successes of CNN models in object recognition and
attribute-related tasks [16], [18], [20], [21], we propose a
two-stream network named Hierarchical Criteria Network
(HCN) as shown in Fig. 3. Specifically, the two streams
embed images and category prototypes into a common
space, where the bases of the space are visual attributes
learned on the images. More concretely, the upper stream of
the network takes images as inputs and extracts the image

Fig. 1. An illustration of the attribute-based classification criteria system.
(a) A simplified category hierarchy. (b) Example criteria on these hierar-
chically organized categories (i.e., feline, domestic cat, tiger, and tabby
cat), which are defined by attributes like domestic, small, and stripe.

Fig. 2. The motivation of the proposed method. Visual attributes learned
from images are used to represent the images, and such attributes are
also used to characterize the connections between category prototypes,
where the prototype of each category can be obtained by combining the
prototype of its superordinate category and a certain set of attributes. By
this means, the hierarchical classification criteria can be easily derived
from the learned prototypes.

Fig. 3. The proposed HCN. To learn the hierarchical criteria between categories in terms of attributes, we propose a two-stream CNN structure,
where the upper stream is designed to extract image attributes, while the lower stream learns prototypes for each category in the hierarchy. The
model is trained to predict the corresponding hierarchical category labels using both the image samples and the category prototypes. For ease of
optimization, the category prototypes are decomposed to the summation of rows in a hierarchical embedding matrix (each column represents an
attribute) selected by the binary hierarchical category representations.
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features as outputs, where each dimension of the feature is
seen as an attribute. On the other hand, the lower stream is
designed to learn prototypes for each category. For this pur-
pose, the prototypes are embedded into the same space as
image features so that the prototypes could also be repre-
sented by the learned attributes. Intuitively, each category is
a special case of its superordinate category, and thus it has
all attributes of its superordinate category. Based on this
intuition, a set of consistency constraints are imposed on the
prototypes to ensure that each category inherits all attributes
from its superordinate categories, and also has some addi-
tional specialties. To train the model, both the image fea-
tures and the category prototypes are fed into a shared
classifier to accurately predict their corresponding hierarchi-
cal labels. In such a framework, by inspecting the difference
between the prototypes of a category and its superordinate
category, we could tell which attributes are the most signifi-
cant differences between the two categories, and thus the
classification criteria could be easily derived. More impor-
tantly, such criteria could not only be used to interpret the
model predictions but also enable further human feedback
for model correction. Experiments are conducted on two
widely studied datasets (CIFAR-100 and ILSVRC), and the
results validate that HCN improves the model interpretabil-
ity and learns reasonable classification criteria.

2 RELATED WORKS

In HCN, CNN models are trained to learn attributes for hier-
archical classification and interpreting the decision criteria.
Therefore, HCN ismainly related to attribute learning, hierar-
chy-regularized classification, and network interpretation.

Attribute Learning. As a kind of human-understandable
semantic descriptors [22], visual attributes are also
machine-learnable, and thus have been widely adopted in
classification tasks [23], [24], [25], [26], [27]. Such methods
either directly use attributes to infer category or only use
attributes as additional side information. Due to the usage
of attributes, the above methods can explain their predic-
tions to some extent. However, all these methods only use
manually-defined attributes, which severely limit their scal-
ability. Some recent works have shown that CNN models
trained for classification tasks can naturally learn visual
attributes as their intermediate representations [20], [21],
[28], which provides an alternative way to significantly
improve the scalability of attribute-based classification
methods. However, these methods do not exploit the rich
supervision information in class hierarchies. As a result, it
is highly likely that the learned interpretations violate the
hierarchical constraints as discussed in Section 1, making
the interpretations less meaningful and reliable. Therefore,
in this paper, we propose to incorporate the class hierarchy
to learn more meaningful criteria that are in the same form
as the hierarchical criteria described in Section 1.

Hierarchy-Regularized Classification. Semantic hierarchies
have been explored in object classification task for accelerat-
ing recognition [29], [30], determining the appropriate
model outputs [31], [32], making use of coarsely labeled
images [33], [34], and improving recognition accuracy as
additional supervision [14], [35], [36], [37], [38], [39]. While
such methods have achieved their goals by leveraging

category hierarchies, only [14] pays attention to the task
studied in this paper, i.e., learning the criteria for classifica-
tion. However, [14] utilizes a small number of manually
defined category-level attributes, which severely restricts
the scalability of their method. To deal with this problem,
we propose to jointly learn the attributes as well as the crite-
ria for classification with only image-level class labels and a
category hierarchy, which are much easier to acquire than
category-level attribute labels.

Network Interpretation. Since the breakthrough of AlexNet
[1] on the ImageNet visual recognition competition [40],
various works have been proposed to interpret CNN mod-
els. Such methods make attempts to reveal the visual pat-
terns that activate each convolutional filter [15], [18], [41],
[42], [43], [44] or to locate the area in an image that is
responsible for the prediction [19], [38], [45], [46], [47]. These
methods have made a certain level of success in interpreting
CNN models, however, they can only explain what has
already been learned by the model, but cannot improve the
model interpretability in return.

To deal with the aforementioned problem, some recent
works propose to directly learn interpretable representa-
tions for classification. For instance, [17] proposes to explic-
itly constrain high-level CNN filters to represent object
parts. [48] learns mid-level representations (prototypes) that
resemble training inputs and can be decoded to images to
obtain the typical visual appearance of each category. [49]
improves the performance of the interpretable neural mod-
ule network in the visual question answering task by enforc-
ing the network to extract features from the attended image
area. [16] explicitly aligns neural activations with human-
nameable attributes to obtain interpretable classifiers for
zero-shot learning task. However, all these methods ignore
the rich hierarchical structure of categories and thus cannot
learn the hierarchical interpretations as defined by human
experts, which limits the naturalness of their interpreta-
tions. Moreover, without the constraints of class hierarchy,
it is possible for such methods to learn contradictory inter-
pretations. To address these issues, HCN makes use of the
naturally existing class hierarchy to learn more human-
friendly and meaningful interpretations.

3 APPROACH

As discussed in Section 1, attributes can inherently charac-
terize the nature of object categories and the connections
between them. The goal of this work is to learn such attri-
bute-based classification criteria, i.e., the visual attributes
that define the categories and how the categories are
defined by these attributes. To achieve this goal, we borrow
the classification mechanism from human experts by learn-
ing attributes and the hierarchical criteria based on such
attributes in a data-driven manner, as shown in Fig. 2. To
this end, a two-stream CNN architecture named Hierarchi-
cal Criteria Network is elaborately devised, where the two
streams embed images and category prototypes into a com-
mon space respectively, as shown in Fig. 3. Specifically, the
upper stream takes images as inputs and learns attributes
(i.e., the convolution filters) as the bases of the embedding
space. On the other hand, the lower stream is designed to
learn the prototypes for the hierarchically organized
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categories in the same space, so that each category could
be represented by the linear combination of its superordi-
nate category and some specific attributes associated with
the considered category in this learned space. To ensure the
meaningfulness of the learned criteria (as discussed in Sec-
tion 1), a set of constraints are imposed on the prototypes to
ensure the consistency between category-superordinate cat-
egory pairs. To train the model, outputs from both streams
are then fed into a shared classifier to predict the hierarchi-
cal structure of the corresponding samples.

Formally, HCN targets to learn an interpretable image
classification model, where the interpretations produced by
the model should be in a similar form as the hierarchical cri-
teria defined by human experts. Suppose that we are given
a set of Q images X ¼ fxqjq 2 1; 2; . . . ; Qg that belong to N
hierarchically organized categories C ¼ fciji 2 1; 2; . . . ; Ng,
we would like to learn two distinctive mapping functions
f : X ! ½0;1ÞD and g : C ! ½0;1ÞD to embed the images
and category prototypes into a common D-dimensional
space as shown in Fig. 3, where the images are aligned with
their corresponding prototypes. In the following, we use
boldface capital letters, e.g., A, to denote matrix, where Ai�,
A�j, and Ai;j denote the ith row, jth column, ði; jÞth element
ofA respectively. The designation of the two mapping func-
tions as well as how to train the model will be detailed in
the following subsections.

3.1 Image Attributes

The upper stream (mapping function f) in HCN serves two
purposes, i.e., learning the bases of the feature space and
embed the images into this space. Specifically, this stream
consists of a standard CNN model which takes an image as
input and produces D feature maps (each corresponds to an
attribute) of size w� h after a series of convolution, pooling,
and non-linear activation operations, where w and h are the
width and height of the output feature maps respectively,
and the values in each feature map indicate the attribute
strength at the specific location, which will be illustrated in
the experiment part (Section 4.3). Since the features repre-
sent the attribute strength, we enforce them to have non-
negative values, which can be easily achieved with ReLU
activation functions [50]. Then the D attributes of the qth
image in the training set aq 2 ½0;1Þ1�D is obtained by glob-
ally max pooling the D feature maps, where zero entries
mean that the corresponding attribute is not presented in
the image throughout the paper. Here we adopt global max
pooling instead of the more generally adopted average
pooling [2], [51] to intentionally concentrate only on the dis-
criminative areas of the image and avoid interference from
other areas. Note that in our definition, an attribute could
either be “has a certain property” or “does not have a cer-
tain property”, and thus can naturally deal with the case
where “does not have a certain attribute” is the key prop-
erty of an object.

3.2 Category Prototypes

In this part, we explain the details of the lower stream (map-
ping function g), which is the key component that makes the
HCN different from existing methods, in Fig. 3. Although
different objects of the same category or even different views

of the same object could have drastic appearance variances,
there are indeed some common attributes that group them
together. The certain combination of attributes, which are
also known as prototypes, could be seen as the criteria for
classification. Suppose that the category hierarchy can be rep-
resented as a directed acyclic graph G ¼ fC;Eg, where the
node ci 2 C denotes the ith category as discussed above, and
the edge ej;i 2 E denotes that cj is a superordinate category
of ci (either direct or indirect). Assume that there are N cate-
gories in total, the hierarchical representations of all catego-
riesH 2 f0; 1gN�N can be defined as follows:

Hj;i ¼ 1; ej;i 2 E or i ¼ j
0; otherwise

�
; (1)

where H�i represents the hierarchical structure of the corre-
sponding category ci. Moreover, let P 2 ½0;1ÞN�D be the
prototypes of all categories, whereD is the number of visual
attributes as mentioned above, and each row in P corre-
sponds to a category in the hierarchy. With this definition,
each entry in P denotes the strength of an attribute on a cer-
tain category. Note that the zero entries in a row mean that
the corresponding category does not have certain attributes,
and the row of a category contains all its superordinate cat-
egory’s non-zero entries but has more non-zero entries,
which are the specific attributes of that category. The train-
ing objective is to learn the values in P such that they could
faithfully reflect the strength of different attributes on the
hierarchically organized categories.

As discussed in Section 1, our basic intuition is that each
category inherits all attributes from its superordinate cate-
gories, and also has additional specific attributes that distin-
guish them from their superordinate categories. Therefore
the values in P should satisfy the following constraints:

Pi;k � Pj;k for ej;i 2 E;8k 2 f1; . . . ; Dg: (2)

The constraints in Eqn. (2) can ensure that the learned
prototypes are meaningful, i.e., no contradictions between
any possible category-superordinate category pairs. While
it is rather difficult to directly optimize the prototypes P
due to the complex constraints, we resort to optimizing an
alternative embedding matrixMwith the help of the hierar-
chical representationH, and rewrite P as follows:

P ¼ HTM

s:t: M 2 ½0;1ÞN�D:
(3)

To better understand the above definition, let us take a
closer look at the simplified category hierarchy in the bot-
tom left part of Fig. 3. As illustrated in the figure, we exem-
plify the two columns of H that correspond to “feline” and
“tabby” in red (left) and green (right) respectively as an
example (the other columns can be obtained similarly).
Each dimension of the hierarchical category representation
indicates whether the corresponding category is on the path
from the root node (i.e., animal) of the hierarchy to the cate-
gory of “feline” and “tabby”. With the definition of H in
Eqn. (1), Eqn. (3) is equivalent to selecting and summing up
the rows of M under the instruction of H as shown in the
lower middle part of Fig. 3. Therefore, each row of M can
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be interpreted as the differences between a category and its
direct superordinate category. With such a framework,
HCN is able to derive the criteria for classification that
resemble the expert-defined ones. To be specific, by com-
puting the difference vector d ¼ Pi� �Pj�; ej;i 2 E, we could
explicitly tell that the ith category is a special case of the jth
category with the most significant attributes in d.

3.3 Optimization

Given the above network structure designed for our criteria
learning task, in this subsection, we describe how to opti-
mize the model to align the two streams for learning the
hierarchical classification criteria.

To train themodel, both the image samples from the upper
stream and the category prototypes from the lower stream are
used as inputs to a shared classifier, as shown in the rightmost
part of Fig. 3. Note that unlike the conventional CNNmodels
that only learn topredict the leaf node categories, our classifier
is designed to predict thewhole path in the category hierarchy
for each sample since the interpretations we are seeking for is
also hierarchical. To be specific, one possible version of our
classifier consists of two parts, where the first part is for the
leaf node categories and the second part is for the inner node
categories, as shown in the rightmost part of Fig. 3. LetCl � C
denote the subset of all leaf node categories and jClj is the
number of leaf node categories.W 2 RD�N denotes the classi-
fier weights shared by the two streams, where each column
of W corresponds to a category in the class hierarchy.
Without loss of generality, the bias terms are ignored for sim-
plicity, and we assume that for i 2 f1; 2; . . . ;N � jCljg and
i > N � jClj, ci corresponds to an inner/a leaf node category
respectively.

For the leaf nodes, as they are mutually exclusive, a soft-
max classification loss (e.g., softmax) can be adopted, which
is denoted as Lleaf . The inputs to this part include all image
samples and the prototypes of the leaf node categories (note
that the other prototypes do not have leaf-level labels, and
thus are not used in this part). Take the qth image sample xq

as an example, the corresponding leaf-level loss is defined
based on its attribute representation aq as follows:

LleafðaqÞ ¼ �log
eaqW�yqPN

j¼N�jCljþ1 e
aqW�j

 !
; (4)

where yq 2 fN � jClj þ 1; . . . ; Ng denotes the leaf category
index of xq.

As for the other part, since the inner nodes are non-
exclusive, a set of independent loss functions (e.g., sigmoid
cross entropy loss) can be exploited, which is denoted as
Linner. For this part, all image samples and prototypes are
used as inputs to predict the inner nodes they belong to.
The inner-node loss for aq is defined as

LinnerðaqÞ ¼ �
XN�jClj

j¼1

½Hj;yq logðSðaqW�jÞÞ

þ ð1�Hj;yq Þlogð1� SðaqW�jÞÞ�;
(5)

where Sð�Þ is the sigmoid function.
Similarly, by replacing aq and yq with Pi� and i respec-

tively, we can get LleafðPi�Þ and LinnerðPi�Þ as follows:

LleafðPi�Þ ¼ �log
ePi�W�iPN

j¼N�jCljþ1 e
Pi�W�j

 !
; i > N � jClj;

(6)

LinnerðPi�Þ ¼ �
XN�jClj

j¼1

½Hj;ilogðSðPi�W�jÞÞ

þ ð1�Hj;iÞlogð1� SðPi�W�jÞÞ�:
(7)

In summary, the overall loss function can be written as
follows:

L ¼ a
X
q

LleafðaqÞ þ b
X
ci2Cl

LleafðPi�Þ

þ g
X
q

LinnerðaqÞ þ d
X
ci2C

LinnerðPi�Þ:
(8)

where a;b; g; d are weighting parameters for different parts
of the overall loss. Note that by setting a ¼ 1;b ¼ g ¼ d ¼ 0,
HCN reduces to standard classification model. While here
we adopt relatively simple forms of loss functions, other
more sophisticated hierarchical loss functions (e.g., the
graph model in [33]) are also compatible with HCN.

To optimize with the non-negative constraints on the
embedding matrixM, Eqn. (3) is relaxed as follows:

P ¼ HT rðMuÞ; (9)

where Mu is the unconstrained version of M, rð�Þ is a deriv-
able function with non-negative outputs (e.g., ReLU) and is
applied element-wisely. With the above definitions, the
model parameters (convolution filter parameters in the
upper stream, Mu in the lower stream, and the classifiers
weights W) can be optimized with standard back-propaga-
tion algorithm.

3.4 Human Feedback for Model Correction

Since the criteria learned by HCN is in the same form as the
expert-defined criteria, it favorably enables the possibility
of incorporating human feedback to further correct the
models. Specifically, given an already trained model, by
comparing the criteria learned by the model and the expert-
defined ones, we can figure out what attributes are absent
in the current model and what irrelevant attributes are
unintentionally considered important by the model. By
ignoring the irrelevant attributes and additionally incurring
missing relevant attributes, the model can be adjusted
according to external human knowledge.

For the first case, here we describe one simple yet feasible
way of choosing the attributes to ignore for each category,
while other selection schemes can also be possible. To be
specific, in the leaf-level classifier, we use v ¼ PT

i� 	W�i to
denote the element-wise productions of the ith category
prototype and the ith classifier weights, where v 2 RD and
	 denotes the element-wise product of two vectors. The val-
ues in v indicate the contribution of the attributes to the ith
category, i.e., the larger vk is, the more important the kth
attribute is to the ith category. Therefore, a straightforward
scheme is to first sort the values in v and select some of the
least important attributes to be removed and then set
the corresponding values in W�i to zero. After that, the
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unselected values of W are finetuned, while convolutional
filters in the upper stream and the embedding matrix M in
the lower stream are kept fixed to avoid changing the mean-
ing of the attributes.

For the second case, one possible feedback scheme is to
add those missing important attributes to the model (e.g.,
adding a “red cross” attribute for ambulance), which could
be achieved by appending a new filter to the attribute layer
and finetuning the model with an additional “red cross”
prediction loss on the newly incorporated filter. Such a
scheme would surely require some expert knowledge and
additional labeling workload, but compared to previous
classification methods that are purely based on manually
labeled attributes [22], [24], HCN only needs to label a
minor portion of attributes that are not captured by the
model, while the large portion has already been automati-
cally learned. We will evaluate the above schemes as well as
some alternative ones in detail in Section 4.7 to validate the
feasibility of manually removing irrelevant or adding miss-
ing attributes in HCN.

4 EXPERIMENTS

In this section, we extensively evaluate HCN on two widely
studied datasets. We first evaluate HCN by varying its dif-
ferent modules. Then a series of qualitative and quantitative
experiments are conducted to show the effectiveness of
HCN. Finally, we compare to previous methods to demon-
strate the superiority of HCN.

4.1 Experimental Settings

Datasets. Two hierarchically organized datasets are consid-
ered in our experiments: (1) CIFAR-100 [52] consists of
60,000 32� 32 images belonging to 100 mutually exclusive
categories (600 images per category), and the 100 categories
are uniformly divided into 20 superclasses. Considering
that all these superclasses belong to the category entity, we
add a root node to the hierarchy, resulting in a hierarchy of
121 nodes. (2) ILSVRC [40] is a subset of the ImageNet data-
set with 1,000 leaf node categories, and the whole category
hierarchy consists of 1,860 nodes. Note that unlike the
CIFAR-100 dataset, in this hierarchy, some categories have

more than one direct superordinate categories, making this
dataset more challenging. On both datasets, we follow the
standard data partition protocol to train and test HCN.

Implementation Details. HCN is implemented with the
open-source toolbox Caffe1 [53]. The upper stream of HCN
consists of several convolutional, pooling, and non-linear
activation layers. The architectures of the upper stream on
both datasets are detailed in Tables 1 and 2. On the other
hand, the lower stream is implemented by a single inner
product layer, as shown in Fig. 4. For CIFAR-100 dataset,
the resolution of input images is 32� 32. Considering the
small image resolution, we use a simple network of four
convolution layers with batch normalization (BN) [54] and
ReLU activation before the global max pooling operation.
As for ILSVRC, the images are resized to 256� 256, and
224� 224 patches are randomly cropped as inputs. Since
this is a much more complicated dataset, we adopt a slightly
modified Network In Network (NIN) structure [51] for
speed-accuracy trade-off, where we change the order of
global pooling to better suit the problem at hand. Note that
HCN is not limited to the network structures described
above, more advanced structures (e.g., ResNet [5]) are also
compatible with HCN. However, training such deep archi-
tectures would take much more time,2 and thus makes it
difficult to conduct thorough evaluations. In our experi-
ments, the model parameters are randomly initialized with
the method in [55] and trained from scratch using SGD algo-
rithm with a momentum of 0.9.

As a widely exploited activation function, ReLU could be
adopted to impose the non-negative constraints in both
streams (after the global max pooling operation in the upper

TABLE 1
The Network Structure of the Upper Stream

on the CIFAR-100 Dataset

Layer type Parameters* Output size

Convolution + BN + ReLU 5� 5� 64, stride 1 32� 32� 64
Max Pooling 3� 3, stride 2 16� 16� 64

Convolution + BN +ReLU 5� 5� 64, stride 1 16� 16� 64
Average Pooling 3� 3, stride 2 8� 8� 64

Convolution + BN + ReLU 5� 5� 64, stride 1 8� 8� 64
Average Pooling 3� 3, stride 2 4� 4� 64

Convolution 1� 1�D, stride 1 4� 4�D
Max Pooling 4� 4, stride 1 1� 1�D
Leaky ReLU negative slope 0.1 1� 1�D

Fully Connected 121 nodes 1� 1� 121

* The second column lists the parameters (e.g., kernel size size
ð�filter numberÞ) of the corresponding layers, where D is the number of
attributes as described in the main paper.

TABLE 2
The Network Structure of the Upper Stream on the

ILSVRC Dataset, Which is a Slightly Modified Network
in Network (NIN) Model

Layer type Parameters Output size

Convolution + ReLU 11� 11� 96, stride 4 54� 54� 96
Convolution + ReLU 1� 1� 96, stride 1 54� 54� 96
Convolution + ReLU 1� 1� 96, stride 1 54� 54� 96
Max Pooling 3� 3, stride 2 27� 27� 96

Convolution + ReLU 5� 5� 256, stride 1 27� 27� 256
Convolution + ReLU 1� 1� 256, stride 1 27� 27� 256
Convolution + ReLU 1� 1� 256, stride 1 27� 27� 256
Max Pooling 3� 3, stride 2 13� 13� 256

Convolution + ReLU 3� 3� 384, stride 1 13� 13� 384
Convolution + ReLU 1� 1� 384, stride 1 13� 13� 384
Convolution + ReLU 1� 1� 384, stride 1 13� 13� 384
Max Pooling 3� 3, stride 2 6� 6� 384

Convolution + ReLU 3� 3� 1024, stride 1 6� 6� 1024
Convolution 1� 1�D, stride 1 6� 6�D
Max Pooling 6� 6, stride 1 1� 1�D
Leaky ReLU negative slope 0.1 1� 1�D

Fully Connected 1,860 nodes 1� 1� 1860

1. The source code of HCN with running samples are available at
http://vipl.ict.ac.cn/resources/codes

2. In our experiments, training NIN from scratch takes only 1 day on
a single GPU, while training a commonly used 50-layer ResNet model
takes about two weeks on 2 GPUs.
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stream and rð�Þ operation in the lower stream). However, in
practice, we have found that using ReLU activation results
in about 1/3 of “dead” attributes, i.e., some dimensions of
the attribute vectors are always zero for all images. To deal
with this problem, we resort to leaky ReLU [56], which has
a small negative slope, as an alternative. While using such
an activation function could keep all attributes active, it
would inevitably violate the non-negative constraints on the
image attribute features a and the prototypes P. Nonethe-
less, in our experiments, it is noted that the negative values
are negligible compared to the positive ones (e.g., even the
most negative value in rðMuÞ is only �4:5� 10�4). There-
fore, using the leaky ReLU has more pros than cons, and we
will use this alternative in the following experiments.

4.2 Module Analysis

4.2.1 Weighting Parameters

For CIFAR-100 dataset, we heuristically set the number of
attributes D ¼ 128. As for the ILSVRC dataset, following the
standard network architecture of NIN, we use D ¼ 1; 024
attributes in these experiments. Table 3 shows the leaf-level
classification accuracies of HCN under different weighting
parameter settings, where g; d are set with grid search to
make sure that HCN can achieve satisfactory classification
accuracy and a;b are set in a heuristic manner. The top and
bottom panels in Table 3 show the results with different
weighting parameters on CIFAR-100 and ILSVRC respec-
tively. It can be observed that: First, incorporating the inner
node loss (g; d > 0) degrades the leaf-level classification
accuracy in most cases, which might be caused by the
increased difficulty of training target, i.e., the model is
expected to learn not only the leaf-level concepts but also
some more abstract concepts (the inner node concepts). In
fact, as will be demonstrated in the following Section 4.2.2,

when D ¼ 6; 144 (on the ILSVRC dataset), HCN surpasses
the baseline model and even the standard NIN model. A
possible explanation is that the added task requires more
model capacity. When the number of attributes is small, the
model capacity is not large enough to jointly deal with the
multiple tasks, and thus the model has to balance the differ-
ent tasks, resulting in a performance drop of the leaf-level
classification task. As the number of attributes increases, the
model capacity also increases, and thus the model is able to
well handle the multiple tasks simultaneously and the per-
formance of leaf-level classification task increases accord-
ingly, where the loss for predicting inner nodes of the
hierarchy could serve as a regularizer for the leaf-level clas-
sification task. Note that the baseline model is purely opti-
mized for accuracy and incapable of learning the category
prototypes and hierarchical classification criteria, since the
lower stream has no supervision signal. Such comparison
suggests that HCN could improve the model interpretabil-
ity with little or no performance degradation. Second, it is
better to use larger weights for the upper stream (4th versus
5th rows in each panel) when training both streams. This
phenomenon can be explained by the fact that the number
of prototypes in the lower stream is much smaller than the
number of training images in the upper stream. As a result,
assigning large weights to the lower stream might cause
overfitting and thus degrades the accuracy.

Considering the classification performance of the com-
pared models, we will set a ¼ 0:69; b ¼ 0:29; g ¼ d ¼ 0:01
on CIFAR-100 and a ¼ 0:699; b ¼ 0:299; g ¼ d ¼ 0:001 on
ILSVRC in the following experiments, andwewill refer to the
model with the weighting parameters a ¼ 1;b ¼ g ¼ d ¼ 0 as
the baselinemodel unless otherwise specified.

4.2.2 Number of Attributes

With the above weighting parameters, we evaluate the leaf-
level classification accuracy of HCN under different numbers
of attributes. Fig. 5 shows the top-1 classification accuracy (%)

Fig. 4. The structure of the lower stream of HCN.

TABLE 3
Accuracies With Different Weighting Parameter Settings

a b g d Top-1 accuracy Top-5 accuracy

1 0 0 0 52.00% 81.32%
0.5 0.5 0 0 53.61% 82.78%
0.98 0 0.02 0 51.73% 82.10%
0.49 0.49 0.01 0.01 50.63% 81.17%
0.69 0.29 0.01 0.01 51.02% 81.11%

1 0 0 0 57.12% 80.01%
0.5 0.5 0 0 54.02% 77.84%
0.998 0 0.002 0 56.86% 79.78%
0.499 0.499 0.001 0.001 55.04% 78.55%
0.699 0.299 0.001 0.001 56.16% 79.35%

The top and bottom panels correspond to CIFAR-100 (D ¼ 128) and ILSVRC
(D ¼ 1; 024), respectively.

Fig. 5. Top-1 accuracy (%) on the two datasets with different number of
attributesD.
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of HCN with varying numbers of attributes. We can see that
the best numbers of attributes in terms of accuracy (55.50/
84.23 percent and 59.35/81.32 percent top-1/5 accuracy) are
512 and 6,144 for the two datasets respectively. For compari-
son, the baseline model with D ¼ 6; 144 achieves 58.71/80.65
percent top-1/5 accuracy on the ILSVRC validation set, and
the standard NIN model released in the model zoo of Caffe3

achieves 59.11/81.32 percent top-1/5 accuracy. Such results
suggest that HCN is able to achieve comparable or even better
performance than the baseline model and the standard classi-
fication models once the model capacity is large enough, vali-
dating the advantage of theHCN.

On the ILSVRC dataset, when the number of attributes is
larger than 6,144, the model performance starts to drop. On
the contrary, there is no significant performance drop when
increasing the number of attributes on CIFAR-100. A possi-
ble explanation is that as the number of attribute increases,
the model has more parameters and is easier to overfit
(which is the case on ILSVRC dataset), while the batch nor-
malization operation in the CIFAR-100 models can relieve
this problem (the backbone model we adopted on ILSVRC
does not use batch normalization). Based on the above
results, we finally set the number of attributes D ¼ 512 and
D ¼ 6; 144 on CIFAR-100 and ILSVRC respectively in the
following experiments unless otherwise specified.

Here we make an attempt to roughly estimate the number
of attributes that are required to classify the 1,000 ILSVRC cat-
egories. For reference, let us take a look at some widely stud-
ied existing object classification datasets with attribute labels.
The Caltech-UCSD Birds dataset [57] aims at classifying 200
species of birds, and 312 visual attributes aremanually labeled
on this dataset. Animals with Attribute (AwA) dataset [24]
and aPY dataset [22] are widely adopted in zero-shot learning
tasks, which have 50 / 32 categories and 85 / 64 attributes
respectively. COCO Attributes [58] is one of the largest object
attribute datasets, and it contains 29 object categories and 196
attributes. There are also some other attribute datasets, e.g.,
CelebA [59] and SUN Attribute [60], however, they concen-
trate on other tasks (i.e., face recognition and scene recogni-
tion) instead of general object recognition. Therefore, we do
not use themas references.

It can be easily seen from the above statistics that the num-
ber of manually-labeled attributes is usually at least 1.5 times
as large as the number of categories. Therefore, we could con-
fidently assume that at least 1,500 human-defined attributes
are required to well distinguish the 1,000 ILSVRC categories.
More importantly, since there are many fine-grained catego-
ries in ILSVRC (e.g., about 100 breeds of dogs), a large portion
of such attributes need to be defined and labeled by human
experts instead of ordinary persons. Therefore, labeling such
a large amount of attributes for large-scale object recognition
task could be very expensive. In contrast, HCN is able to learn
such attributes automatically, and thus is more scalable than
manually defining attributes.

4.2.3 Architecture of Upper Stream

In this part, we show that by using the more advanced
ResNet-18 [5] as the backbone architecture for the upper

stream (due to the limited computation resource, we are
unable to train deeper networks on our machine, such as
ResNet-50). The CNN architecture is slightly modified by
adding another convolution layer between the last residual
block and the global pooling layer. Specifically, the added
layer contains 6,144 convolution kernels of size 1� 1 to pro-
duce 6,144 attributes, since HCN has the best performance
with 6,144 attributes in the previous experiments.

We compare three models: (1) the standard ResNet-18
model as proposed in [5]. Since the official ResNet-18
model of [5] is not released to the public and the original
publication does not report the results under the same test
settings as ours (i.e., single crop test, and both sides of the
images are resized to 256). For a fair comparison, in this
experiment, the results of the standard ResNet-18 model
are obtained with the non-official implementation4 under
the same test settings as in our experiments, which
achieves comparable performance with the results reported
in [5]. This model serves as a representative state-of-the-art
classification method; (2) the baseline model with ResNet-
18 architecture. This model corresponds to the first row in
the bottom part of Table 3, and is used to show the perfor-
mance of the modified network structure when trained
purely on the 1,000-way classification task; (3) HCN with
ResNet-18 architecture as the upper stream, which corre-
sponds to the last row in Table 3.

The classification accuracies of the compared models on
the validation set of ILSVRC are shown in Table 4. The
results suggest that HCN can undoubtedly achieve state-
of-the-art performance with more advanced backbone archi-
tecture. Moreover, we can confidently assume that with
even deeper and more advanced architecture, e.g., Dense-
Net [7], the classification accuracy can be further improved.
However, due to the huge computational overhead of such
models, we will still use NIN as the backbone architecture
for HCN in the following experiments.

4.2.4 Choice of Non-Negative Constraint Function

In the above experiments, leaky ReLU is adopted to impose
the non-negative constraints on M. On one hand, the leaky
ReLU might violate the non-negative constraint, while on
the other hand, the standard ReLU results in a large portion
of dead attributes as discussed above in Section 4.1. In this
part, we make an attempt to evaluate the possibility of
imposing the non-negative constraints with another widely
adopted non-linear functions by replacing the leaky ReLU
activation function with the Sigmoid activation (with batch
normalization to ensure convergence). After carefully tun-
ing the learning rate schedule, such model still achieves

TABLE 4
Top-1/5 Accuracy of the Standard ResNet-18 Model, the

Baseline Model With ResNet-18 Backbone, and HCN Model
With ResNet-18 Backbone on the ILSVRC Validation Set

Standard [5] Baseline (a ¼ 1) HCN

Top-1 accuracy 67.57% 68.92% 68.77%
Top-5 accuracy 88.10% 88.84% 88.94%

3. https://github.com/BVLC/caffe/wiki/Model-Zoo
4. https://github.com/HolmesShuan/ResNet-18-Caffemodel-on-

ImageNet
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very poor performance. Specifically, the Sigmoid model
achieves 49.22/73.77 percent top-1/5 accuracy on the
ILSVRC validation set with 1,024 attributes, which is about
6 percent lower than the leaky ReLU model in Table 3. A
possible explanation is that the outputs of Sigmoid function
are limited to the range ð0; 1Þ while the outputs of leaky
ReLU is in the range of ð�1;1Þ in theory (in our experi-
ments, the range is usually ð�0:001;1Þ), and thus the Sig-
moid outputs have smaller L2 norm than the outputs of
ReLU function, which results in worse performance [61]. To
be more precise, the authors of [61] suggests that the fea-
tures with a small norm reside on a hypersphere with small
surface area, and such a limited surface area is not large
enough for embedding features from the same class
together and those from different classes far from each
other. There might be some more proper functions for
imposing the non-negative constraints, however, that is
beyond the scope of this paper.

To summarize, the above results validate that the leaky
ReLU function has more pros than cons as the choice of
non-negative constraint function, and thus we will use the
leaky ReLU in the following experiments.

4.3 Learned Attributes

The convolution filters in the last convolution layer of HCN
act as attribute extractors. To visualize the learned attrib-
utes, we use the toolboxes of [62] to find the 9 image patches
with the largest activation values on each of the D filters to
represent the attributes. Specifically, since the images on
CIFAR-100 are very small and are quite different from natu-
ral images, we compute the top activations on the training
set of CIFAR-100 to give the meanings of the attributes
based on our understanding. On the other hand, since
ILSVRC dataset is biased towards dogs (i.e., there are about
100 out of 1,000 categories of dogs in ILSVRC dataset), we

use the less biased BRODEN dataset [18] to compute the top
activations. The BRODEN dataset has pixel-level annota-
tions of 1,262 well-annotated concepts (6 general types) on
63,305 images, and [18] computes the correspondence
between each convolutional filter and the labeled concepts
to quantize the interpretability of individual convolutional
filters, i.e., the learned attributes in HCN, and give the
meaning of each attribute. Specifically, if the top activations
of a convolutional filter strongly correlate with a concept,
the corresponding convolutional filter is deemed as a detec-
tor of that concept, which indicates the name of the corre-
sponding attribute.

Some randomly selected attributes on both datasets along
with their meanings are shown in Fig. 6 (note that only in
this figure, the meanings of attributes on ILSVRC are given
by [18]). We can observe that the attributes learned on
CIFAR-100 are mainly describing the shape of objects, while
the attributes on ILSVRC are more diverse, including tex-
tures, object parts, and even high-level semantic attributes
(e.g., water and mountain). This is in line with what we
have expected since the images in CIFAR-100 have much
smaller resolutions compared to the images in ILSVRC, and
thus detailed visual information such as texture can hardly
be learned from this dataset. Moreover, since the category
hierarchy on ILSVRC is much more complicated, the model
on this dataset has to learn attributes at different abstraction
levels to well distinguish these categories.

To quantitatively evaluate the interpretability of the
learned attributes, we use the publicly available source
codes and dataset released by [18] to compute the number
of detectors (interpretable attributes) and the number of
unique detectors. We compare the baseline model and the
proposed HCN model with D ¼ 6; 144 attributes. The
results are shown in Fig. 7, where the total numbers of con-
cepts of each general type are given in the brackets and they
sum up to 1,262. We can see that HCN learns more inter-
pretable attributes (detectors) and more unique detectors
than the baseline model, validating the advantage of HCN
in terms of interpretability. Moreover, Fig. 8 shows some
attributes that are considered as uninterpretable by [18].
However, they could possibly be interpreted as “bird” and
“dark dot on white background” respectively. The above
results seem to suggest that even the current state-of-the-art
method might fail to find the correspondence between fil-
ters and concepts in some cases (e.g., the first attribute in

Fig. 6. Some attributes learned by HCN on (a) CIFAR-100 and
(b) ILSVRC, respectively. For each attribute, we show the 9 image
patches that maximally activate the corresponding convolution filter, and
give the meanings of these attributes below the images. For CIFAR-100,
we give our interpretations of these attributes, and for the ILSVRC data-
set, the concepts correspond to these attributes are generated by [18].

Fig. 7. The number of detectors and the number of unique detectors
computed using the source codes and dataset proposed by network
dissection [18]. The baseline model (a ¼ 1) and HCN with D ¼ 6; 144
attributes are evaluated.
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Fig. 8), and more concepts are needed to evaluate the
interpretability of CNN models (e.g., the second attribute in
Fig. 8). Moreover, as indicated by [44], an attribute might be
jointly encoded by multiple filters, and thus more appropri-
ate methods are required for objectively evaluating the
degree of interpretability. Therefore, quantitatively evaluat-
ing the interpretability of CNN models still remains an
open problem.

To further validate that the learned attributes are
shared among categories, for each attribute, we find the
leaf node categories in ILSVRC to which the attribute con-
tributes most. Specifically, since the leaf node categories
have different depths in the hierarchy and the corre-
sponding prototypes are summed over the whole path,
the absolute values in the prototype vectors are affected
by the depth and may not be a proper indicator of the
actual strength of the attribute across all categories. To
deal with this problem, we define a normalized indicator
instead. For the kth attribute, we find the five categories
with the largest ðPi;k �Wk;iÞ=ðPi�W�iÞ; 8i, which is the rela-
tive contribution of the selected attribute to the ith cate-
gory, and some of the results are shown in Fig. 9. As can
be seen, the attributes shown in the leftmost part of Fig. 9
are shared among very different categories rather than
just fitting to a single category, validating the generality
of the learned attribute. Moreover, some heatmaps of the
two selected attributes on real images are shown in
Fig. 10, which further validates the correspondence of the
attribute with sharp/spotty parts in the images.

4.4 Comparison With Attribute-Based Classification
Methods

In this part, we compare the classification performance of the
learned attributes with existing attribute-based classification
methods. There are several existing datasets with attribute
annotations [22], [24], [57], [58], [59], [60], [64], [65]. Among
these datasets, [64] and [65] are based on the ImageNet dataset
and the ILSVRC dataset respectively, which are similar to the
dataset used in our experiments. However, the official website
of ImageNet is currently under maintenance and thus the
original images of [64] cannot be downloaded from the

Fig. 8. Examples of some learned attributes that are considered as
“uninterpretable” by the visualization tool of network dissection [18].

Fig. 9. Visualization of the five leaf node categories in ILSVRC to which the attributes shown in the leftmost block (sharp and spotty) contribute most.

Fig. 10. The heatmaps of activations on two attributes (filters). The top
row shows the original images and their activation heatmaps on the attri-
bute “sharp,” and the bottom row corresponds to the attribute “spotty.” In
the heatmaps, warm color indicates high activations and cold colors indi-
cate low activations. The attributes here have high activations at the
expected parts in the images and low activations elsewhere, even
though the highly activated areas correspond to different object catego-
ries. This figure is best viewed in color.
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ImageNetwebsite. Therefore, we choose to use the ImageNet-
150K dataset in [65] in this experiment. This dataset has
150,000 images of 1,000 ILSVRC categories, and 50,000 out of
150,000 images are labeled with 25 attributes, including color,
shape, texture, material, and object parts, which are quite sim-
ilar to the 25 attributes in [64]. Since the goal of this experiment
is to compare with attribute-based classification methods, we
only use the 50,000 images with attribute annotations in this
experiment. Specifically, we use the official training images
(48,000 images) to train a multi-class linear SVM classifier and
the rest 2,000 images are used to test the performance of
the classifier.

To train the SVM classifier, in this part, we compare four
kinds of input features extracted from each image: (F1) 25-D
manually-labeled attributes, where each dimension takes the
value from {1, 0, �1}, indicating whether the corresponding
attribute is presented (1), unknown (0) or not presented (-1)
in the corresponding image. This feature is designed to eval-
uate the effectiveness of classification with manually-labeled
attributes, and here both the training and test images use the
manually-labeled attributes values; (F2) 25-D learned attrib-
utes for the ImageNet-150K dataset using HCN. Specifically,
we train an HCN model on ILSVRC dataset with D = 25
attributes (which achieves 38.91/64.55 percent top-1/5 accu-
racy on the ILSVRC validation set) and extract the 25-D
attributes as features; (F1-p) 25-D predicted attributes. We
train 25 independent attribute classifiers on the training set
of ImageNet-150K to predict the manually-labeled attributes,
where each image is represented by the preceding layer’s
outputs of the 25 learned attributes in the CNN model (i.e.,
the model of F2. Note that to reduce feature dimensionality,
we use the 1,024-D averagely pooled CNN outputs instead
of the original one, which is 36864-D, i.e., 1,024*6*6. The 25
attribute classifiers achieve 96.17 percent mean accuracy on
the validation set of ImageNet-150K), and use the predicted
attributes on the whole ImageNet-150K dataset as features.
This feature is designed to evaluate a more realistic setting,
i.e., classification based on the predicted attributes instead of
manually labeling all images; (F3) 25-D attributes learned by

Discriminative Binary Codes (DBC) [63] using the same fea-
ture inputs as F1-p. This feature is designed to validate the
advantage of the proposed method over previous attribute
learning method.

The classification accuracies of the four kinds of inputs are
shown in Table 5. It is easy to find that the proposed method
performs best among all features (F1, F2, F1-p, and F3), sug-
gesting that the attributes learned by HCN are more suitable
for object recognition task than manually-defined attributes
and the attributes learned by the previous method (i.e., DBC
[63]). Further explanations on the results are as follows: HCN
jointly learns D attributes for the hierarchical classification
task by exploiting category relationships, and thus can learn
discriminative features (attributes). In contrast, the attributes
of F1 are manually-defined, which is mainly intended to
describe the objects rather than distinguishing them, and thus
it is likely that the discriminative power of the defined attrib-
utes is not strong enough to distinguish the 1,000 categories.
On the other hand, DBC learns the D attributes indepen-
dently, whichwould inevitably result in redundancy between
the attributes. Therefore, DBC performs inferior to HCN.
Moreover, both F1 and F3 ignores the naturally existing hier-
archical structure of categories, which more or less degrades
the efficiency of their attributes.

4.5 Consistency Between Two Streams

In HCN, although the two streams are trained on the same
task, there is actually no explicit constraint being imposed
on the consistency between their representations. Therefore,
one might naturally doubt how well the prototypes and the
image samples are aligned with each other.

For this purpose, we randomly select 10 leaf node catego-
ries on ILSVRC and 300 images per category in the training
set. Since we use softmax loss for the Lleaf classifier as
described in Section 3, samples of the same category (either
images or the corresponding category prototype) should
spread over similar directions in the feature space, as indi-
cated in [66]. We compute the cosine distances (i.e., relative
directions, which is defined as 1� cosine similarity) between
samples (3,000 image samples of the 10 leaf categories and all
1,000 leaf-level category prototypes) to quantitatively evaluate
how well the two streams are aligned, and the results are
listed in Table 6.We can see that: First, even though themodel
achieves 59.35 percent top-1 accuracy, the average within-
class (same category, SC) cosine distance between image sam-
ples are still quite large (Image-SC, 0.7300) in the high dimen-
sional embedding space, and the distances between image
samples and their corresponding category prototypes (Proto-
SC, 0.7530) are comparable to the within-class distances of
images, suggesting that the image samples are in similar
directions as their corresponding prototypes. Second, the
image samples are much closer to their corresponding

TABLE 5
Top-1 Classification Accuracy on ImageNet-150K
Dataset With Different Attributes as Features

(F1) Manually-
labeled

attributes

(F2) Learned
attributes

(F1-p)
Predicted
attributes

Top-1 accuracy 10.35% 59.60% 6.85%

(F3) DBC [63] (F4) Combined
(groundtruth)

(F5)
Combined
(predicted)

Top-1 accuracy 31.70% 61.55% 26.35%

TABLE 6
Average Cosine Distances Between the Selected Image Samples and Their Distances to the Prototypes

Image-SC Proto-SC Proto-1NN Proto-2NN Proto-3NN Proto-4NN Proto-5NN Proto-all

Image 0.7300 0.7530 0.7443 0.7475 0.7505 0.7524 0.7535 0.8340

Image-SC: images of the same category, Proto-SC: prototype of the corresponding same category with the image, Proto-kNN: kth nearest prototype of the image,
and Proto-all: all 1,000 prototypes.
The results are obtained on ILSVRC.
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prototypes than to irrelevant prototypes (Proto-SC versus
Proto-all), and the distances from image samples to their cor-
responding prototypes are smaller than their distances to their
5th nearest prototypes (Proto-SC versus Proto-5NN), which
further confirms that the image samples and their correspond-
ing prototypes spread over the similar directions in the
embedding space.

To gain an intuitive sense of the directions in the original
space, we further propose to visualize the samples in a 2-D
plane. Although the widely adopted visualization technique t-
SNE [67] is able to preserve the cosine distances (i.e., direc-
tions) in the original space with the euclidean distance in the
embedding space, it is suboptimal due to the discrepancy
between the two types of distances. To deal with this problem,
we propose a simple yet novel visualization technique to pre-
serve the directions in the high dimensional space with the
directions in a low dimensional space. To this end, we first
normalize the D-dimensional representations of the selected
image samples and their corresponding category prototypes
to have unit norm so that their inner products are equivalent
to their cosine similarities. After that, the normalized vector
samples are projected into a two-dimensional space by per-
forming PCA, which could preserve the inner products
between samples in the original space. For clarity, the two-
dimensional vectors from different categories are respectively
scaled to have different norms so that they fall on a set of con-
centric circles with different radii and their directions in the
low-dimensional space are preserved. The results are shown
in Fig. 11, where each color corresponds to a category, the dots
denote image samples, and the asterisks denote the category
prototypes. Note that due to the enormous information loss
when reducing feature dimension from 6,144 to 2, the direc-
tions in Fig. 11 are only rough approximations of the original
ones, which should not be considered as a precise representa-
tion of the original directions. This figure shows that the image
samples and the corresponding category prototypes spread
over similar directions in most cases, which further validates
that the two streams in HCN are well aligned with each other.

Moreover, we have also tested adding a loss term to
enforce the consistency between the two streams on ILSVRC
dataset. Specifically, we add a euclidean loss between the
normalized image attribute vector and the corresponding
category prototype vector as follows:

Lcons ¼ k aq
k aq k2 �

Pyq �
k Pyq � k2

k22; (10)

where the subscript “cons” means consistency, and the
other symbols have the same meaning as in Section 3.

By adding the above loss term to the overall loss Eqn. (8),
the overall loss with consistency loss is as follows:

Lall ¼ Lþ mLcons; (11)

where m is a weighting parameter to control the relative
importance of the consistency loss. We have carefully
tuned m in the range of f0:01; 0:1; 1:0; 10g, and the best leaf-
level accuracy is obtained with m ¼ 1:0. The performance
of the original HCN, as well as the modified model (with
6,144 attributes), are listed in Table 7 (classification accu-
racy and number of detectors computed using [18]).
Although the consistency loss can slightly improve the
leaf-level accuracy and the number of detectors, it signifi-
cantly decreases the number of unique detectors. A possi-
ble explanation is that the consistency loss acts similarly as
the widely studied center loss [68], which could reduce the
within-class variation and thus improve the classification
performance. However, a side effect of the smaller within-
class variation is that some variations are compressed, and
thus the model learns fewer unique detectors. Since the
main purpose of HCN is to improve the interpretability of
the model, it is preferred not to add this loss term to the
HCN framework.

4.6 Learned Criteria

The above experiments have validated that HCN can learn
interpretable and discriminative attributes from images. In
this part, we evaluate the classification criteria discovered
by HCN on the two datasets.

First of all, we evaluate whether HCN has correctly
learned the criteria for distinguishing a category from its
superordinate category. For this purpose, we compute the
D-dimensional difference vector between the prototypes as
described in Section 3.2. The values in the difference vector
d are then sorted in descending order, and the attributes
corresponding to the largest differences (i.e., the most
important attributes for distinguishing the two categories)
for some selected category pairs are shown in Fig. 12. Same
as the above results, we denote each attribute by the top-9
activated images. We make three observations from the
results: First, although some attributes in the learned criteria
do not make much sense (e.g., the third attribute in the
ambulance case), most of the criteria learned by HCN seem
reasonable. For instance, clock is a “round” and “radial”

Fig. 11. Visualization of the image samples and the corresponding cate-
gory prototypes in a two-dimensional space, where each color indicates
a category, and the dots / asterisks (*) denote image samples and cate-
gory prototypes respectively. Note that the points of each category are
placed on concentric circles with different radii for clarity, and the radii do
not have essential meanings.

TABLE 7
The Classification Accuracy and Degree of Interpretability of
HCN and the Modified Model With Explicit Constraints on the

Consistency Between the Two Streams

HCN Modified model

Top-5 accuracy 81.98% 82.83%
Number of detectors 2,050 2,150
Number of unique detectors 128 108
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household electrical device; cheetah is a “spotted feline”; ambu-
lance is a “light-colored (1st and 2nd attributes), triangular
(4th attribute), and wheeled car”; soccer ball is “a ball with
black dots on white background”. Such results validate that
HCN can successfully learn reasonable criteria as desired.
Second, some of the learned attributes seem to depict the
same/similar concept, e.g., “spots” in the cheetah case (sec-
ond row). Such results suggest that one single attribute (fil-
ter) might be insufficient for capturing the complex
variations of that concept, and HCN can adaptively learn
multiple attributes to better characterize such pattern diver-
sity. Third, it is noteworthy that man-made objects have
larger within-class variations than natural objects since they
are categorized mainly based on their functionalities instead
of visual appearances. Therefore, the criteria learned by
HCN for man-made objects seem to be more diverse than

that for natural objects, e.g., the attributes for ambulance
(fourth row) show more diversity than the attributes for
cheetah and feline. Although some recently proposed meth-
ods [18], [44] are able to evaluate the degree of model
interpretability, they cannot evaluate whether the model is
exploiting the interpretable CNN filters in the right way,
i.e., whether the model makes decisions based on the right
criteria or based on biases in the dataset (e.g., co-occurring
objects). Quantitatively evaluating the learned criteria inevi-
tably requires expertise, e.g., the knowledge of visual differ-
ences between over 100 breeds of dogs in ILSVRC. We
believe that such knowledge is essential for objectively eval-
uating all interpretable classification methods, including
HCN. However, since such annotations are very expensive
to label and are currently unavailable on existing datasets,
we could only conduct qualitative evaluations instead. In

Fig. 12. Visualization of some learned criteria on CIFAR-100 (first row) and ILSVRC (last six rows) dataset, where five attributes with the largest dif-
ferences are shown in each case to illustrate the key distinctions between the two categories on the left and right hand sides of the equal sign.
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the future, we plan to explore such expert knowledge in
training and evaluating interpretable models.

Furthermore, we show that the learned criteria can give
instructions to non-experts on how to distinguish similar
categories. As described in Section 3, all elements in P are
non-negative, thereforeWk;i > 0 indicates that the kth attri-
bute contributes positively to the prediction of the ith cate-
gory and vice versa. Based on this observation, we visualize
some attributes that contribute differently to two very simi-
lar categories in ILSVRC (tiger and cheetah, i.e., Wk;tiger�
Wk;cheetah < 0), as shown in Fig. 13. The existence of attrib-
utes on the left (different kinds of stripes) increases the like-
lihood of tiger while decreases the possibility of cheetah (i.e.,
Wk;tiger > 0 and Wk;cheetah < 0), and the attributes on the
right (different patterns of spots) work oppositely. The
above result suggests that contrary to previous classification
models that can only learn from manually labeled data,
HCN can also give knowledge feedbacks to humans. More
importantly, it is even possible that the knowledge feed-
backs can help non-experts learn to distinguish fine-grained
categories, which is an extremely challenging task for most
ordinary people.

4.7 Feedback for Model Correction

In this part, we conduct a set of preliminary experiments on
ILSVRC to evaluate the feasibility of incorporating human
feedback into HCN. Based on the method described in Sec-
tion 3.4, we test three schemes for selecting the attributes to
be removed: 1) bottom-3k: the attributes corresponding to
the 3,000 smallest values in the indicator vector v (i.e., the
attributes that are least useful for that category); 2) top-3k:
the attributes corresponding to the 3,000 largest values (i.e.,
the attributes that are most useful for that category); 3)
rand-3k: 3,000 randomly selected attributes. We experiment
on two categories (i.e., ambulance and cheetah), and modify
only one column of W at a time (i.e., in each experiment,
only one column of W is modified). The recall (ratio of

correctly classified samples) on the corresponding catego-
ries before removing the selected classifier weights, just
after removing, and after finetuning are listed in Table 8
(the overall top-1 accuracy of the three schemes on the
whole validation set are given in the brackets). For both cat-
egories, we can see that: First, after removing the least
important attributes (bottom-3k), the model performance
on the corresponding category increases to a very high level
yet the overall performance significantly drops, indicating
that the model tends to predict samples of other categories
as the selected category in that case. While on the other
hand, removing other attributes (top-3k and rand-3k) only
affects the performance of the selected category. Second,
Finetuning could take the model performance back to a nor-
mal level. However, the performances of top-3k and rand-
3k are worse than bottom-3k on the corresponding category,
suggesting that the information carried by some of the
removed attributes cannot be compensated by the remain-
ing attributes. Such results further validate the effectiveness
of HCN in disentangling the defining attributes of different
categories. Note that this experiment is designed to show
the potential of HCN, while other schemes (e.g., selecting
by experts) are also compatible with HCN yet could be
more time-consuming.

On the other hand, we also test the possibility of adding
missing attributes to the existing model. The experiments
are conducted on the ImageNet-150K dataset [65]. Follow-
ing the experiments in Section 4.4, we additionally compare
two types of input features for the classifier: (F4) the
concatenated attributes of F1 and F2 (50-D). This corre-
sponds to augmenting the learned attributes with additional
manually-labeled attributes, which is designed to validate
the possibility of augmenting the learned attributes with
additional missing attributes; ( F5) the concatenated attrib-
utes of F1-p and F2 (i.e., also 50-D). This feature also serves
the same purpose as F4 but in a more realistic setting (i.e.,
predicting the attributes instead of manually labeling
them). From the results in Table 5, we can see that: First,
combining the learned attributes with manually-labeled
attributes can improve the classification accuracy (F2 versus
F4, from 59.60 to 61.55 percent), which suggests that the
manually-labeled attributes are complementary with the
learned attributes. Such results also validate that it is possi-
ble to improve the model performance by augmenting exist-
ing CNN models with manually-labeled attributes. Second,
by replacing the groundtruth attribute labels with predicted
attribute labels (F4 versus F5), the classification accuracy
significantly drops from 61.55 to 26.35 percent. This result
indicates that while the classification task could benefit
from manually-labeled attributes, accurately predicting
these attributes is the key for improving the accuracy.

Fig. 13. Attributes that contribute differently to the two similar categories tiger and cheetah in ILSVRC. The attributes on the left help to confirm the
existence of tigers and decreases the possibility of cheetahs, while the attributes on the right work oppositely.

TABLE 8
Recall on the Selected Categories After Removing

the Attributes and After Finetuning

stage bottom-3k top-3k rand-3k

beginning 76% (59.35%) 76% (59.35%) 76% (59.35%)
ambulance removing 98% (53.17%) 0% (59.21%) 0% (59.21%)

finetuning 84% (59.41%) 70% (59.42%) 76% (59.40%)

beginning 88% (59.35%) 88% (59.35%) 88% (59.35%)
cheetah removing 98% (56.94%) 0% (59.20%) 2% (59.20%)

finetuning 88% (59.39%) 84% (59.45%) 84% (59.39%)

The overall Top-1 accuracy on the whole validation set are given in the
brackets.
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4.8 Comparison to Previous Methods

In this part, we compare HCN with previous methods to
show the pros and cons ofHCN in learning classification crite-
ria. For this purpose, we compare to two methods on the
ILSVRC dataset: 1) Unified Semantic Embedding (USE) [14].
To the best of our knowledge, USE is the only existingmethod
that has made an attempt to learn the classification criteria.
However, USE requires class-level attribute labels, which are
not always available in real-world applications. Specifically,
existing attribute labels on ILSVRC either contain too few
(only 25) attributes for discriminating the one thousand cate-
gories [64], [65] or are too sparse and thus cannot be exploited
by USE [69]. Therefore, we directly cite the results from [14]
for comparison. 2)A two-stage learning alternative. This alter-
native is designed to simulate the situation of learning criteria
on the off-the-shelf image representations learned in the clas-
sification task, i.e., the attribute learning stage and the criteria
learning stage are separated in this alternative. To be specific,
in the first stage, we train the upper stream of HCN with
a ¼ 1;b ¼ g ¼ d ¼ 0; D ¼ 6; 144. After that, in the second
stage, the model parameters before the global max pooling
layer are fixed, and the classifier weights W and the whole
lower stream are trained with a ¼ 0:699;b ¼ 0:299; g ¼
0:001; d ¼ 0:001.

The results of two categories (skunk and otter) reported in
[14] that overlap with ILSVRC as well as a category (cheetah)
that is absent in [14] are shown in Table 9. Since we do not
have groundtruth labels for the classification criteria, it is diffi-
cult to conduct a quantitative comparison. Therefore, we only
compare the results qualitatively. For space limitation, we use
the top-4 activated patches to represent the two most impor-
tant attributes learned by CNNmodels. We can see that: First,
compared to [14], HCN is more general, i.e., even we do not
have groundtruth class-level attribute labels (the cheetah case),
HCN can still learn reasonable criteria. On the other hand, in
the case that class-level attribute labels are available (the skunk
and otter case), although the attributes learned by HCN have
weaker semantic meanings than the manually-defined ones,

we can still well discover the criteria. For instance, the special
“black and white stripe” pattern of skunk, and the “water”
(first attribute) and “furry” (second attribute) attributes of
otter. Second, the two-stage alternative failed to learn the crite-
ria (note that the criteria learned by the baseline method for
the three categories are almost the same). This result suggests
that the hierarchical structure is not encoded in such off-
the-shelf “classification representations”, and thus the hier-
archical classification criteria cannot be learned from these
representations. Therefore, end-to-end learning or at least
fine-tuning the model weights of an off-the-shelf model
with HCN is quite necessary for learning the hierarchical
classification criteria.

5 CONCLUSION AND FUTURE DIRECTIONS

In this paper, we propose a method named HCN to automat-
ically discover the criteria for classification, which improves
model interpretability and enables possible human feedback
for model correction. With the elaborately designed network
structure, HCN can learn reasonable criteria, which even
have the potential of teaching people how to distinguish sim-
ilar categories. Though some attributes and criteria currently
learned by HCN do not entirely reflect human understand-
ing, we still believe that this study is a promising step
towards interpretable and operable CNN models. In the
future, we would like to further improve the attribute
interpretability by exploring the connections between
human-nameable attributes and the ones learned by HCN.

In the current experiments, evenwith state-of-the-artmodel
interpretation method and dataset, some interpretable attrib-
utes and classification criteria learned by CNNmodels are still
missed, revealing the subjective nature of interpretability.
Moreover, since some categories are distinguished from the
others based on some non-visual or unnameable attributes,
e.g., ambulance is different from other cars only partially for its
visual appearance yet mainly for its utilization, and the differ-
ences between a jaguar and a leopard (Fig. 9) can hardly be

TABLE 9
Comparison to Previous Methods on the Criteria Learning Task

The results of [14] are directly cited from the original publication.

LIU ETAL.: WHAT IS ATABBY? INTERPRETABLE MODEL DECISIONS BY LEARNING ATTRIBUTE-BASED CLASSIFICATION... 1805

Authorized licensed use limited to: INSTITUTE OF COMPUTING TECHNOLOGY CAS. Downloaded on April 06,2021 at 06:20:58 UTC from IEEE Xplore.  Restrictions apply. 



described in natural language by an ordinary person, suggest-
ing that the interpretations produced by existingmodels could
be hard to evaluate. However, objectively evaluating the
degree of interpretability and the correctness of the interpreta-
tions are vital for interpretable methods, yet they still remain
an open research problem in this field of study. In this paper,
we have tried our best to design qualitative and quantitative
evaluations to compare the degree of interpretability of differ-
ent models, and we believe that this is a right step towards
fairly comparing interpretable models. In the future, datasets
with objectively and professionally labeled attributes or crite-
ria could be a promising means for more fairly evaluating the
interpretablemodels, yet such datasets require lots of expertise
which is beyond the scope of this paper.
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