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Abstract
Human beings are constantly improving their cog-
nitive ability via automatic learning from the inter-
action with the environment. Two important as-
pects of automatic learning are the visual percep-
tion and knowledge acquisition. The fusion of these
two aspects is vital for improving the intelligence
and interaction performance of robots. Many auto-
matic knowledge extraction and recognition meth-
ods have been widely studied. However, little work
focuses on integrating automatic knowledge extrac-
tion and recognition into a unified framework to
enable jointly visual perception and knowledge ac-
quisition. To solve this problem, we propose a
Dual Track Multimodal Automatic Learning (DT-
MAL) system, which consists of two components:
Hybrid Incremental Learning (HIL) from the vi-
sion track and Multimodal Knowledge Extraction
(MKE) from the knowledge track. HIL can in-
crementally improve recognition ability of the sys-
tem by learning new object samples and new ob-
ject concepts. MKE is capable of constructing and
updating the multimodal knowledge items based
on the recognized new objects from HIL and oth-
er knowledge by exploring the multimodal signals.
The fusion of the two tracks is a mutual promotion
process and jointly devote to the dual track learn-
ing. We have conducted the experiments through
human-machine interaction and the experimental
results validated the effectiveness of our proposed
system.

1 Introduction
The cognitive ability of human beings is constantly updated
and improved through the interaction with the environment
[Gotts, 2016], including the enhancement of recognition a-
bility and the growth of the new knowledge. These two as-
pects are parallel but interrelated. Because of the open and
dynamic properties of the dataset from the interaction: new
object samples and new object classes increase continuous-
ly, the enhancement of recognition ability requires the incre-
mental learning, which can learn both the new instance of
known objects and new object classes. The growth of the new

Learn to recognize  new object

I like apple

Learn new   knowledge item

<Like, Marry, Apple>

Apple: <feature, label>

Marry

apple spherewoman

6

Basketball

ICT

26

Man

Kobe NBAPlayer

red

Redbull

Beverage

Weihai

Figure 1: An example of dual track multimodal automatic learning

knowledge involves constructing the multimodal knowledge
graph by recognizing, extracting and summarizing the mul-
timodal knowledge based on multiple input signals. In addi-
tion, the learned new objects help the growth of the knowl-
edge by adding new nodes and their relations into the multi-
modal knowledge graph. Meanwhile, the knowledge items in
the multimodal graph are helpful for visual recognition.

These two aspects lead to the continuously growing ca-
pability of automatic learning and enable many applications
in human-machine interaction. Fig.1 shows a toy example.
The robot learned the new object “apple” through incremen-
tal learning and thus improved its recognition ability. Mean-
while, the robot can fuse the multimodal information to add
the “apple” and its relations with other objects to the knowl-
edge graph. In addition, the enhanced recognition ability of
the object “apple” can facilitate the multimodal knowledge
graph construction, especially when only the visual informa-
tion is available. Similarly, the constructed knowledge item-
s including objects and their relations are helpful for object
recognition. Therefore, in this paper, we jointly study incre-
mental learning and multimodal knowledge extraction, name-
ly dual track automatic learning.

Existing work mainly focuses on single track learning for
either the improvement of recognition ability or automat-
ic knowledge extraction from different perspectives. For
vision-based recognition, there are two different types of in-
cremental learning, namely data-incremental learning [Bor-

Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)

4485



Intput

Speech 

Recognition

Semantic Grounding 

&& Parsing

OutputDual Track Multimodal Learning

I like this

<Like, Marry, Apple >

<Visual, Marry, Marry_Img>

<Visual, Apple, Apple_Img>

Marry

apple spherewoman

6

Basketb all

ICT

26

Man

Kob e NBAPlayer

red

Red  bul l

Beverage

Weihai

Knowledge Track: Multimodal Knowledge Extraction

New classNew Data

Face:Marry

Object: Apple

Hybrid incremental learning

Vision Track: Hybrid Incremental Learning

sound

Figure 2: The proposed system of Dual Track Multimodal Automatic Learning (DTMAL)

des et al., 2005; Cauwenberghs and Poggio, 2000; Ruping,
2001][Murata et al., 2002] for new samples of known ob-
jects and class-incremental learning [Kuzborskij et al., 2013;
Lampert et al., 2009; Ristin et al., 2015] for unknown ob-
jects. These two types of incremental learning are indispens-
able for recognizing new concepts and enhancing the recogni-
tion ability of known concepts, and work jointly as hybrid in-
cremental learning. For the construction of knowledge base,
some methods utilized the language information to construc-
t text based knowledge graph from the dialog [Hakkani-Tür
et al., 2014; Hixon et al., 2015] while others pay more at-
tention to the representation and analysis of the multimodal
knowledge graph [Saxena et al., 2014; Johnson et al., 2015;
Zhu et al., 2015]. Such construction enables more personal-
ized and task-oriented applications. However, little work has
investigated the problem of dual track learning with both mul-
timodal knowledge extraction and hybrid incremental learn-
ing.

In addition, some work [Thomason et al., 2016; Al-Omari
et al., 2017] used the multimodal data to learn grounded
linguistic semantics for language grounding. Moritz et al.
[Tenorth and Beetz, 2013] proposed a knowledge process-
ing system KnowRob for acquiring and representing knowl-
edge by fusing multi-source information. The difference is
that we aim to fuse visual perception and knowledge acquisi-
tion for automatic learning while they attempt to the language
grounding or knowledge representation.

The extraction of the knowledge items relies on the im-
provement of the recognition ability by adding new objects
and their relations to update the knowledge graph. Mean-
while, the objects, attributes and their relations from the con-
structed multimodal knowledge graph is helpful for online
learning. Therefore, they work together as a whole. In or-
der to solve this problem, we propose a Dual Track Multi-
modal Automatic Learning (DTMAL) system, which consist-
s of two components: the vision track and knowledge track
(Fig. 2). For the vision track, Hybrid Incremental Learning
(HIL) adds the new classification-planes and adjusts existing
classification-planes under the setting of Support Vector Ma-
chine (SVM) to learn both the new instance of known objects
and new object classes. For the knowledge track, Multimodal
Knowledge Extraction (MKE) utilizes the symbol grounding

and parsing methods to extract the multimodal knowledge
items via the interaction with humans. These two tracks are
fused into a unified framework: the extraction of the multi-
modal knowledge relies on the improved recognition abili-
ty while the objects and their relations from the multimodal
knowledge graph are helpful for improving the incremental
learning. As an example in Fig. 2, the user says: “I like ap-
ple” with an apple in her hand. Our system can extract the
visual features of apple and the apple label < visual features,
apple>, the visual features of person and the person name <
visual features, Scarlett>, and a knowledge item <like, Scar-
lett, apple> from the interaction process. The visual features
and labels are used for the improvement of recognition abili-
ty. The extracted multimodal knowledge items are added into
the knowledge graph.

2 Our Framework
As shown in Fig. 2, DTMAL mainly consists of two com-
ponents: The vision track and the knowledge track. For the
vision track, HIL is to learn new objects and new informa-
tion of existing objects from visual information. Based on
the learned new objects, new users and recognized speech,
MKE from the knowledge track is mainly to utilze the sym-
bol grounding and parsing techniques to extract rich triple
knowledge. Finally, the extracted knowledge items and rec-
ognized objects are used to generate and update the multi-
modal knowledge graph. Meanwhile, the recognition ability
of the system is improved from the HIL.

2.1 Hybrid Incremental Learning (HIL)
To enhance the ability of the object recognition, our HIL
method adds the new classification-planes and adjusts exist-
ing classification-planes under the setting of SVM. There-
fore, it can simultaneously improve the recognition quality
of known concepts by minimizing the prediction error and
transfer the previous model to recognize unknown objects.

For a visual representation pair (x, y), where x is the vi-
sual feature and y is the label. At step t, we modify the
source classification-planes W t = [wt1, w

t
2, · · · , wtM ] to p-

reserve the performance on known concepts and find a new
group of classification-planeswtM+1, which is close to source
classification-planes to make the M -class source classifier
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transfer to a (M + 1)-class target classifier. We minimize the
following objective function to realize the hybrid incremental
learning when the new data is available at step t:

min
W t,bt,et

J(W t, bt) =
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s. t.

(wtm)Tϕ(xi) + btm − yi ≤ etmi, i ∈ It, m = 1, ......,M + 1

(wtm)Tϕ(xj)+b
t
m−yj ≤ etmj , j ∈ St−1, m = 1, ......,M+1

where It denotes the new data at step t, and St−1 de-
notes the old support vectors at step t − 1. L, β, C are
parameters, which need to be optimized. The first term
1
2

∥∥W t −W t−1
∥∥2
F

aims at preserving previous classification

model. The second term 1
2

∥∥wtM+1 −W t−1β
∥∥2
F

incorpo-
rates new concepts into the current model. The last two
terms C

2

∑M+1
m=1 (

∑
i∈It(e

t
mi)

2 + L
∑
j∈St−1(etmj)

2) define
the loss. The first one is to minimize the prediction error of
the new information and the second is to minimize the pre-
diction error of support vectors.

Note that for incremental face learning, compared with in-
cremental object recognition, the difference of faces from d-
ifferent persons is small, and the technique of face recogni-
tion is relatively mature now. Therefore, the mechanism of
incremental object recognition is not suitable. We can direct-
ly use matching based method to achieve incremental face
learning. Particularly, for the first time, the user should say
“I am XX”, we use the face detection method VIPLFaceNet
[Liu et al., 2016] to store the detected face image, its deep
visual features and his name for registration. Then next time,
the system recognizes him via the matching between the de-
tected faces with the faces from the dataset. Similarly, the
incremental face learning can support both data-incremental
and class-incremental learning.

Through HIL, the system can automatically learn new ob-
jects and the new information of existing objects. After
HIL, the visual recognition ability of the system is enhanced,
which is helpful in the following MKE.

2.2 Multimodal Knowledge Extraction (MKE)
The knowledge extraction mainly includes: 1) symbol
grounding and 2) Combinatory Categorial Grammar (CCG)
parsing.

The purpose of symbol grounding is to establish the con-
nection between the object included in the dialogue and
specific context [Barsalou, 1999; Thomason et al., 2016;
Parde et al., 2015]. The grounding set contains a set of se-
mantically related symbols such as objects and persons. It is
obvious to associate with noun phrases and objects. Based
on the learned new objects o from HIL, the user p from in-
cremental face recognition, and recognized speech s, we first

use rule-based grammar tree to extract the grammatical struc-
ture from the recognized speech to obtain a set of phrases
λ = {λ1, λ2, .., λk}. The grounding problem [Paul et al.,
2016] is then posed as estimating the likely set of groundings
Γ = {γ1, γ2, ..., γn} for the input: Λ = {λ, o, p}:

max
γ1,γ2,...γn

p(Γ|Λ) (2)

After symbol grounding, we get the sentence S. We then
extract the triple information from S using EasyCCG [Lewis
and Steedman, 2014]. The CCG parser y of the sentence S is
defined as a list of lexical categories c1, c2 . . . cnand a deriva-
tion. We compute the optimal parser ŷ by the following for-
mula:

ŷ = arg max
y

n∏
i=1

p(ci|S) (3)

We use the A∗ algorithm to search [Klein and Manning,
2003] for the most probable complete CCG derivation of a
sentence. In A∗ parsing, the items on the agenda are sorted
by their cost. If two agenda items have the same cost, we
prefer to the one with longer dependencies.

We choose the core nouns from the most important com-
ponent of the grammar dependent tree as the object word for
the triple relation extraction, and finally obtain the triple in-
formation. For example, we firstly get the recognized speech
“I like this”, recognized person name of the speaker “Scar-
lett” and the recognized object “apple” in her hand from HIL.
Then the symbol grounding process can change “I” and “this”
to “Scarlett” and “apple”, respectively. The new sentence S
is “Scarlett like Apple”. Then through CCG parsing, we can
obtain the triple <like, Scarlett, apple>.

Through HIL and MKE, our DTMAL system can automat-
ically improve the visual recognition ability and learn new
knowledge items simultaneously according to user’s multi-
modal inputs.

To store these parsed triple information and images (the
detected face or objects), we use a non-relational SQL doc-
ument storage database. We will update the multimodal
knowledge graph by inserting unknown information into the
database to learn new knowledge items. Some measures are
taken to eliminate conflicts and generate representative im-
ages.

The conflict eliminating is to change knowledge items with
lower confidence into ones with high confidence. We design
multiple strategies for conflict eliminating. For example, the
designed first person priority is that if the recognized sentence
is the first person ”I”, the confidence of the parsed knowledge
items is higher than the parsed ones from other person like
”Tom”. Besides the first person priority, there are also other
ones, such as majority priority and friend relationship prior-
ity. Furthermore, the priority level of different rules is also
specified.

For representative image generation, considering the stor-
age limitation of the knowledge graph and representativeness
of images, we should remove both wrong recognized images
and redundant images. We utilize the extracted deep visu-
al features VGG features [Simonyan and Zisserman, 2014]
to calculate the mean of all image features. We then use a
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clustering method and removed the image farthest from the
clustering center, as this image is the wrong-recognized im-
ages with higher probability in the interaction process. Mean-
while, we calculate pair-wise similarity matrix to remove
much similar images to reduce the redundancy.

Besides these two components of DTMAL, the key of DT-
MAL is the fusion and integration of these two tracks as a
unified system.

3 Dual Track Fusion
During the interaction process, the obtained information is
simultaneously used for both knowledge item learning and
visual recognition improvement. Our system fuses the lan-
guage analysis, visual recognition and the representation of
multimodal information to obtain relevant information about
the user, objects and speech. The knowledge extraction mod-
ule utilizes the symbol grounding and semantic parsing tech-
niques to extract rich triple knowledge items and visual rep-
resentation pairs for the dual track learning process. For ex-
ample, if the user Scarlett says: “I like apple” with an apple in
his hand, the system obtains one knowledge item in the triple
form<like, Scarlett, apple> and the visual representation of
the apple <feature, label> simultaneously.

The fusion of the two tracks is a mutual promotion pro-
cess. In our system, on the one hand, learning more relevant
knowledge items will strengthen the understanding of the ob-
ject which is helpful for object recognition. The knowledge
items in our multi-modal graph improve the recognition abil-
ity of the system. For example, when the system recognizes
an apple, it not only knows it is an apple, but also utilizes the
symbol grounding (Eqn. (2) ) and CCG parsing (Eqn. (3) )
to know who likes apple. On the other hand, visual recogni-
tion is directly used for multimodal knowledge item learning.
The recognized object is usually an element of the knowledge
item. Thus the improvement of visual recognition ability can
lead to more accurate and reliable knowledge item extraction.
For example, if one person says: “I like this” with an apple
in his hand, the visual object recognition track will recognize
the visual feature of “this” as an apple and the people as “S-
carlett” via HIL. And then the system obtains one knowledge
item in the triple form <like, Scarlett, apple>. During the
dual track learning process, the system will find out whether
the information is learned or not. For a new object, accord-
ing to Eqn.(1), the system will learn new related knowledge
items and improve the recognition performance for this object
class. For the new information of known objects, the system
will update relevant knowledge items and improve the recog-
nition performance for the new available instances.

The system’s interaction performance is based on the fu-
sion of both tracks of cognitive abilities. The fusion of the
dual track learning process makes the interaction more intel-
ligent. When you have a talk with the intelligent system, it
can not only recognize your face, the object you hold and y-
our words, but also know some attributes of the objects and
the relation between you and the object. The improvement
of two tracks of automatic learning can lead to better experi-
ence of interaction. The system finally can “see”, “hear” and
“think” like human beings through the dual track fusion.

4 Experiments
4.1 Experimental Setup
In order to validate the effectiveness of our system, there
are 25 subjects in the study. We use 13 kinds of hand-held
objects and define 16 kinds of relations. The objects are
common ones, including “apple”, “volleyball”, “book”, “bot-
tle”, “toothpaste”, “stapler”,“keyboard”, “flashlight”, “wal-
let”, “neck pillow”, “the bag of milk”, “the packet of biscuits”
and “racket”. The relations are also common ones, including
common interpersonal relations and human-object relation-
s, such as Friends, Like and BelongTo. Our system is im-
plemented in an online and interactive way: these subjects
propose a dialogue based on the 16 kinds of relations to our
system, and the system learns new information in the inter-
action. The examples of interaction dialogues are these like
“Wang Like play basketball” and “Li and Wang are Friends”.
Our system is run on a personal computer with an Intel Core
(4 CPU) and 3.1GHz processor. We select the Kinect-1.0 de-
vice to capture objects and GPU with NVIDIA GeForce GTX
770 to extract deep features. The camera with Logitech HD
720P is used to capture the face.

4.2 Evaluation of The Vision Track:HIL
As manipulating objects with hands is a straight way for
human-machine interaction , we therefore focus on incremen-
tal learning on the hand-held objects. Our HIL track utilizes
both RGB information, the depth and skeletal information
from Kinect. During interaction, we collect the object label
and RGB-D information automatically by recognizing user’s
voice and capturing images of the object. We then follow
the segmentation method [Lv et al., 2015] to segment ob-
jects, and fuse the CNN features from RGB and depth fea-
tures, which are extracted separately from the AlexNet net-
work [Krizhevsky et al., 2012], leading to the fused 8196-D
features as the final feature representation. Accuracy is used
to evaluate the classification performance.

This evaluation of HIL consists of two parts: class-
incremental learning and data-incremental learning. For
class-incremental learning, we randomly select 3 classes as
the source concepts to train a 3-class source model. And
then the model learns the remaining 10 classes. We intro-
duced a new class for class-incremental learning at a time.
For each time, we capture 60 images per class as the training
data for each incremental learning. The 3-class model turns
into a 13-class target model after class-incremental learning.
We repeat this process 3 times to average the results. Note
that when we train the classifier of this new class, we need
to say ”This is an XX”, where “XX” is the object. For data-
incremental learning, we use the 13-class model as the source
model. The model then learns new samples of the 13 classes
via data-incremental learning. We conduct 3 groups of this
experiment. For each group, we introduced new samples of
one class at a time and repeated 13 times to learn new sam-
ples of the 13 classes. For each time, we take 6 images as the
training data for each incremental learning.

Fig. 3 shows the results of HIL . From Fig. 3(a), we can see
that the accuracy on the test dataset shows steadily increas-
ing performance, indicating the algorithm is able to learn the
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Figure 4: Performance of MKE: (a) the accuracy from two different
settings in MKE and (b) the error rate from different modules among
all extracted knowledge items

new classes. The slight drop may be caused that some new
concepts is difficult to learn, especially in our interaction of
the real-world scenarios. For data-incremental learning, as
shown in Fig. 3(b), the source model is the 13-class classi-
fier. To avoid the influence of the data imbalance, we add a
fixed amount of new data to every source concept. For each
time we capture 6 new images per class as the training da-
ta for each data-incremental learning. After three steps, the
amount of data for each source class increases from 60 to
78 images. From Fig. 3(b), we can see that the accuracy of
data-incremental learning grew up because of increasing data
volume.

4.3 Evaluation of The Knowledge Track:MKE
In this evaluation, for each subject, the source model, the new
object class or instances of the source concepts are in random
order. Each subject interacts 25 times. For each interaction,
he/she is holding or not holding one object from 13 kinds of
objects. Then he/she proposes a dialogue based on the hand-
held object and pre-defined 16 kinds of relations. The system
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Figure 5: The accuracy from the baseline and DTMAL

learns new information and responds to the subject. For eval-
uation, our system can extract the knowledge items from each
interaction, we label correctly extracted items. Accuracy is
used as the performance metric, which is defined as the ratio
between correctly extracted items and all the extracted items.
Our MKE track consists of two cases: (1) Speech Recogni-
tion + Multimodal Knowledge Extraction (SR MKE) and (2)
Speech Recognition + Incremental Face Recognition + Multi-
modal Knowledge Extraction (SR IFR MKE). Therefore, we
compare these two cases.

Fig. 4 shows the results. We can see that the performance
of SR IFR MKE significantly outperforms SR MKE. There
is about 43% improvement. The reason is that in the interac-
tion, there are many cases involving face recognition. There-
fore introducing the incremental face recognition increases
the accuracy. For example, in common scenarios, the sub-
ject often says sentences, such as “I like XX”, “I am XX”,
where XX is the name of the person. Without incremental
face recognition, these sentences are not succesfully parsed
into the triple knowledge. Furthermore, we analyze the er-
rors caused by all possible factors in SR IFR MKE, from the
following four aspects: the error of speech recognition (Er-
r SR) , the error of knowledge extraction (Err KE), the error
of face recognition (Err FR) and network connection timeout
(Err NCT). The results are shown in Fig. 4 (b). In all the
interaction, there are total 138 wrong extracted knowledge
items. We can see that the main error sources are caused by
speech recognition and knowledge extraction. The reason is
that for speech recognition, besides the algorithm, features
and pronunciation accuracy of the different subjects are prob-
ably the main factors affecting the accuracy of speech recog-
nition. In contrast, because of the fast development of the
face recognition, the error caused by face recognition is very
low.

4.4 Evaluation of DTMAL
In order to verify the effectiveness of HIL in DTMAL, simi-
lar to the experimental setting for the MKE track, the average
times of interaction for each subject is about 25. Different
from the MKE track, the faces from all the subjects have been
registered. In addition, the interaction involves many cases of
object recognition. For each subject, the source model is ran-
domly selected. For example, the trained source classes for
subject A is “apple”,“volleyball” and “book”, while “tooth-
paste”, “stapler” and “keyboard” for subject B. In the process
of interaction, the hand-held new object class or new object
instances of the source concepts appear in random order. S-
ince there is little work on dual track multimodal automatic
learning, we cannot compare our method with existing meth-
ods. Therefore, we consider the following baseline for com-
parison: Speech Recognition + Face Recognition + Multi-
modal Knowledge Extraction (SR FR MKE). The difference
between this baseline and the DTMAL is that DTMAL intro-
duced the HIL.

As shown in Fig. 5, we can see that after introducing the
incremental object recognition, DTMAL has 30% increase
than MKE. This verified that the incremental object recog-
nition is capable of improving the extraction of the knowl-
edge items. Further analysis shows that there are totally
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Figure 6: The case study for one process of interaction in DTMAL. Note that the source concepts for HIL includes “book”,“bottle” and
“keyboard”.

148 knowledge items, which are successfully extracted from
incremental object recognition, where 78 knowledge item-
s from class-incremental learning and 70 items from data-
incremental learning.

Fig. 6 shows one process of interaction in DTMAL. We
can see that DTMAL utilizes different technologies, such
as incremental face recognition, HIL and MKE in the pro-
cess. For example, in the second interaction, DTMAL u-
tilizes the face recognition to recognize the face, and then
uses the symbol grounding and CCG parsing method to re-
place “I” with the person “Wang”. In the third interaction,
since the object class “apple” is not in DTMAL, DTMAL u-
tilizes the apple image and corresponding labels to conduct
the class-incremental learning. Therefore, in the fourth inter-
action, DTMAL can recognize the object “apple”, and then
uses the symbol grounding and CCG parsing method to re-
place “this” with “apple”. As a result, DTMAL sucessfully
extracted the knowledge items, such as <like, Jian, Apple>.
Note that our knowledge graph is multimodal. Therefore, in
the third interaction process, the knowledge item<visual, ap-
ple, apple Img> is also extracted and it represents that there
is a “visual ” relationship between apple entity and its image.
The case study further verified the effectiveness of DTMAL
in fusing HIL and MKE to enable the incremental learning of
visual recognition and automatic growth of knowledge items.

5 Conclusions
In this paper, we proposed a Dual Track Multimodal Auto-
matic Learning (DTMAL) system, which enables both the
incremental learning of visual recognition and automatic
growth of knowledge items by utilizing multimodal knowl-
edge extraction and hybrid incremental learning method-
s. Furthermore, different recognition methods (e.g., speech

recognition and face recognition ) and fusing strategies are
used for strengthening the automatic learning process. The
experimental results have demonstrated the effectiveness of
the proposed system.

This work is an effort in improving the automatic learn-
ing abilities of robots. The learning mechanism of DTMAL
is reasonable for intelligent human-machine interaction sys-
tem. We hope this work could serve as a good chance to
further the agenda of intelligent human-machine interaction
systems in this community. Our system is scalable and flex-
iable. Therefore, our future work can be extended in many
directions. For example, we plan to continuely improving
the system including supporting the synonyms in incremental
learning and more complex interaction.
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Li Fei-Fei. Building a large-scale multimodal knowledge
base for visual question answering. Computing Research
Repository, abs/1507.05670, 2015.

Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)

4491


