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Abstract. The same object can be observed at different viewpoints or
even by different sensors, thus generating multiple distinct even heteroge-
neous samples. Nowadays, more and more applications need to recognize
object from distinct views. Some seminal works have been proposed for
object recognition across two views and applied to multiple views in
some inefficient pairwise manner. In this paper, we propose a Multi-view
Discriminant Analysis (MvDA) method, which seeks for a discriminant
common space by jointly learning multiple view-specific linear trans-
forms for robust object recognition from multiple views, in a non-pairwise
manner. Specifically, our MvDA is formulated to jointly solve the multi-
ple linear transforms by optimizing a generalized Rayleigh quotient, i.e.,
maximizing the between-class variations and minimizing the within-class
variations of the low-dimensional embeddings from both intra-view and
inter-view in the common space. By reformulating this problem as a ra-
tio trace problem, an analytical solution can be achieved by using the
generalized eigenvalue decomposition. The proposed method is applied to
three multi-view face recognition problems: face recognition across poses,
photo-sketch face recognition, and Visual (VIS) image vs. Near Infrared
(NIR) image face recognition. Evaluations are conducted respectively on
Multi-PIE, CUFSF and HFB databases. Intensive experiments show that
MvDA can achieve a more discriminant common space, with up to 13%
improvement compared with the best known results.

Keywords: Multi-view Discriminant Analysis, Multi-view Face Recog-
nition, Common space for Multi-view.

1 Introduction

In many computer vision applications, the same object can be observed at dif-
ferent viewpoints or even by different sensors, thus generating multiple distinct
even heterogeneous samples. For example, given a face, photos can be taken from
different viewpoints, resulting multi-pose face images [1]; a face can be also illu-
minated by visible lighting or near infrared lighting to capture visual images or
near infrared images respectively [2]. Recently, more and more applications need
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to perform classification from both intra-view and inter-view. However, they gen-
erally cannot be conducted directly since the samples from different views may
lie in quite different spaces and cannot be compared. Therefore, most of previous
works addressing this problem endeavored to learn a common space shared by
the multiple views, in which samples from multiple views can be compared.

The most typical approach to obtain a common space for multiple views
should be the Canonical Correlation Analysis (CCA) [3] and its kernelized vari-
ant [4]. CCA learned two transforms, one for each view, to respectively project
samples to a common space. Both transforms were obtained by maximizing the
cross correlation between the two views. In [5][6], a pseudo-photo in the target
view was synthesized for the sample from the query view. In these methods, the
target space is actually used as the common space. Further, a method dealing
with face recognition with pose, low-resolution and sketch was proposed by em-
ploying Partial Least Square regression [7] to project samples from two views
to a common latent subspace, in which samples from one view as regressor and
samples from another view as response. For specific photo-sketch face recogni-
tion, a Coupled Information-theoretic projection tree [8] was proposed to reduce
the modality gap between photo and sketch. In [9], a pair of semi-coupled dic-
tionaries are was proposed to characterize both views with a mapping function
modeling the relationship between the two dictionaries. Although the gap be-
tween two views was minimized by these methods, the discriminant information,
e.g., label information, was not explicitly taken into account.

To learn a discriminant common space for two views, Correlation Discrim-
inant Analysis (CDA) [10] and Discriminative Canonical Correlation Analysis
(DCCA) [11][12] were proposed to extend CCA by maximizing the difference
of within-class and between-class variations across two views. In [13][14], Mul-
tiview Fisher Discriminant Analysis (MFDA) was proposed to employ the label
information for binary classification. Then in [15], Common Discriminant Fea-
ture Extraction (CDFE) was proposed to minimize the intra-class scatter and
meanwhile maximize the inter-class separability, with the local consistency as a
regularizer to reduce the risk of over-fitting. As a result, CDFE achieved very
encouraging performance. However CDFE is sensitive to the parameter β which
controls the local consistency. In [16], a large margin approach was proposed to
learn the supervised multi-view latent space Markov Networks by using the max-
imum likelihood estimation. Additionally, Coupled Spectral Regression (CSR)
[17] was proposed by employing the label as the common space for two views.
First, a common low-dimensional embedding was calculated only according to
the label information which was the same for samples of one class but from mul-
tiple views, and then a projection matrix between the observation space and the
low-dimensional embedding was learned through least square regression for each
view. In [18], a local feature based discriminant analysis was proposed by employ-
ing the Scale-invariant feature transform (SIFT) and multi-scale Local Binary
Patterns (LBP) feature to match a forensic sketch and a mug shot photo.

All above methods work well only in the scenario of two views. In case of
multiple views, the pairwise (i.e., one-versus-one) strategy is generally exploited
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to convert one common space for v views problem to C2
v common spaces problem.

However, such a pairwise manner is neither efficient nor optimal for classification
across different views. What we need is a unified semantic common space, which
should embody invariant features or attributes that can identify the underlying
object, commonly shared by all the views rather than only two views. For this
purpose, the Multiview CCA (MCCA) [19] was proposed to obtain one common
space for v views. In MCCA, the v view-specific transforms, one for each view,
were obtained by maximizing the total correlations between any two views.

Although MCCA can obtain a common space for multiple views, it does not
take discriminant information into account. In other words, the resulting com-
mon space is not discriminative, thus not good for classification across views.
Moreover, in MCCA and all existing pairwise methods, only the inter-view cor-
relation is considered, but ignoring the intra-view correlations which implies
unstable classification within view. To deal with these problems, this paper
proposes a Multi-view Discriminant Analysis (MvDA) method that can learn
single unified discriminant common space for v views by jointly optimizing v
view-specific transforms, one for each view. In this common space, the between-
class variations from both inter-view and intra-view are maximized, while the
within-class variations from both inter-view and intra-view are minimized. In
our implementation, the between-class and within-class variations are combined
to form a generalized Rayleigh quotient, which can be solved analytically by
using the generalized eigenvalue decomposition.

Compared with previous works, our method has several advantages: 1) one
discriminant common space is obtained for multiple views by jointly optimizing
v view-specific transforms, which is efficient and leads to better generalization
ability for classification from multiple views. 2) variations from both inter-view
and intra-view are considered in a generalized Rayleigh quotient, leading to a
more discriminant common space. 3) the problem is solved analytically by using
the generalized eigenvalue decomposition.

The rest of the paper is organized as follows. Section 2 gives a detailed descrip-
tion of some related works. Section 3 presents the formulation and solution of the
proposed Multi-view Discriminant Analysis. Section 4 evaluates the Multi-view
Discriminant Analysis on three databases, followed by a conclusion.

2 Related Works

2.1 Canonical Correlation Analysis (CCA) [3]

CCA was proposed to find a common subspace in which the low dimensional em-
bedding of samples from two views are most correlated. Formally, let S represent
the set of samples from two views: S = {(x11, x12), (x21, x22), · · · , (xn1, xn2)},
where xik ∈ Rpk , k = 1, 2 represents the ith sample from the kth view in pk di-
mensionality. Two matricesX1 = [x11, x21, · · · , xn1] andX2 = [x12, x22, · · · , xn2]
are defined for representing the data matrix from the two views. Two linear
transforms w1 and w2 can be obtained to respectively project the samples from
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two views into the common space, by maximizing the correlation between the
low-dimensional embeddings wT

1 X1 and wT
2 X2:

max
w1,w2

wT
1 X1X

T
2 w2

s.t. wT
1 X1X

T
1 w1 = 1, wT

2 X2X
T
2 w2 = 1.

(1)

Employing the Lagrange multiplier, this problem can be solved by resorting to
the eigenvalue decomposition. However, the data in CCA must be given in pair-
wise, i.e., the number of samples from both views should be same to make X1X

T
2

computable. Having w1 and w2, samples from two views can be compared by
being projected to the common space. Actually, CCA is a two-view extension
of PCA [20], i.e., a unsupervised approach. When applied in the multi-view
scenario, the one-versus-one strategy can be employed.

2.2 Multi-view Canonical Correlation Analysis (MCCA) [19]

In [19], a generalization of CCA for multi-view scenario is proposed called Multi-
view Canonical Correlation Analysis. The goal of MCCA is to find a set of
linear transforms wi ∈ Rpi , i = 1, 2, · · · , v, to project samples from v views
{X1, · · · , Xv} to one common space where the total correlation of the low-
dimensional embeddings {wT

1 X1, · · · , wT
v Xv} from any two views is maximized:

max
w1,w2,··· ,wv

∑
i<j w

T
i XiX

T
j wj

s.t. wT
i XiX

T
i wi = 1, i = 1, 2, · · · , v, (2)

whereXi ∈ Rpi×n is the data matrix from the ith view containing n samples in pi
dimensionality. This problem can be reformulated as a generalized multivariate
eigenvalue problem by using the Lagrange multiplier:

⎡

⎢
⎣

A11 · · · A1v

...
. . .

...
Av1 · · · Avv

⎤

⎥
⎦

⎛

⎜
⎜
⎜
⎝

β1

β2

...
βv

⎞

⎟
⎟
⎟
⎠

=

⎛

⎜
⎜
⎜
⎝

λ1β1

λ2β2

...
λvβv

⎞

⎟
⎟
⎟
⎠

,

(3)

where wT
i Xi is expressed in the dual form βT

i Ki, Ki is the kernel matrix and
Aij = KiK

T
j . This problem can be solved by an alternation method [21]. Same

as CCA, the number of samples in each view should be the same.

3 Multi-view Discriminant Analysis (MvDA)

In this section, we first introduce the basic idea and formulation of the MvDA.
Then, describe how to solve it analytically. Finally, we discuss more on the
differences and advantages of MvDA over previous methods. Please note that, for
the sake of clarity, some of the detailed reformulations are put in the appendix.
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Fig. 1. The overview of MvDA. Samples from different views are projected into a
discriminant common space by using v transforms, one for each view. In this common
space, samples in one class from multiple views are close to each other, while samples
in different classes from multiple views are far away from each other. Here, images from
distinct views, such as photo, sketch, NIR are denoted in different colors and images
from different classes are denoted in different shapes.

3.1 MvDA: Overview and Formulation

As shown in Fig. 1, our MvDA attempts to find v linear transformsw1, w2, · · · , wv

that can respectively project the samples from v views to one discriminant
common space, in which the between-class variation is maximized while the
within-class variation is minimized. For this purpose, formally, let us first define
X (j) = {xijk|i = 1, · · · , c; k = 1, · · · , nij} as the samples from the jth view,
where xijk ∈ Rdj is the kth sample from the jth view of the ith class in dj di-
mensionality, c is the number of classes and nij is the number of samples from
the jth view of the ith class.

The samples from v views can be projected to the common space by using the v
linear transforms denoted as Y = {yijk = wT

j xijk|i = 1, · · · , c; j = 1, · · · , v; k =
1, · · · , nij}. In this common space, the between-class variation Sy

B from all views
is maximized while the within-class variation Sy

W from all views is minimized.
We formulate this objective as a generalized Rayleigh quotient:

(w∗
1 , w

∗
2 , · · · , w∗

v) = arg max
w1,··· ,wv

Tr (Sy
B)

Tr (Sy
W ) .

(4)

Here, the within-class scatter matrix Sy
W of the low-dimensional embeddings in

the common space is calculated as:

Sy
W =

∑c

i=1

∑v

j=1

∑nij

k=1
(yijk − μi) (yijk − μi)

T
, (5)

where ui =
1
ni

∑v
j=1

∑nij

k=1 yijk is the mean of the low-dimensional embeddings

from the ith class and ni is the number of samples in the ith class.
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Similarly, the between-class scatter matrix Sy
B of the low-dimensional embed-

dings in the common space is calculated as:

Sy
B =

∑c

i=1
ni (μi − μ) (μi − μ)

T
, (6)

where μ = 1
n

∑c
i=1

∑v
j=1

∑nij

k=1 yijk is the mean of all low-dimensional embed-
dings with n is the number of all samples.

In the above formulation, it is clear that the within-class and between-class
variations are calculated from the samples from all views, not only those from the
distinct views. In other words, the variations from the intra-view are also consid-
ered in addition to that from the inter-view. After obtaining w1, w2, · · · , wv by
(4), the samples from v views can be compared by being respectively projected
to the discriminant common space.

3.2 Analytical Solution of MvDA

Equ. (4) seems like traditional Fisher Linear Discriminant (FLD) analysis, how-
ever it is actually much more complicated than FLD, as we need to jointly opti-
mize v distinct linear transforms. Fortunately, we work out an analytic solution
by re-formulate it into a ratio trace problem. Formally, the within-class scatter
matrix (5) of the low-dimensional embeddings in the common space can be re-
formulated as follows (please refer to the appendix for the detailed derivation):

Sy
W =

[
wT

1 wT
2 · · · wT

v

]

⎛

⎜
⎜
⎜
⎝

S11 S12 · · · S1v

S21 S22 · · · S2v

...
...

...
...

Sv1 Sv2 · · · Svv

⎞

⎟
⎟
⎟
⎠

⎡

⎢
⎢
⎢
⎣

w1

w2

...
wv

⎤

⎥
⎥
⎥
⎦
= WTSW, (7)

withW =
[
wT

1 , w
T
2 ,· · · ,wT

v

]T
and Sjr defined as bellow with μ

(x)
ij = 1

nij

∑nij

k=1 xijk :

Sjr =

⎧
⎪⎨

⎪⎩

∑c
i=1

(∑nij

k=1 xijkx
T
ijk − nijnij

ni
μ
(x)
ij μ

(x)T
ij

)
j = r

−∑c
i=1

nijnir

ni
μ
(x)
ij μ

(x)T
ir otherwise

.

(8)

Similarly, the between-class scatter matrix (6) can be further reformulated as
follows (please also refer to the appendix for more details):

Sy
B =

[
wT

1 wT
2 · · · wT

v

]

⎛

⎜
⎜
⎜
⎝

D11 D12 · · · D1v

D21 D22 · · · D2v

...
...

...
...

Dv1 Dv2 · · · Dvv

⎞

⎟
⎟
⎟
⎠

⎡

⎢
⎢
⎢
⎣

w1

w2

...
wv

⎤

⎥
⎥
⎥
⎦
= WTDW, (9)

with W defined as above and Djr is defined as:

Djr =

(
c∑

i=1

nijnir

ni
μ
(x)
ij μ

(x)T
ir

)

− 1

n

(
c∑

i=1

nijμ
(x)
ij

)(
c∑

i=1

nirμ
(x)
ir

)T

, (10)
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By taking (7) and (9), (4) can be reformulated as:

(w∗
1 , w

∗
2 , · · · , w∗

v) = arg max
w1,··· ,wv

Tr
(
WTDW

)

Tr (WTSW ) .

(11)

According to [22], the objective function in (11) is in the form of trace ratio,
which implies the closed form solution does not exist. We therefore reformulate
it into a more tractable one in the form of ratio trace as bellow:

(w∗
1 , w

∗
2 , · · · , w∗

v) = arg max
w1,··· ,wv

Tr

(
WTDW

WTSW

)

(12)

which can be solved analytically through generalized eigenvalue decomposition.

3.3 Discussion

Difference with Other Inter-View Methods. In our formulation, both intra-
view and inter-view correlations are considered when calculating the within-class
and between-class variations. To show this, we can reformulate (5) as bellow :

Sy
W =

∑c

i=1

(∑v

j=1

∑nij

k=1

∑nij

l=1
(yijk − yijl) (yijk − yijl)

T

+
∑v

j=1

∑v

r=1,r �=j

∑nij

k=1

∑nij

l=l
(yijk − yirl) (yijk − yirl)

T
)

.

(13)

It can be easily seen that the first term captures the variations within one view
and the second term represents the variations across different views. Another key
difference is that our MvDA projects the samples from v views to one common
space, not taking the one-versus-one manner to project the samples into C2

v

common spaces as most previous methods did.

Difference with Metric Learning Methods. Generally, the metric learning
methods convert the multi-view problem to multiple two-view problems leading
to multiple metrics, one for each pair of views, while MvDA directly deals with
the multi-view problem by seeking for one common space for multiple views.

Difference with MCCA [19]. Both MCCA and MvDA obtain one common
space for multiple views. MCCA only obtain a common space in which the cor-
relation between multiple views is maximized, neither intra-view correlation nor
label information is considered, while MvDA endeavors to obtain a discrimi-
nant common space, in which the within-class variations from multiple views is
minimized and the between-class variations from multiple views is maximized.

Difference with MFDA [13]. MFDA is only applicable for binary classifi-
cation. Although the one-versus-all or hierarchical strategy can be employed
for multi-class scenarios, it’s still not applicable when the training classes not
overlap with the testing classes, which is mainly considered in this work.

Difference with GDA [23]. 1) In GDA, the discriminability is obtained within
each view, while in MvDA it is achieved across all views . 2) In GDA, the cross-
view correlation is obtained only from those observations corresponding to the
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same underlying sample, while in MvDA it is obtained from all observations
from different views. 3) GDA has many parameters especially for large number
of views, while our MvDA has no parameter.

4 Experiments

In this section, MvDA is evaluated on face recognition across pose, photo-sketch
face recognition and Near Visual vs. Infrared image heterogeneous face recogni-
tion on three datasets. Intensive results demonstrate the effectiveness of MvDA.

4.1 Datasets

Multi-PIE dataset [1] is employed to evaluate face recognition across pose. It
contains more than 750,000 images of 337 people under various view points, illu-
mination and expressions. In this work, a subset about 14,450 images from the
337 subjects in 7 poses (-45◦, -30◦, -15◦, 0◦, 15◦, 30◦, 45◦), 3 expression (Neutral,
Smile, Disgust), no flush illumination from 4 sessions are selected as the evalua-
tion dataset. This subset is divided into two parts: images from 231 subjects with
4 randomly selected images under each pose of each subject (231×7×4=6,468)
are used for training and images from the rest subjects (2,289) for testing.

CUHK Face Sketch FERET (CUFSF) dataset [24][8] is used to evaluate
photo-sketch face recognition. It contains 1,194 subjects with lighting variations
from FERET dataset [25]. For each subject, a sketch is drawn with shape ex-
aggeration. On this dataset, images from the first 700 subjects are used as the
training data and images from the rest 494 subjects are used as the testing data.

Heterogeneous Face Biometrics (HFB) dataset [2] is used to evaluate
Visual (VIS) image vs. Near Infrared (NIR) image heterogeneous face recogni-
tion. This dataset contains images from 100 subjects, with 4 NIR and 4 VIS
images per subject. The evaluation follows the Protocol II, i.e., images from 70
and the rest 30 subjects are respectively employed for training and testing.

4.2 Experimental Settings

All images from Multi-PIE and CUFSF datasets are cropped into 64x80 pixels
without any further preprocess and images from HFB dataset are cropped into
32x32 according to the standard protocol. The proposed MvDA is compared
to Pairwise CCA (PW-CCA) [3], Pairwise FDA (PW-FDA) [20], CDFE [15],
CSR [17], PLS [7], Unified FDA [20] (U-FDA) and MCCA [19]. Among them,
PW-CCA, PW-FDA, CDFE, CSR and PLS are pairwise methods for multi-
view classification; the so called U-FDA is the directly applied Fisherface [20]
regardless of the view and MCCA is a multi-view method. In all our experiments,
the alternation solution for MCCA performs very poorly. So instead, we constrain
λ1 = λ2 = · · · = λv leading to an analytical solution to (3) and this analytical
solution performs much better than the alternation one. Therefore, all results of
MCCA reported in this paper are obtained by using this analytical solution.
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Table 1. Evluation on Multi-PIE dataset in terms of mean accuracy (mACC)

PW-CCA[3] PW-FDA[20] CDFE[15] CSR[17] PLS[7] U-FDA[20] MCCA[19] MvDA

82.1% 89.0% 88.8% 72.0% 77.4% 84.3% 91.6% 95.0%

Table 2. Results of CDFE [15] on MultiPIE dataset in terms of rank-1 recognition rate

�������Probe
Gallery

-45◦ -30◦ -15◦ 0◦ 15◦ 30◦ 45◦

-45◦ 100.0% 99.1% 88.7% 70.3% 71.9% 71.6% 78.0%
-30◦ 98.8% 100.0% 99.7% 89.6% 89.6% 89.0% 82.6%
-15◦ 89.6% 99.4% 100.0% 98.8% 96.9% 92.4% 79.8%
0◦ 70.6% 89.9% 98.8% 100.0% 99.1% 94.2% 77.7%
15◦ 71.9% 89.3% 98.2% 99.1% 100.0% 100.0% 92.7%
30◦ 73.4% 90.2% 91.4% 93.0% 99.7% 100.0% 99.4%
45◦ 80.4% 86.2% 79.8% 77.4% 91.1% 99.4% 100.0%

The Principal Component Analysis (PCA) [26] is applied for dimension re-
duction. The dimensionality is set to 100, 100 and 78 to preserve more than 95%
energy on Multi-PIE, CUFSF and HFB datasets respectively for all methods
except CDFE, CSR and PLS, for which the dimensionality is set to the value
that can obtain the best performance. For CDFE, the parameter α and β are
traversed in [0.01 1] and [0.0001 1] respectively to report the best result and for
CSR, the parameter λ and η are traversed in [0.01 10] to obtain a best result.

4.3 Face Recognition across Pose

Face recognition across pose is evaluated in both pairwise manner and multi-
view manner on Multi-PIE dataset. The pairwise manner means images from
one view are used as gallery set while images from another view used as probe
set. Samples in Multi-PIE dataset are from 7 views, thus leading to 7×6=42
evaluations in terms of rank-1 recognition rate (as shown in Table 2∼4). Then,
all 42 results are averaged as the mean accuracy (mACC) as shown in Table 1.

From Table 1, we can see that the multi-view method MCCA and MvDA per-
form better than other pairwise methods significantly. Compared with MCCA,
the proposed MvDA can perform even better with 3.4% improvement which is
very impressive since it is the average of 42 results. Seen from Table 2 ∼ Table
4, the improvement between samples across large view (e.g., the results in bold)
can be up to 18.3% and 10.4% compared with CDFE and MCCA. Furthermore,
the proposed MvDA is also evaluated in the multi-view scenario that samples in
the gallery are from multiple views. In this scenario, samples from each view are
used as probe data and samples from the rest views that have at least 30◦ away
from the probe view are employed as the gallery data. The results are displayed
in Table 5. As seen, MCCA performs bettern than all the other methods and our
MvDA works better than MCCA up to 5.2%, which demonstrates our MvDA
can obtain a more discriminant common space.
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Table 3. Results of MCCA [19] on MultiPIE in terms of rank-1 recognition rate

�������Probe
Gallery

-45◦ -30◦ -15◦ 0◦ 15◦ 30◦ 45◦

-45◦ 100.0% 95.4% 86.5% 77.4% 76.8% 79.5% 86.0%
-30◦ 99.1% 100.0% 98.5% 93.0% 90.0% 91.7% 88.4%
-15◦ 93.0% 99.7% 100.0% 100.0% 98.8% 94.5% 88.1%
0◦ 78.9% 92.1% 99.4% 100.0% 99.4% 94.5% 84.4%
15◦ 82.3% 91.1% 98.2% 99.7% 100.0% 99.4% 93.0%
30◦ 85.6% 93.0% 93.0% 97.6% 99.4% 100.0% 99.0%
45◦ 84.1% 87.2% 84.1% 85.0% 92.0% 98.2% 100.0%

Table 4. Results of our MvDA on MultiPIE dataset in terms of rank-1 recognition rate

�������Probe
Gallery

-45◦ -30◦ -15◦ 0◦ 15◦ 30◦ 45◦

-45◦ 100.0% 100.0% 92.7% 80.0% 87.2% 88.4% 91.4%
-30◦ 99.4% 100.0% 100.0% 94.8% 93.6% 96.3% 94.2%
-15◦ 95.4% 100.0% 100.0% 99.7% 98.8% 98.5% 91.7%
0◦ 80.1% 94.5% 100.0% 100.0% 100.0% 96.6% 87.8%
15◦ 90.2% 96.0% 100.0% 99.4% 100.0% 100.0% 95.7%
30◦ 91.4% 98.5% 98.2% 98.5% 100.0% 100.0% 100.0%
45◦ 91.4% 93.3% 92.7% 87.2% 95.1% 100.0% 100.0%

4.4 Photo-Sketch Recognition

Photo-Sketch recognition is evaluated on CUFSF dataset. Samples in this dataset
come from only two views, photo and sketch. In this case, MCCA degenerates
to the PW-CCA, and U-FDA degenerates to PW-FDA. The comparison results
are shown in Table 6. As seen, MCCA performs much worse than our MvDA
and this may be due to the disappearance of the generalization benefited from
multiple views, while our MvDA can still benefit from the intra-view variations.

4.5 Near Infrared vs. Visual Image Heterogeneous Face Recognition

We also test MvDA for heterogeneous face recognition on HFB dataset. Same
as photo-sketch recognition, samples are only from two views, Visual image and
Near infrared image. Seen from the comparison in Table 6, MvDA can achieve a
significant improvement up to 13% compared to the best performer. Since there
are more (i.e., 4) images for each view per subject on HFB than that (i.e., 1) on
CUFSF, more information from intra-view can be exploited by MvDA on HFB
leading to a larger improvement. From the above intensive evaluations, it can be
seen that the common space obtained by the multi-view methods MCCA and
our MvDA is more suitable for multi-view classification. Furthermore, benefited
from the variations within the same view besides that across view, MvDA can
obtain a more discriminant common space for multiple views.
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Table 5. Evaluation results on MultiPIE dataset in terms of rank-1 recognition rate.
Testing follows the multi-view manner, i.e., samples in gallery are from multiple view.

Gallery View
-15◦ ∼45◦ 0◦ ∼45◦ -45◦ -45◦,-30◦ -45◦ ∼-15◦ -45◦ ∼0◦ -45◦ ∼15◦

15◦ ∼45◦ 30◦,45◦ 45◦

Probe View -45◦ -15◦ -30◦ 0◦ 15◦ 30◦ 45◦

CCA[3] 49.9% 63.9% 66.9% 62.1% 66.9% 61.8% 52.0%
PW-FDA[20] 58.7% 62.7% 68.5% 64.2% 66.7% 66.9% 63.0%
CDFE[15] 31.5% 27.8% 33.9% 18.4% 35.2% 31.8% 32.1%
CSR[17] 42.8% 53.5% 58.7% 54.1% 59.3% 54.7% 47.7%
PLS[7] 47.7% 54.7% 58.1% 56.9% 61.5% 58.1% 50.5%
U-FDA[20] 53.8% 61.5% 66.7% 61.2% 64.8% 65.4% 58.4%
MCCA[19] 61.7% 63.9% 67.9% 65.8% 70.3% 64.5% 63.0%

MvDA 63.9% 69.1% 70.1% 68.2% 70.6% 69.4% 67.3%

Table 6. Evaluation on CUFSF and HFB datasets in terms of rank-1 recognition rate

PW-CCA[3] CDFE[15] CSR[17] PLS[7] U-FDA[20] MvDA

CUFSF
Photo-Sketch 38.7% 45.6% 50.2% 48.6% 46.8% 53.4%
Sketch-Photo 47.5% 47.6% 49.0% 51.0% 53.4% 55.5%

HFB
VIS-NIR 29.2% 40.8% 26.7% 38.3% 39.1% 53.3%
NIR-VIS 30.8% 36.7% 32.5% 40.8% 40.0% 50.0%

5 Conclusions

In this paper, we have developed a multi-view discriminant analysis method that
can obtain one discriminant common space for object recognition from multi-
ple views. Our method not only exploits the correlations from inter-view, but
also that from the intra-view to obtain better discriminability and generalizabil-
ity. The problem is formulated to optimize a generalized Rayleigh quotient and
solved analytically by reformulating it to a ratio trace problem. Experiments on
three multi-view datasets demonstrate the superior of our method over other
state-of-the-art techniques. Obviously, our work can be easily kernelized which
will be our future work. Furthermore, we will attempt to directly optimize (11).
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Appendix: The derivation of Sy
W and Sy

B

The within-class scatter matrix Sy
W of the low-dimensional embeddings from

multiple views are reformulated as follows:
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with Sjr =
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where c is the number of classes, v is the number of views, nij is the number of
samples from the ith view of the cth class, ni is the number of samples from the ith

class, μi = 1
ni

∑v
j=1

∑nij

k=1 yijk is the mean of the ith class across all view, μij =
1

nij

∑nij

k=1 yijk is the mean of the jth view of the ith class and μ
(x)
ij = 1

nij
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Similarly, the between-class scatter matrix Sy
B of low-dimensional embedding

from multi-views are reformulated as bellow with μ = 1
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