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Abstract—Face anti-spoofing has encountered increasing de-
mand as one of the key technologies for reliable and safe authen-
tication with faces. Current face anti-spoofing methods generally
take a single crop of face region as input for classification,
i.e. exploiting information at only one scale. This single-scale
scheme mainly focuses on facial characteristics but not utilize
the surrounding information, causing poor generalization for
different scenarios with varied means of attacks. Besides, it is
tedious or highly empirical to determine an optimal scale of
face crops. To overcome the limitations of single-scale methods,
in this work we propose to integrate Multi-Scale information for
better Face ANti-Spoofing (MS-FANS). Specifically, the proposed
MS-FANS method takes multiple face crops at different scales
as input followed by a convolutional neural network (CNN) for
feature extraction. Then the features from different scales form
as a sequence, which are fed into a Long Short-Term Memory
(LSTM) network for adaptive fusion of multi-scale information,
constructing the final representation for classification. Benefited
from this multi-scale design, MS-FANS can adaptively utilize
context information from multiple scales, leading to promising
performance on two challenging face anti-spoofing datasets,
Idiap REPLAY-ATTACK and CASIA-FASD, with significant
improvement compared with the existing methods.

I. INTRODUCTION

Face anti-spoofing has become a necessary task in most
application of daily access control and authentication with
faces. As the human face is a type of easily acquired biometrics
feature, anti-spoofing with faces is an effective and efficient
technique to improve reliability and safety of an access or
authentication system. There are several types of face spoofing
attacks, including photo printing attack, video replay attack,
3D mask attack, etc. Thereinto, the 3D mask attack is costly,
while photo printing attack and video replay attack are low-
cost which are commonly utilized to attack a system. There-
fore, this work mainly focus on photo printing attack and video
attack which is a great demand in practice.

Most early face anti-spoofing works are designed with hand-
crafted feature such as LBP [1], [2], [3], [4], [5], color-texture
[6], movement of lips [7], etc. These methods heavily depend
on the human experience. Recently, the learning based meth-
ods, especially those deep learning based ones [8], [9], [10],
[11], [12], are proposed to learn better feature to distinguish
the real faces from the spoofing ones. Although great process
has been made, face anti-spoofing from single image is still
challenging as only limited information can be obtained from
single image. It is observed that most prior face anti-spoofing
works only use single-scale information of an image or video,
mainly exploiting the characteristic lying in the facial region

Fig. 1. Face crops in different scales from CASIA-FASD dataset [13]. This
example is used to intuitively show the effect of multi-scale information.
The images on the same row are in the same scale. The images in the first
column are real faces and those in second, third, fourth columns respectively
warped photo attack, cut photo attack and video attack. As shown, it is hard
to distinguish attacks from the real face with the images in the first row, while
it is easier to distinguish them in the second and third rows by including more
background.

to determine whether an spoofing appears. Besides the facial
region, the fitness between the facial region and background
is also beneficial for the anti-spoofing, as showed in Fig. 1.
There are also some studies showing that selecting suitable
background can improve the performance of anti-spoofing [9],
[12]. They both used face images of different scales as input,
and found that the performance will increase as the scale
increases within a certain range, but when the scale is too
large, the performance will be degraded. It is still an open
problem to determine an optimal scale to include just right
amount of the background.

Differently, in this work, we propose to use multiple scales
as input and learn to adaptively integrate facial and background
information from multiple scales by using deep neural network
(DNN), as showed in Fig. 2. In early works [1], [3], [14]
multi-scale feature is indeed shown to be effective. However,
they are mainly for hand-crafted feature, and how to apply
the same principle in DNN framework is unknown. Unlike
traditional multi-scale LBP [1], [3], [14], we use the single-
scale convolution kernels but input images of different scales
to achieve multi-scale effects. Specifically, multiple crops of
different scales from an image are formed as a sequence, then
the deep feature of each crop extracted from a CNN is fed into
a LSTM to generate the integration weight for each scale, and
finally the weighted sum of the feature from each scale, as the
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Fig. 2. An overview of the proposed Multi-Scale Face ANti-Spoofing method, referred to as MS-FANS. MS-FANS is designed in an end-to-end manner.
Specifically, multiple face crops from different scales are fed into a convolutional neural network (CNN) to extract features. Then the features from different
scales are formed as a sequence which is sequentially fed into a Long Short-Term Memory (LSTM) network to generate the weight α for fusing the multi-scale
feature. Finally, the representation which adaptively fuses multi-scale information is used for the real vs. spoofing classification.

integrate multi-scale information, is used to determine whether
the input face image is a real face or attack one. The overall
architecture is optimized in an end-to-end manner.

Briefly, the contributions of this work can be summarized
as below:

1) This work integrates multi-scale information in the deep
neural network, which is optimized by data-driven fea-
ture learning and is superior to traditional hand-crafted
features.

2) The integration weights for fusing multiple scale infor-
mation is adaptively predicted from a LSTM for each
input image.

3) The proposed method achieves state-of-the-art perfor-
mance on several datasets.

This rest of this work is organized as follows: Section II
summaries and analyzes the existing face anti-spoofing works.
Section III presents a detailed description of our method, MS-
FANS. Section IV describes and discusses the experimental
evaluation. Finally, the work is concluded in Section V.

II. RELATED WORK

The face anti-spoofing methods can be roughly grouped
into hand-crafted feature based methods and learning based
methods especially those deep learning based methods.

A. Hand-crafted Feature Based Methods

A great number of methods put forward different types of
hand-crafted features to capture the texture difference between
the real faces and attacking ones, including LBP [1], [2], [3],
[4], [5], HOG [15], and SURF [16]. Boulkenafet et al. [6]
pay attention to HSV and Y CbCr color space. Bao et al.
proposed to employ Optical Flow Maps (OFM) [17] for face

anti-spoofing. Unlike normal hand-crafted feature of focusing
on the details of the face, Galbally et al. [18] proposed a
biometric liveness detection method for iris, fingerprint and
face images by using 25 image quality measures, and in
[19] Image Distortion Analysis (IDA) has been used for
robust face spoof algorithm. Using image quality measures
can enhance the generalization ability of the model, because
these methods capture the quality difference of face images
instead of capturing the facial details [19]. These hand-crafted
features generally perform very fast which is favorable for
real-time application. However, the discriminative ability of
them is usually deficient.

Motion-based methods distinguish real faces from attack-
ing faces by exploiting facial organs or local movements
such as eye-blinking [20], [21], and movement of lips [7].
These Motion-based methods usually perform better than the
above mentioned appearance-based methods. However, they
need collaboration from user which may be inapplicable for
those noninvasive scenarios. In addition, movement detection
depends on accuracy of landmark detection in the face, which
may affect the robustness of movement detection when the
landmark detection is inaccurate in some challenging condi-
tions.

B. Deep Learning Based Methods

Researchers have explored several ways to use convolutional
neural network (CNN) for face anti-spoofing. Yang et al. [9]
use CNN as feature extractor and support vector machine
(SVM) as classifier to distinguish genuine and spoofing faces.
In [10] , fine-tuned VGG-face model and PCA are respectively
used to extract deep part features and reduce the dimension.
Xu et al. [12] propose an LSTM-CNN architecture to learn
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the temporal structure from videos, and show that temporal
information is helpful for face anti-spoofing. In [11], Atoum
et al. firstly use patches to learn local features and then employ
the fully convolutional network (FCN) to learn holistic deep
features for anti-spoofing.

Deep learning based approaches can learn more discrimi-
native features, and have achieved promising performance for
anti-spoofing. Although [11] has some exploration of local and
global information, the above methods only exploit single-
scale information, leaving room for multi-scale information
fusion.

Face anti-spoofing may also be implemented with a variety
of other cues, including context [15], depth [22] and etc.
Komulainen et al. [15] introduce upper-body detection to help
face anti-spoofing. In [22], the depth images captured by Kine
are used and achieve remarkable results.

III. METHOD

The proposed multi-scale face anti-spoofing (MS-FANS)
method is designed as an end-to-end stack of a CNN and
an LSTM, of which the CNN aims for learning discriminative
feature and the LSTM for learning adaptive weights for fusing
features from multiple scales. Specifically, a CNN is firstly
used to extract features for face crops from multiple scales.
Secondly, an LSTM is exploited to learn the fusion weights
for features from different scales. Finally, all features are
aggregated according to the weights predicted from the LSTM
for final classification. The overall architecture is trained in
end-to-end manner with softmax loss for real face vs. spoofing
face classification like [12]. An overview of our MS-FANS is
shown in Fig. 2.

A. Feature Extraction with CNN

As mentioned above, the convolutional neural networks
(CNN) is used for feature extraction. Compared with hand-
crafted features which are designed empirically, CNN can
automatically learn feature representation from data and thus
has better modeling ability for more complex variations.
Conventionally, the structure of a CNN consists of several
convolutional layers for local feature representation, batch
normalization layer after each convolutional layer for conver-
gence acceleration, several fully connected layer for global
representation, and dropout layer to increase the generalization
of the network. Two types of exemplar CNN structure used in
this work are shown in the Table I.

For an input image I , the faces are cropped at multiple
scales si(i = 1, 2, . . . , n), denoted as xsi(i = 1, 2, . . . , n).
Formally, for each face crop the feature extracted from the
CNN is described as below:

fsi = CNN(xsi), i = 1, 2, . . . , n (1)

where n is the number of scales, i is the index of scale, si is
the ith scale, xsi is face region cropped at ith scale, and fsi
is the CNN feature for xsi . As exemplar with multiple scales
is shown in Fig. 3.

TABLE I
DETAILS OF TWO NETWORKS STRUCTURE USED IN THIS PAPER, A
SHALLOW ONE CNNS AND A DEEP ONE CNND . CONV(w, s,N)

DENOTES A CONVOLUTION LAYER WHICH HAS N FILTERS OF SIZE w × w
WITH STRIDE s; POOL(w, s) IS A w × w MAX-POOLING LAYER WITH

STRIDE s; FC(N) IS A FULLY CONNECTED LAYER WITH N NEURONS. ALL
THE CONVOLUTION LAYERS FOLLOWED BY A BATCH NORMALIZATION
LAYER. RELU IS USED AS THE NON-LINEAR ACTIVATION FUNCTION.

shallow network(CNNS ) deep network(CNND)
Input 112×112×3

Conv-1 conv(3,2,48) conv(3,1,32)
Pooling-1 pool(3,2) pool(3,2)

Conv-2 conv(3,2,96) conv(3,1,64)
Pooling-2 pool(3,2) pool(3,2)

Conv-3 - conv(3,1,128)
Pooling-3 - pool(3,2)

Conv-4 - conv(3,1,256)
Pooling-4 - pool(3,2)

FC-1 fc(1024) fc(2048)
FC-2 - fc(1024)

B. Multi-scale Feature Fusion with LSTM

Features from different scales usually play different roles,
and therefore an LSTM is exploited to fuse multi-scale features
by adaptively predicting the fusion weights. Another straight-
forward way of employing multi-scale information is concate-
nating or averaging them. The strategy of concatenation or
average considers all scales equally, which however are usually
not true. So we believe that our strategy of adaptive fusion can
well take advantage of multi-scale information by revealing the
different importance of each scale.

The features from different scales are related to each other.
To effective model the relationship, following [12] the LSTM
is used to analyze the different importance of each scale, i.e.
generate the weights for each scale. Specifically, the features
of different scale extracted from CNN are sequentially input
into the LSTM, and the LSTM sequentially outputs the weight
for each scale as follows (which is also shown in Fig. 2):

[αsi , hi] = LSTM(fsi , hi−1). (2)

Having the weight for each scale, the multi-scale features
are fused according to the following Eq. 3 to obtain the final
features for classification:

f =

n∑
i=1

αsifsi , (3)

where αsi is the weight of fsi generated from the LSTM and
f is the fused feature for final real vs. spoofing classification,
hi is the hidden state of LSTM model.

C. End-to-End Training

With the fused feature f , the final classification is model as
a two-class classification problem by using the softmax loss
as below:

Lf = softmax(f). (4)
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Fig. 3. Illustration of (a) the process of face cropping of each video frame including face detection, five points detection and face alignment; (b) face crops
in different scales.

In order to obtain more distinguishable features from CNN,
an auxiliary loss of real vs. spoofing classification is imposed
on the CNN features of each scale during training, which is
also formulated as softmax loss as follows:

Lfi = softmax(fsi). (5)

As a result, there are n auxiliary losses during the initial
training phase. Overall, the loss of the whole network L is
formulated as below:

L =

 Lf + 0.5
n∑

i=1

Lfsi
, iter < MAXITER

2

Lf , iter > MAXITER
2

(6)

where Lfsi
is the auxiliary loss for the feature fsi from ith

scale, Lf is the loss for the integrated multi-scale feature
f , and MAXITER is the maximum number of iterations
during training. As shown in Eq. 6, introducing the auxiliary
loss in the initial training phase can guide the CNN to learn
more distinguishable features and reduce the optimization
difficulty, while removing auxiliary loss in the late training
phase can ensure the whole network focus on optimizing
multi-scale feature fusion. The whole MS-FANS network can
be optimized end-to-end by using gradient descent as most
deep network do.

IV. EXPERIMENT

To assess of the effectiveness of our proposed multi-scale
face anti-spoofing method, MS-FANS, a series of experiments
are performed on two widely used datasets CASIA-FASD
[13] and Idiap REPLAY-ATTACK [1]. First, we analyze the
effectiveness of the adaptive multi-scale information fusion by
comparing it with the single-scale baseline and straightforward
fusion. Then, we compare our method with the state-of-the-art
methods.

A. Datasets and Pre-processing

The datasets of CASIA-FASD [13] and Idiap REPLAY-
ATTACK [1] are two commonly used datasets for face anti-
spoofing, mainly including print photos and video attacks.

a) CASIA-FASD : In CASIA-FASD dataset there are 50
subjects, and each subject contains 12 videos with 3 different
image quality: low quality, normal quality and high quality.
For attack videos in each quality, there are three different
attacks including warped photo attack, cut photo attack and
video replay attack. In the standard protocol, the dataset is
divided into train set and test sets, consisting of 20 and 30
subjects respectively.

b) Idiap: The Idiap REPLAY-ATTACK dataset contains
50 subjects with a total of 1300 videos. The dataset is divided
into train, development and test sets, including 15, 15 and
20 subjects respectively. The videos are in two kinds of
constraints and adverse light conditions. The attack videos
contain two types with the play device handheld or supported.

For both datasets, a preprocessing is conducted to obtain
face crops at different scales. All videos are decoded into
frames, and each frame is pre-processed separately. Firstly,
face detection [23] and points detection [24] are conducted to
get five facial landmarks including two eyes centers, one nose
tip, and two mouth corners. Then, according to the five points
each face is aligned to a canonical one. Finally, face crops of
128 × 128 at different scales are obtained by cutting out the
face region from the aligned frame. The process is shown in
Fig. 3a. For each frame, 7 scales are used as the baseline scale,
including 0.9, 1.0, 1.1, 1.2, 1.3, 1.4, 1.5 as shown in Fig. 3b.
On CASIA-FASD datset, the performance is evaluated in terms
of Equal Error Rate (EER), and on Idiap REPLAY-ATTACK
dataset the performance is evaluated in terms of Equal Error
Rate (EER) and Half Total Error Rate (HTER) following most
of the existing methods.

For the optimization of our MS-FANS, Pytorch toolkit [25]
is employed which is a platform that uses dynamic graphs
for neural network training. The stochastic gradient descent
(SGD) optimizer is used, the momentum is set as 0.9, weight
decay as 0.0005, and learning rate as 0.0002. The multi-steps
strategy is chosen to update the learning rate, that is, reduce the
learning rate as 0.1 of the original one after a certain number
of iterations. For each input image, 112× 112 random croped
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TABLE II
THE PERFORMANCE OF EACH SCALE ON CASIA-FASD DATASET. FOR
ALL SCALES, THE ARCHITECTURE OF THE NETWORK IS THE SAME, I.E.
CNNS DESIGNED IN TABLE I, AND ONLY THE SCALE OF THE INPUT IS

DIFFERENT.

Scale 0.9 1.0 1.1 1.2 1.3 1.4 1.5
EER(%) 5.93 6.09 5.26 4.67 4.84 4.74 5.55

TABLE III
PERFORMANCE OF DIFFERENT FUSION STRATEGIES IN TERMS OF EER(%)

ON CASIA-FASD DATASET. THE RESULTS FROM BEST SINGLE SCALE,
AVERAGING THE MULTI-SCALE INFORMATION, CONCATENATING THE

MULTI-SCALE INFORMATION, AND OUR ADAPTIVELY FUSING THE
MULTI-SCALE INFORMATION ARE REPORTED RESPECTIVELY.

Methods
Scale

[0.9,1.0,1.1] [1.0,1.1,1.2] [1.1,1.2,1.3] [1.2,1.3,1.4] [1.3,1.4,1.5]

Best Single Scale 5.26 4.67 4.67 4.67 4.74
Average 4.60 3.79 3.74 3.44 4.16
Concat 4.81 3.95 3.57 3.68 3.65

MS-FANS 4.18 3.89 3.15 3.30 3.29

region is used as input.

B. Ablation Analysis of Multi-scale Fusion

Firstly, we evaluate the performance of each scale to investi-
gate the effect of scale on performance. Here, the architecture
of the CNN is designed as the shallow network shown in
Table I, i.e. CNNS , and the softmax is directly used for
the classification of real face and spoofing. For all scales, the
architecture of the CNN is the same, but only the scale of
the input is different. The performance is evaluated on the
CASIA-FASD dataset and the results are showed in Table II.

As shown in Table II, the performance of different scales are
much different from each other, with the best EER up to 4.67%
and worst down to 6.09%. This demonstrates that different
scales play different roles for the distinguishment of real faces
from the spoofing faces, and it is hard to determine an optimal
scale to obtain a best result. Besides, it can be observed that
the performance first rises and then fall as the scale becomes
larger, which illustrating that the including a certain amount
of background can benefit the performance, but too much of
them might degrade the performance. The two observations
enlighten us naturally that it would be a better solution to
fuse the multi-scale information and adaptively determine the
importance of each scale.

Furthermore, we investigate the performance of different
strategies for fusing the multi-scale information on CASIA-
FASD dataset. For all methods, the shallow CNNS is used
as the base architecture, and for our MS-FANS an additional
LSTM with only 1 hidden node is stacked to predict the
fusion weight with very low cost. For the overall 7 scales,
three adjacent scales is taken as a group, ie. [0.9, 1.0, 1.1],
[1.0, 1.1, 1.2], [1.1, 1.2, 1.3], [1.2, 1.3, 1.4], [1.3, 1.4, 1.5]. For
the feature fusion, several commonly used strategies are eval-
uated in Table III: taking the best performance of all scales
denoted as “Best Single Scale”, averaging the multi-scale

information fsi denoted as “Average”, concatenating the multi-
scale information fsi as a long feature denoted as “Concat”,
and our adaptively fusing the multi-scale information fsi
denoted as “MS-FANS”.

The results are shown in Table III. As can be seen, all
of the fusing strategy including average, concatenation, and
our adaptive fusion perform better than the best scale, which
indicates that fusing multi-scale information can effectively
benefit the anti-spoofing. Moreover, our MS-FANS performs
the best in most cases and significantly reduces the EER
even up to 32.5%(from 4.67% to 3.15%), demonstrating the
effectiveness of our adaptive fusion of multi-scale information.

C. Comparison with the Existing Methods

Finally, we compare our MS-FANS with the state-of-the-
art methods on CASIA-FASD and Idiap REPLAY-ATTACK
datasets. Here, a deeper architecture CNND shown in Table
I is used for MS-FANS for fair comparison as most of the
existing methods employ a larger network than ours. On
both datasets, we follow the standard protocol as the existing
methods do, and the results of the existing methods are directly
copied from the original works. For our MS-FANS, we only
report the results of the best scale group, i.e. [1.1, 1.2, 1.3] on
CASIA-FASD and [1.3, 1.4, 1.5] on Idiap REPLAY-ATTACK,
although the results of different scale group is slightly differ-
ent.

The results on CASIA-FASD dataset is shown in Table
IV. As can be seen, our MS-FANS with deep architecture
outperforms all the other methods and even our MS-FANS
with shallow architecture performs better than most of the
deep CNN based methods. Besides, the computation com-
plexity in terms of FLOPS of our MS-FANS with both
architecture is much smaller than the existing methods. The
results demonstrate that our MS-FANS is an effective method
for adaptively exploring the multi-scale information, leading
to better performance even with much smaller computation
complexity.

The results on Idiap REPLAY-ATTACK dataset is shown in
Table V. From the results, the same conclusion can be obtained
that our adaptive fusion of multi-scale information can better
distinguish the real faces from the spoofing faces. Another
observation is that on this dataset our MS-FANS with deep
architecture CNND performs worse than that with shallow
CNNS . This probably because that this dataset is simpler
and the deep architecture is easily to overfit considering the
overall performance on this dataset is better than that on
Idiap REPLAY-ATTACK dataset. Our MS-FANS with shallow
network architecture achieves 0.002% EER which almost does
the anti-spoofing perfectly.

V. CONCLUSION AND FUTURE WORK

This paper introduces an approach of adaptive fusion of
multi-scale information for face anti-spoofing, which performs
much better than the single-scale methods and most existing
deep methods. In our proposed MS-FANS, a CNN used for
extracting the features of different scale input and an LSTM
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TABLE IV
COMPARISON WITH THE EXISTING METHODS ON CASIA-FASD DATASET

IN TERMS OF EER. THE SYMBOL † REFERS TO CNN-BASED METHODS.
FLOPS IS THE NUMBER OF MULTIPLY AND ADD IN THE FORWARD
PROCESSING. DUE TO THE LOW COMPUTATIONAL COMPLEXITY OF

HAND-CRAFTED FEATURES, WE ONLY COMPARE FLOPS OF CNN-BASED
METHODS. FOR MS-FANS, WE USE THE SUM FLOPS OF THREE SCALES.

Method EER(%) FLOPS
†Fine-tuned VGG-Face [10] 5.20 30.919G

†DPCNN [10] 4.50 30.919G

†Yang et al. [9] 4.92 0.349G

†LSTM-CNN [12] 5.17 3.045G

Boulkenafet et al. [6] 6.20 -
Siddiqui et al. [14] 3.14 -

Boulkenafet et al. [16] 2.8 -
†Atoum et al. [11] 2.67 42.045G

[1.1, 1.2, 1.3]CNNS
(Ours) 3.15 0.075G

[1.1, 1.2, 1.3]CNND
(Ours) 2.40 0.768G

TABLE V
COMPARISON WITH THE EXISTING METHODS ON IDIAP

REPLAY-ATTACK DATASET IN TERMS OF EER AND HTER. THE
SYMBOL † REFERS TO CNN-BASED METHODS. FLOPS IS THE NUMBER OF

MULTIPLY AND ADD IN FORWARD PROCESSING. WE ONLY COMPARE
FLOPS OF CNN-BASED METHODS.

Method EER(%) HTER(%) FLOPS
†Fine-tuned VGG-Face [10] 8.40 4.30 30.919G

†DPCNN [10] 2.90 6.10 30.919G

†Yang et al. [9] 2.14 - 0.349G

Boulkenafet et al. [6] 0.40 2.90 -
Boulkenafet et al. [16] 0.10 2.20 -
†Atoum et al. [11] 0.79 0.72 41.825G

[1.3, 1.4, 1.5]CNNS
(Ours) 0.002 0.24 0.075G

[1.3, 1.4, 1.5]CNND
(Ours) 0.02 0.39 0.768G

used for adaptive fusion of multi-scale features is formulated
as an end-to-end pipeline. Experimental results on two datasets
show that our method achieves state-of-the-art performance,
demonstrating the effectiveness of our proposed method for
face anti-spoofing. In this work, the scale group is manually
determined, and in future we will explore to predict the
scale group automatically. Moreover, how to fuse multi-scale
information for video face anti-spoofing is also an interesting
future work.
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