
Task-adaptive Feature Reweighting for Few Shot
Classification

Nan Lai1,2[0000−0001−9549−7715], Meina Kan1,3[0000−0001−9483−875X], Shiguang
Shan1,3[0000−0002−8348−392X], and Xilin Chen1,3[0000−0003−3024−4404]

1 Key Lab of Intelligent Information Processing of Chinese Academy of Sciences,
Institute of Computing Technology, CAS, Beijing 100190, China

{lainan,kanmeina,sgshan,xlchen}@ict.ac.cn
2 University of Chinese Academy of Sciences, Beijing 100190, China

3 CAS Center for Excellence in Brain Science and Intelligence Technology,
Beijing, China

Abstract. Few shot classification remains a quite challenging problem
due to lacking data to train an effective classifier. Lately a few works
employ the meta learning schema to learn a generalized feature encoder
or distance metric, which is directly used for those unseen classes. In
these approaches, the feature representation of a class remains the same
even in different tasks4, i.e. the feature encoder cannot adapt to dif-
ferent tasks. As well known, when distinguishing a class from different
classes, the most discriminative feature may be different. Following this
intuition, this work proposes a task-adaptive feature reweighting strate-
gy within the framework of recently proposed prototypical network [6].
By considering the relationship between classes in a task, our method
generates a feature weight for each class to highlight those features that
can better distinguish it from the rest ones. As a result, each class has
its own specific feature weight, and this weight is adaptively different
in different tasks. The proposed method is evaluated on two few shot
classification benchmarks, miniImageNet and tieredImageNet. The ex-
periment results show that our method outperforms the state-of-the-art
works demonstrating its effectiveness.

Keywords: few shot classification · feature reweighting · meta-learning.

1 Introduction

In recent years, deep learning has achieved impressive performance on image
classification task [1–4]. Despite the success, it requires a large amount of data
to update massive parameters. In contrast, the human visual system can learn
a new visual concept quickly from few data. The ability of learning quickly
from few data is very important for an artificial visual system, as in practice

4 In meta learning, a task of few shot classification involves a set of labeled examples
(support set) and a set of unlabeled examples (query set) to be classified. The goal
is to get a classifier for the classes in the support set.

2 N. Lai, M. Kan et al.

labeling data manually is very expensive and training on a large scale dataset is
time-consuming. Few shot classification is such a kind of technique that aims to
recognize a set of new classes from few examples. The challenge of this problem
is how to get an effective classifier from few data and limited class variation.

A straightforward approach is fine-tuning a pre-trained model by using those
new classes in a task. However, this would cause overfitting problem, especially
when the classes for pre-training have large discrepancy with the new class-
es [19]. Although regularization methods can be used to alleviate the overfitting
problem to some extent, they cannot fully solve it. Lately, a new trend of few
shot classification methods arises, i.e. quite a few works apply meta learning
to few shot classification. For example, MAML [10] attempts to get a model
to be easy to fine-tune by learning a good network initialization such that a
small number of update steps with few data could produce good generalization
performance on a new task. Matching Network [12] learns a network to get the
embeddings of few labeled examples and unlabeled queries, over which a cosine
similarity metric is used to predict the label of each query. Prototypical Net-
work [6] learns a generalized distance metric space in which classification can be
performed by computing distances with prototype representations of each class.
On miniImageNet, these approaches significantly outperform the straightfor-
ward fine-tuning methods, e.g. more than 10% improvement [12], making meta
learning quite promising for few shot classification. The effectiveness of meta
learning may benefit from its ability of learning to learn generalized knowledge
across different tasks, which can be transferred to a new task.

Among the meta-learning approaches, prototypical network [6] is a fairly
simple and elegant solution, and thus attracts much attention. In this work, we
attempt to extend prototypical network [6] to further improve its performance.
In this method as well as other existing approaches, the feature representation
of a class remains the same even in different tasks. This means that the feature
encoder cannot adapt to a specific task using the peculiar discriminant informa-
tion of the task, e.g. the relationship of classes in this task. As well known, when
distinguishing a class from different classes, the most discriminative feature is
different, e.g. when distinguishing a dog from a cat the head plays a crucial role,
while the neck matters most when distinguishing a dog from a giraffe.

Following above intuition, this work proposes a task-adaptive feature reweight-
ing strategy within the framework of prototypical network [6]. Specifically, our
method consists of three components, a feature encoder, a weight generator and
a classifier, among which the generator is newly introduced module in this work.
By considering the discrepancy between a class and the rest ones, the generator
produces a feature weight for each class to highlight those most discriminative
features to distinguish it from the rest classes. As a result, when compared with
different classes, the same class is equipped with different feature weights to
focus on different features for better classification. Hence, this method is more
discriminative than prototypical network [6]. From the point of view of meta
learning, the weight generator is a meta-learner, which learns to pick out those
most discriminative features between a class and the other classes to be com-

Task-adaptive Feature Reweighting for Few Shot Classification 3

pared with. By training the network across different tasks as most meta learning
methods do, the weight generator generalizes well to a new task. Experimental
results on two commonly used few shot classification benchmarks, miniImageNet
and tieredImageNet, show that our proposed method outperforms the state-of-
the-art works demonstrating its effectiveness.

2 Related Work

Generative Approaches. In the early stage of few shot classification, most
works employ generative models to solve this problem. One of the earliest work [20]
develops a Bayesian probabilistic model on the features of previous classes with
the premise that a prior from previous classes could be generalized to novel
classes. Hierarchical Bayesian Program learning method [16] proposes to use a
hierarchical Bayesian model to construct handwritten characters from strokes
for digital classification. [11] proposes to compose characters from patches and
construct an AND-OR graph using patches to represent each character object.
Such powerful generative models perform well on classes with limited intra-class
variation such as handwritten characters. However, these models cannot capture
the vast variation for unconstrained classes.

Regularization and Data Augmentation Approaches. Regularization
technique is a natural way to alleviate the overfitting problem, making fine-
tuning a pre-trained model feasible for few shot classification. [8] proposes to
group the parameters of a network into clusters and the parameters in the same
cluster share the same weight and gradient, which effectively regularizes the
dimensionality of parameter search space. Another straightforward method for
few shot classification is data augmentation. In addition to regular augmentation
techniques, e.g. random crop and rotation, color jittering and PCA jittering,
modern generative networks [24, 27, 26, 28, 29] are proposed to generate realistic
images. Despite significant progress, these models suffer from the problem of
mode collapse and training instability.

Meta-Learning Approaches. Lately, meta learning becomes a popular
way to solve few shot recognition problem. Meta learning learns at two lev-
el: 1) learns a meta-learner which extracts knowledge through a slow learning
phase across all tasks and 2) then learns rapidly for a target task using the
meta-learner. The strategy of training across different tasks makes the learned
model(i.e. the meta-learner) well generalize to novel tasks. MAML [10] learns a
good initialization of networks across all tasks. On the basis of this initialization,
only few updates of parameters are enough to achieve a good performance on a
new target task. Meta-SGD [9] learns a meta-learner that can not only give an
initialization to a network but also give update direction and learning rate to
any differentiable learner such that it can learn effectively from a few examples
even in one step. Some other works [12, 6, 14] learn a distance metric across
tasks that can be transferred to the target task. Matching Network [12] learns
a network that can extract full context representation for few labeled examples
and queries and then uses cosine similarity to predict the label of queries. Pro-

4 N. Lai, M. Kan et al.

totypical Network [6] builds a prototype for each class, which is computed as
the average of samples in that class, and then computes the similarity between
a query and each prototype via Euclidean distance. Different from [12, 6], Re-
lation Network [14] directly learns a nonlinear similarity metric to compute the
similarity of two images.

Memory-based Approaches. There are some works that use memory-
based networks for few shot classification task. Memory networks are networks
augmented with an external memory that can be read and written based on
location and content. The external memory is used to store knowledge or past
experience that is useful for few shot recognition task. In [7], the few shot clas-
sification task is formalized as a sequence classification problem. At each time
step, an LSTM controller read past experience from external memory and writes
current feature to external memory. And the retrieved memory is used to classify
current image. Here the external memory is used to hold data samples presented
at previous steps. In [5], two memory components are introduced, one called
external memory used to store representations of a large set of auxiliary classes,
and the other called abstraction memory used to store concise information re-
lated to target categories. Read operation is defined on the external memory to
retrieve related information from auxiliary classes. Two operations are defined
on the abstraction memory, one read operation to retrieve useful memory from
the abstraction memory to classify current query and one write operation which
updates the abstraction memory using the information of current query and the
retrieved memory from external memory. To use memory networks, the key is
to design how to handle the memory. And until now how to train a memory
network is still a challenging problem.

3 Method

3.1 Problem

Few shot classification aims at getting an effective classifier by only using few
examples for each class. A few shot classification task generally involves a support
set S containing few labeled examples and a query set Q containing examples to
be classified. If the support set contains N unique classes and K examples for
each of these classes, the task is called N-way K-shot classification.

Recently meta learning is widely used to few shot classification task. Meta
learning, also referred to as learning to learn, endeavors to learn from sparse
data rapidly. It learns at two level, a gradual learning process for a meta learner
which can guide a rapid learning process for a learner targeting a specific task.
Meta learning approaches usually consists of two phases, meta training and meta
testing. In meta-training phase, a meta learner is trained across different tasks
sampled from a meta dataset. The meta dataset is usually a large labeled dataset
containing C classes with many samples for each class, and has no overlap with
the support set and query set of the testing task. In each training iteration,
the meta learner randomly samples a N-way K-shot task from meta dataset to
mimic the testing task. The selected support set together with the query set

Task-adaptive Feature Reweighting for Few Shot Classification 5

can also be called an episode. The meta learner is optimized by minimizing the
classification loss on the query set in this episode. As the training process goes
on, different tasks, i.e. different episodes, are sampled and used to train the
meta learner. Therefore, the meta learner can learn useful and well generalized
knowledge across different tasks. In the phase of meta-testing, the trained meta
learner is directly used for a novel classification task.

Encoder

Support set

Query

 q

P1

P2

P3

P4

P5

Fig. 1. Prototypical Network [6]. It consists of an encoder used to extract feature and
a non-parameterized classifier. The classifier computes a probability distribution over
classes of query x based on its distance with the prototypes.

3.2 Baseline Method: Prototypical Network [6]

Prototypical network is one of the state-of-the-art meta-learning methods for
few shot classification. It is used as the baseline of our method considering its
simplicity and effectiveness. Prototypical network consists of two modules, an
encoder and a non-parameterized classifier, as shown in Fig. 1. The encoder E
maps an input image I into a feature representation z in an embedding feature
space Z, i.e.,

z = E(I) (1)

where the encoder E is usually structured as a four-layer convolutional network.
In the embedding feature space, a prototype for each class pi is computed as the
mean of the few examples in the support set, formulated as follows:

pi =
1

K

K∑
k=1

zki (2)

where zki is the k-th sample of i-th class in the support set. The classifier produces
a softmax-like distribution over classes of a query x based on its Euclidean

6 N. Lai, M. Kan et al.

distances with the prototypes:

p(y = i|x) =
exp(−d(x, pi))∑N
j=1 exp(−d(x, pj))

, i = 1, 2, · · · , N. (3)

d(x, pi) = ‖x− pi‖22, i = 1, 2, · · · , N. (4)

where p(y = i|x) is the probability of predicting query x as the i-th class. Us-
ing the standard cross-entropy loss as supervision signal, the whole network is
trained across different tasks from scratch in an end-to-end manner.

In testing phase, the encoder E is directly used to a novel task to extract
the feature representation of samples in support set and query set. Finally, the
classification of a query sample is simply performed by finding the nearest class
prototype under the Euclidean distance metric.

3.3 Our Method: Task-Adaptive Prototypical Network

In prototypical network [6], the learned feature representation is generally dis-
criminative across many tasks, but not finely carved for a specific testing task.
As well known, when distinguishing a class from different classes, the most dis-
criminative features are different. For example, when distinguishing snow from
hail, the most discriminative feature is its shape, while distinguishing snow and
soil the most discriminative feature turns to color. In other words, a feature
representation across the board is not optimal, and a carved one for the specific
task is preferred. Following this intuition, this work proposes a task-adaptive
feature reweighting strategy to extend prototypical network [6] for further im-
provement. Feature weighting highlights those most discriminative features that
can distinguish a class from the rest classes in the same task, not from all other
classes. When distinguishing one class from different classes in different tasks,
those highlighted features are different. Thus our proposed network is called as
Task-adaptive Prototypical Network.

Overall Framework. As Fig. 2 shows, our proposed task-adaptive Proto-
typical Network consists of three main components, an encoder used to extract
features of examples, a feature weight generator used to produce a feature weight
for each class and a non-parameterized classifier used for final classification. The
feature weight generator is the newly introduced in this work and the rest two
parts are the same as prototypical network [6].

In detail, for a N-way K-shot classification task, the images of the support
set are fed into the encoder and the encoder outputs a feature representation for
each image. Then these features are fed into the weight generator module and
the module produces a feature weight for each class, which is used to re-weight
the features of this class. Based on the feature weights, the distance between a
query sample x and the i-th prototype pi is computed as below:

d(x, pi) = ‖wi · x− wi · pi‖22 (5)

Task-adaptive Feature Reweighting for Few Shot Classification 7

Encoder

Support set

Query

 q

P1

P2

P3

P4

P5

w1

w2

w3

w4

w5

[sub,abs,avg]

Weight generator

[sub,abs,avg]

Fig. 2. Our task-adaptive prototypical network is an extension of Prototypical Net-
work [6]. It consists of three components, an encoder used to extract feature, a newly
introduced weight generator used to produce feature weight for each class and a non-
parameterized classifier. The classifier computes a probability distribution over classes
of query x based on its distance with the re-weighted prototypes.

where wi is weight vector, pi and x are feature vectors and · means dot product
operation. The probability of query x belonging to the i-th class is computed as:

p(y = i|x) =
exp(−‖wi · x− wi · pi)‖22)∑N

j=1 exp(−‖wj · x− wj · pj)‖22)
(6)

Similar to prototypical network [6], in training phase the parameters of the
encoder and weight generator can be easily optimized by using the standard
cross-entropy loss as supervision signal in an end-to-end manner. In the testing
phase, the encoder and weight generator is directly used to a novel task.

Weight generator module. It is obvious that the most discriminative fea-
ture for a class would be among those features that are different between this
class and the rest ones in the same task. Therefore, the weight generator takes the
feature differences between the classes as input and outputs the feature weights.

Specifically, the weight generator is structured as a small sub-network with
several convolutional layers, denoted as G. As shown in Fig. 3, given a support
set S of a N-class K-shot task, the weight generator computes the feature weight
of one class based on the feature differences between its prototype and the rest
ones, which can be formalized as:

wi = G

(∣∣∣∣pi − 1

N − 1

∑
j 6=i

pj

∣∣∣∣) (7)

where wi is the feature weight vector of the i-th class with each value between
0 and 1 and its dimension is the same as feature dimension.

The generator targets to learn how to compute discriminating power of a
feature based on its inter-class variation, i.e. feature differences. Here we adopt

8 N. Lai, M. Kan et al.

convolutional structure to model G. The reasons are two-folded. The first one is
that sharing the same kernel in the way of convolution can reduce the parameters.
The second one is that the feature weight is only related to feature variations
rather than the feature itself, which means that different features can use the
same parameters to compute their weights. Hence the generator can be naturally
implemented as a convolutional structure.

This whole task-adaptive network is trained from scratch using the schema
of meta learning. The standard cross-entropy loss function is taken as the su-
pervision signal, and the back propagation and gradient descent algorithm are
used to optimize the following objective in an end-to-end manner:

min
E,G

L =
∑
I∈Q
−log(p(y = yI |I)) (8)

where I is an image in the query set Q of an episode and yI is the ground truth
label of image I.

p1

p2

p3

p4

p5

abs(p2-avgj≠2{pj})

abs(p3-avgj≠3{pj})

abs(p4-avgj≠4{pj})

abs(p5-avgj≠5{pj})

abs(p1-avgj≠1{pj})

Conv-block

Inter-class variation

w1

w2

w3

w4

w5

Fig. 3. The weight generator in the 5-way 1-shot classification scenario. For each class,
the feature differences between its prototype and the other four prototypes are comput-
ed and averaged as inter-class variation. Then the inter-class variation together with
its prototype are fed into a convolution block and the feature weight is produced. The
weight generator is trained together with the encoder in an end-to-end way.

4 Experiments

Our proposed method is evaluated by comparing it with the state-of-the-art
ones [6, 10, 12, 9, 14] on two few shot classification benchmarks, miniImageNet [12]
and tieredImageNet [21].

Task-adaptive Feature Reweighting for Few Shot Classification 9

4.1 Experimental Setting

In our experiments, the encoder is composed of four convolutional blocks as
prototypical network [6]. The newly introduced weight generator consists of one
tiny convolutional block with kernel shared to significantly reduce the number
of parameters. A detailed structure is listed in Table 1. The whole network is
trained from scratch via Adam with random initialization.

For fair comparison, all methods are evaluated on the same evaluation setting,
i.e. 600 episodes are randomly sampled from the test set, with each episode
containing 15 query images per class in both 1-shot and 5-shot scenarios. The
final classification performance is computed as the average classification accuracy
over these 600 episodes.

Table 1. The structure of our Task-adaptive Prototypical Network. Here, conv(nxn,c)
means a convolutional layer with c channels and n is the kernel size. bn means batch
normalization layer and relu is the non-linear ReLU activation layer. max-pool(nxn) is
a max-pooling layer with nxn kernel size.

Encoder Weight

block1 block2 block3 block4 Generator

conv(3x3,64)

bn

relu

max-pool(2x2)

conv(3x3,64)

bn

relu

max-pool(2x2)

conv(3x3,64)

bn

relu

max-pool(2x2)

conv(3x3,64)

bn

relu

max-pool(2x2)

conv(3x3,2)

relu

conv(1x1,1)

4.2 Few-shot Classification on miniImageNet

miniImageNet, firstly proposed by Matching Network [12], is a subset of ILSVRC-
12 dataset [22]. This dataset contains 100 classes with 600 images in each class.
We use 64 classes as training set, 16 classes as validation set and the remaining
20 classes as test set, same as the compared methods for fair comparison. All
the images are resized to 84x84. In training process, each episode contains 30
classes and 15 queries for each class on the 1-shot scenario, and 20 classes with
15 queries for each class on the 5-shot scenario.

Table 2 shows the performance of few shot classification on the miniImageNet.
From Table 2, we can see that the Prototypical Network [6] performs the best in
5-shot scenario among the existing works, but only ordinarily in the 1-shot sce-
nario. With the proposed feature re-weighting strategy, our method outperforms
the Prototypical Network and other existing works in both 1-shot and 5-shot sce-
narios, especially on the one-shot scenario. Compared to Relation Network [14],
our model with half number of parameters gets a nearly 2% higher performance
on the 1-shot scenario and a nearly 4% improvement on the 5-shot scenario.

10 N. Lai, M. Kan et al.

The superior performance on this dataset demonstrates the effectiveness of our
proposed feature re-weighting strategy. Moreover, the reweighting strategy can
be easily integrated into any other framework besides prototypical network [6].

Table 2. Few-shot classification accuracies on miniImagenet. All accuracy results
are averaged over 600 test episodes and are reported with 95% confidence interval-
s. The performances of other methods are copied from their report. ‘Y’ in column
Finetune means the method fine-tunes the model learned at meta-training stage for a
test episode. The best-performing method is highlighted.

5-way

Model Finetune 1-shot 5-shot

Matching network [12] N 43.56%±0.84% 55.31%±0.73%

MAML [10] Y 48.70%±1.84% 63.11%±0.92%

Prototypical network [6] N 49.42%±0.78% 68.20%±0.66%

Graph network [13] N 50.33%±0.36% 66.41%±0.63%

Meta-SGD [9] Y 50.47%±1.87% 64.03%±0.94%

Relation network [14] N 50.44%±0.82% 65.32%±0.70%

Ours N 52.10%±0.60% 69.07%±0.53%

4.3 Few-shot Classification on tieredImageNet

tieredImageNet is another larger dataset for few shot classification. It is proposed
in [21]. Like miniImageNet, it is also a subset of ILSVRC-12 [22]. This dataset
contains 34 categories and 608 classes in total, with each category containing
between 10 and 30 classes. These categories are split into 20 for training, 6 for
validation and 8 for testing. The classes in one category belong to the same
high-level concept. Hence, the training classes are sufficiently distinct from the
testing classes, making tieredImageNet a more challenging dataset.

The results are shown in Table 3. From Table 3 we can see that on this
more challenging dataset, our method also achieves state-of-the-art performance
on both the 1-shot and 5-shot scenarios demonstrating the effectiveness of the
feature re-weighting strategy again.

4.4 Visualization of Generated Feature Weight

To better understand the weight generator, we further visualize the feature
weights to see if it learned those most discriminative features between class-
es. Fig. 4 shows the learned feature weights of two tasks, one comparing a horse

Task-adaptive Feature Reweighting for Few Shot Classification 11

Table 3. tieredImagenet few shot classification performance. All accuracy results are
averaged over 600 test episodes and are reported with 95% confidence intervals. The
performances of other methods are achieved by running their released code. ‘Y’ in
column Finetune means the method fine-tunes the model learned at meta-training
stage for a test episode. For each task, the best-performing method is highlighted.

5-way

Model Finetune 1-shot 5-shot

Matching network [12] N 40.75%±0.80% 51.13%±0.71%

MAML [10] Y 44.83%±1.85% 66.41%±0.09%

Meta-SGD [9] Y 49.90%±1.92% 65.97%±0.09%

Graph network [13] N 50.84%±0.36% 68.67%±0.63%

Prototypical network [6] N 52.12%±0.68% 69.82%±0.58%

Relation network [14] N 53.71%±0.94% 70.28%±0.77%

Ours N 53.85%±0.67% 72.36%±0.56%

to a donkey, the other comparing this horse to a zebra. Here, the visualization of
one weight value is achieved by computing the gradient with respect to the input
image of the feature equipped with this weight value [30]. By this way, what the
feature equipped with one specific weight value looks like can be visualized. As
can be seen, when comparing a horse with a donkey, the feature with the top
three largest weight value focus on its head totally different from the head of the
donkey. And when comparing the same horse with a zebra, the features with the
top three largest weight values focus on its partial body without black and white
strips which is the most different between these two classes. As expected, the
most highlighted feature of the same class under different tasks is different. This
result proves that the feature weight produced by the weight generator truly
highlights those most discriminative features and is adaptive to different tasks.

We provide more visualization results of generated weights, including success
cases shown in Fig. 5 and failure cases shown in Fig. 6. These success cases further
verify the effectiveness of our proposed weight generator. The failures could be
roughly categorized into two kinds. The first category is caused by distraction
of background with rich texture (see a,d in Fig. 6) and high-contrast global
features(see b in Fig. 6). In some other cases, the features with larger weights
are missing or occluded in the respective original images(see the black gradient
images in c,e,f of Fig. 6).

Morover, Fig. 7 shows some success and failure classification cases of our
method and prototypical network [6]. From the figure, we can see that for those
middle-level hard queries prototypical network [6] fails to classify, our method
can handle them successfully.

12 N. Lai, M. Kan et al.

vs

vs

Fig. 4. Feature weight visualization for two different tasks. The first two columns are
two classes to be compared in support set. The remaining three columns show the
feature equipped with the top three largest weight of the horse.

(a) (b) (c) (d)

(e) (f) (g) (h)

vs vs vs vs

vs vs vs vs

Fig. 5. Visualization of features with top-3 largest weights for each class in 2-way
1-shot setting. Eight success cases given. From these examples we can see that our
reweighting mechanism truly highlights those most discriminative features.

(a) (b) (c)

(d) (e) (f)

vs vs vs

vs vs vs

Fig. 6. Visualization of features with top-3 largest weights for each class in 2-way 1-
shot setting. Six failure cases given. Failures can be categorized into two kinds: one
caused by the distraction of background or high-contrast global feature, e.g. a,b,d, and
the other caused by missing (occluded) feature e.g. c,e,f.

Task-adaptive Feature Reweighting for Few Shot Classification 13

Fig. 7. An example of a 5-way 1-shot classification. The first row and the second
row are respectively the support set and the query set. The third row and the fourth
row respectively show the classification accuracy of prototypical network [6] and our
method.

5 Conclusions

In this work, we propose a novel task-adaptive feature reweighting module to
extend the recent prototypical network [6] for better classification performance.
The newly introduced feature reweighting module can highlight those most dis-
criminative features of each class to better distinguish it from the rest ones. As a
result, each class has its own feature weights and these feature weights are adap-
tively different in different tasks. We conduct extensively experiments to evaluate
the effectiveness of our method. On one hand, we qualitatively demonstrate that
the feature weights produced by the weight generator can truly highlight those
most discriminative features of each class and are adaptive to different tasks.
On the other hand, quantitative experimental results show that our method can
achieve the state-of-the-art performance on two commonly used benchmarks for
few shot classification task demonstrating the effectiveness of our method.

6 Acknowledgements

This work was partially supported by National Key R&D Program of China
under contracts No.2017YFA0700804 and Natural Science Foundation of China
under contracts Nos.61650202, 61772496, 61402443 and 61532018.

References

1. Krizhevsky A., Sutskever I., Hinton G.: ImageNet Classification with Deep Convo-
lutional Neural Networks. In: Advances in Neural Information Processing Systems
(NIPS) (2012)

2. Szegedy C., Liu W., Jia Y., Sermanet P., Reed S., Anguelov D., Erhan D., Van-
houcke V., Rabinovich A.: Going Deeper with Convolutions. In: IEEE Conference
on Computer Vision and Pattern Recognition (CVPR) (2015)

14 N. Lai, M. Kan et al.

3. He K., Zhang X., Ren S., Sun J.: Deep Residual Learning for Image Recognition.
In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016)

4. Huang G., Liu Z., Maaten L., Weinberger K.: Densely Connected Convolutional Net-
works. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
(2017)

5. Xu Z., Zhu L., Yang Y.: Few-shot Object Recognition from Machine-labeled Web
Images. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
(2017)

6. Snell J., Swersky K., Zemel R.: Prototypical Networks for Few-shot Learning. In:
Advances in Neural Information Processing Systems (NIPS) (2017)

7. Santoro A., Bartunov S., Botvinick M., Wierstra D., Lillicrap T.: Meta-learning
with Memory-augmented Neural Networks. In: International Conference on Machine
Learning (ICML) (2016)

8. Yoo D., Fan H., Boddeti V., Kitani K.: Efficient K-Shot Learning with Regularized
Deep Networks. In: AAAI Conference on Artificial Intelligence (AAAI) (2018)

9. Li Z., Zhou F., Chen F., Li H.: Meta-SGD: Learning to Learn Quickly for Few Shot
Learning. CoRR abs/1707.09835 (2017)

10. Finn C., Abbeel P., Levine S.: Model-Agnostic Meta-Learning for Fast Adaptation
of Deep Networks. In: International Conference on Machine Learning (ICML) (2017)

11. Wong A., Yuille A.: One shot Learning via Compositions of Meaningful Patches.
In: IEEE International Conference on Computer Vision (ICCV) (2015)

12. Vinyals O., Blundell C., Lillicrap T., Kavukcuoglu K., Wierstra D.: Matching Net-
works for One Shot Learning. In: Advances in Neural Information Processing Sys-
tems (NIPS) (2016)

13. Satorras V., Estrach J.: Few-Shot Learning with Graph Neural Networks. In: In-
ternational Conference on Learning Representations (ICLR) (2018)

14. Sung F., Yang Y., Zhang L., Xiang T., Torr P., Hospedales T.: Learning to Com-
pare: Relation Network for Few-Shot Learning. In: IEEE Conference on Computer
Vision and Pattern Recognition (CVPR) (2018)

15. Koch G.., Zemel R., Salakhutdinov R.: Siamese Neural Networks for One-shot
Image Recognition. In: ICML Workshop on Deep Learning (2015)

16. Lake B., Salakhutdinov R., Tenenbaum J.: Human-level Concept Learning through
Probabilistic Program Induction. Science (2015)

17. Salakhutdinov R., Tenenbaum J., Torralba A.: One-shot Learning with a Hierar-
chical Nonparametric Bayesian Model. In: ICML Workshop on Unsupervised and
Transfer Learning (2012)

18. Hariharan B., Girshick R.: Low-shot Visual Recognition by Shrinking and Hallu-
cinating Features. In: IEEE International Conference on Computer Vision (ICCV)
(2017)

19. Yosinski J., Clune J., Bengio Y., Lipson H.: How Transferable are Features in Deep
Neural Networks? In: Advances in Neural Information Processing Systems (NIPS)
(2014)

20. Li F., Fergus R., Perona P.: One-shot Learning of Object Categories. IEEE Trans-
actions on Pattern Analysis and Machine Intelligence (TPAMI) (2006)

21. Ren M., Triantafillou E., Ravi S., Snell J., Swersky K., Tenenbaum J., Larochelle
H., Zemel R.: Meta-Learning for Semi-Supervised Few-Shot Classification. In: IEEE
Conference on Computer Vision and Pattern Recognition (CVPR) (2018)

22. Russakovsky O., Deng J., Su H., Krause J., Satheesh S., Ma S., Huang Z., Karpa-
thy A., Khosla A., Bernstein M., Berg A., Li F.: ImageNet Large Scale Visual
Recognition Challenge. International Journal of Computer Vision (IJCV) (2015)

Task-adaptive Feature Reweighting for Few Shot Classification 15

23. Guo L., Zhang L.: One-shot Face Recognition by Promoting Underrepresented
Classes. CoRR abs/1707.05574 (2017)

24. Goodfellow I., Pouget-Abadie J., Mirza M., Xu B., Warde-Farley D., Ozair S.,
Courville A., Bengio Y.: Generative Adversarial Nets. In: Advances in Neural In-
formation Processing Systems (NIPS) (2014)

25. Rezende D., Mohamed S., Wierstra D.: Stochastic Backpropagation and Approxi-
mate Inference in Deep Generative Models. In: International Conference on Machine
Learning (ICML) (2014)

26. Mirza M., Osindero S.: Conditional Generative Adversarial Nets. CoRR ab-
s/1411.1784 (2014)

27. Radford A., Metz L., Chintala S.: Unsupervised Representation Learning with
Deep Convolutional Generative Adversarial Networks. CoRR abs/1511.06434 (2015)

28. Mao X., Li Q., Xie H., Lau R., Wang Z., Smolley S.: Least Squares Generative Ad-
versarial Networks. In: IEEE International Conference on Computer Vision (ICCV)
(2017)

29. Gulrajani I., Ahmed F., Arjovsky M., Dumoulin V., Courville A.: Improved Train-
ing of Wasserstein GANs. In: Advances in Neural Information Processing Systems
(NIPS) (2017)

30. Simonyan K., Vedaldi A., Zisserman A.: Deep Inside Convolutional Networks: Visu-
alising Image Classification Models and Saliency Maps. CoRR abs/1312.6034 (2013)

