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Abstract— In this paper, we propose a new scheme called
Prototype Hyperplane Learning (PHL) for face verification in
the wild using only weakly labeled training samples (i.e., we only
know whether each pair of samples are from the same class or
different classes without knowing the class label of each sample)
by leveraging a large number of unlabeled samples in a generic
data set. Our scheme represents each sample in the weakly
labeled data set as a mid-level feature with each entry as the
corresponding decision value from the classification hyperplane
(referred to as the prototype hyperplane) of one Support Vector
Machine (SVM) model, in which a sparse set of support vectors
is selected from the unlabeled generic data set based on the
learnt combination coefficients. To learn the optimal prototype
hyperplanes for the extraction of mid-level features, we propose
a Fisher’s Linear Discriminant-like (FLD-like) objective function
by maximizing the discriminability on the weakly labeled data
set with a constraint enforcing sparsity on the combination
coefficients of each SVM model, which is solved by using an
alternating optimization method. Then, we use the recent work
called Side-Information based Linear Discriminant (SILD)
analysis for dimensionality reduction and a cosine similarity
measure for final face verification. Comprehensive experiments
on two data sets, Labeled Faces in the Wild (LFW) and YouTube
Faces, demonstrate the effectiveness of our scheme.

Index Terms— Face verification in the wild, prototype hyper-
plane learning, mid-level feature representation.

I. INTRODUCTION

In the past two decades, we have witnessed significant progress
of face recognition under the controlled conditions and promising
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results have been reported on data sets including FERET [1], CMU
PIE [2], etc., (see [3] for a comprehensive survey). Recently, there
is an increasing research interest in face recognition/verification in
the wild, in which faces are generally captured in unconstrained
conditions (e.g., Flickr photos or YouTube videos). Face verifica-
tion/recognition in the wild is a more challenging task due to the
extremely large within-class appearance variations in terms of pose,
illumination, expression, and occlusion.

New methods were recently proposed to improve face verification
performance in unconstrained conditions after the release of the
Labeled Faces in the Wild (LFW) data set [4]. These methods can be
roughly divided into feature based approaches and distance metric
based approaches. The feature based approaches aim to develop
a better feature representation, among which local feature based
methods are more popular. Wolf et al. [5] proposed three-patch Local
Binary Pattern (LBP) and four-patch LBP features to encode the
similarities between neighboring patches around the center pixels
in order to capture the information complementary to the LBP
feature. In [6], each face was described as multi-region probabilistic
histograms of visual words. In [7], Cao et al. encoded the micro-
structures of each face by using an unsupervised learning approach,
while Vu et al. [8] developed a discriminative feature descriptor called
Patterns of Oriented Edge Magnitudes (POEM) by exploiting the self-
similarity of oriented magnitudes. In [9], Pinto et al. employed the
selected biologically-inspired visual representations for unconstrained
face verification. Moreover, several recent works achieved promising
results by using similarities among face images as the feature
representation. In [10], Kumar et al. proposed to use the output
of the attributes and simile classifiers as mid-level features for face
verification. In [11], Wolf et al. used the rank of images that are most
similar to a given query image as the descriptor of this query image.

The distance metric based approaches attempt to develop new
distance metrics to effectively measure the similarity between two
face images. In [5], [12], one-shot similarity was employed to
determine whether each sample shares the same class label as its
counterpart or belongs to a negative set, which was further extended
to two-shot similarity in [11] and multiple one-shot similarity in [13].
In [14], the similarity was calculated from the learnt quantized
characteristic difference of local descriptors from a pair of images.
A logistic discriminant based distance measure and a nearest neighbor
based distance measure were proposed in [15] while a cosine simi-
larity based metric learning method was proposed in [16]. Recently,
Yin et al. [17] developed a so-called “Associate-Predict” model to
measure the similarity between two images by leveraging an extra
generic data set with large intra-personal variations. In this model,
each face image is associated with visually similar subjects from the
generic data set for similarity measurement.

In this work, we propose a new mid-level feature based scheme
called Prototype Hyperplane Learning (PHL) for face verification
in the wild. Our work is motivated by the recent work in [10], in
which the mid-level feature is extracted as the output from a set of
pre-learnt SVM models. In contrast to the work in [10] where the
SVM models are trained by additionally using a strongly labeled
training set (i.e., the class label of each training sample is provided),
an additional unlabeled generic data set is used in this work to
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Fig. 1. Illustration of our Prototype Hyperplane Learning scheme: (a) Training process; (b) Testing process.

construct the SVM models (i.e., prototype hyperplanes). The mid-
level feature representation can be obtained by using the prototype
hyperplanes. Then, we formulate a new Fisher’s Linear Discriminant-
like (FLD-like) [23] objective function by using a weakly labeled
data set (i.e., we only know whether a pair of samples are from the
same subject or different subjects without knowing the exact class
label of each sample). We learn the optimal prototype hyperplanes
by maximizing the FLD-like objective on the weakly labeled data
set with a sparsity constraint in each SVM model, which selects
only a sparse set of support vectors from the generic data set.
Inspired by [18], we develop an alternating optimization algorithm to
solve our objective function and the resultant non-zero combination
coefficients automatically decide each prototype hyperplane. Finally,
the recent work SILD [19] is used to reduce the feature dimension
and the cosine similarity is employed for the final face verification.
We conduct comprehensive experiments using two real world face
data sets, Labeled Faces in the Wild (LFW) and YouTube Faces,
and the results demonstrate the effectiveness of our scheme for face
verification in unconstrained conditions.

II. PROTOTYPE HYPERPLANE LEARNING

In this section, we present the details of our Prototype Hyperplane
Learning scheme including problem formulation and optimization.
In this work, we use boldface lowercase and uppercase letters to
denote a vector (e.g. a) and a matrix (e.g. A), respectively. We also
define I and 0 as an identity matrix and a column vector with all
entries being 0, respectively.

A. Problem Formulation

Let us denote an unlabeled generic data set X = {xi |Ni=1} with its
data matrix represented as X = [x1, x2, · · ·, xN ] ∈ R

D×N , where D
is the feature dimension and N is the total number of samples in this
data set. We also define a weakly labeled data set consisting of M1
pairs of samples {(z1

i , ẑ1
i )|M1

i=1} from the same subject and M0 pairs

of samples {(z0
i , ẑ0

i )|M0
i=1} from different subjects, where the class

label of each sample is unknown and the feature dimension of each
sample is also D. In this work, we aim to learn a few classification
hyperplanes of binary SVM models by using the weakly labeled
data set, in which a sparse set of support vectors are automatically
selected from the unlabeled generic data set. Each sample in the
weakly labeled data set is represented as a mid-level feature with
each entry as the corresponding decision value from one learnt SVM
model. Then, we propose an FLD-like objective function to learn the

optimal prototype hyperplanes by maximizing the discriminability
on the weakly labeled data set with a sparsity constraint that selects
only a sparse set of support vectors from the generic data set in each
SVM model. The process of learning the prototype hyperplanes is
illustrated in Fig. 1(a).

1) Mid-Level Feature Representation from Prototype Hyper-
planes: In this work, each prototype hyperplane is modeled by using
a linear SVM with the support vectors automatically chosen from the
large unlabeled generic data set X . Note that our linear SVM model
can be readily extended to a non-linear one by using the kernel trick.
For each linear SVM model, the weight vector w for the feature can
be formulated as follows by using the Representer Theorem:

w =
∑N

j=1
α j y j x j =

∑N

j=1
β j x j = Xβ, (1)

where α j and y j are the dual variable and the inferred class label
of the unlabeled data x j respectively, the combination coefficient
β j = α j y j ( j = 1, 2, . . . , N) merges the dual variable and inferred
class label of each unlabeled sample, and a combination coefficient
vector is defined as β = [

β1, β2, . . . , βN
]T ∈ R

N .
In our work, x j is an augmented low-level feature (e.g., Gabor

or LBP feature) with the last entry as one in order to avoid intro-
ducing the bias term in the SVM model. The optimal classification
hyperplane of each SVM model is decided by the learnt combination
coefficients β j ( j = 1, . . . , N). Specifically, if β j is non-zero, the
unlabeled sample x j in the generic data set is chosen as a support
vector of the SVM model. While the support vectors are chosen from
the unlabeled generic data set X , the label of each support vector
can also be inferred after the learning process. If β j is positive
(resp. negative), we have y j = 1 (resp. y j = −1) and x j is
actually used as a positive sample (resp. negative sample) in the SVM
model. Moreover, each classification hyperplane of the SVM model
is expected to lie in the margin between two classes, which means
we only select a sparse set of support vectors. In order to select only
a sparse set of samples from the generic data set as support vectors,
we also enforce β to be a sparse vector, namely ‖β‖1 ≤ t , where t
is a parameter for controlling the sparsity of β.

Given any sample z in the weakly labeled data set, its decision
value from the SVM model is:

f (z) = wT z = zT w = zT Xβ (2)

which measures the likelihood of the sample z according to the
SVM model. Suppose we have C linear SVM models, then we
seek for a combination coefficient vector βi (i = 1, . . . , C) for
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each SVM model. Let us define a combination coefficient matrix
B = [β1,β2, . . . ,βC ] ∈ R

N×C , then the mid-level feature of a
sample z can be represented as:

f(z) = [zTXβ1, zTXβ2, . . . , zTXβC ]T

= (zTXB)T = BTXTz. (3)

Since the mid-level feature representation depends on the parameter
βi |Ci=1, we refer to the feature f(z) as β-parameterized mid-level
feature.

2) Learning with the Mid-Level Feature: Using the new mid-
level feature representation f(z) of each training sample z in the
weakly labeled data set, we propose an FLD-like criterion to learn
the optimal combination coefficient matrix B. Note that our method
can also work when the class label of each sample is provided.
Specifically, we propose the following objective function to learn
the optimal B by minimizing the intra-class scatter and at the same
time maximizing the inter-class scatter on the weakly labeled data:

B∗ = arg max
B

G(B) = arg max
B

∑M0
i=1 ‖f(z0

i ) − f(ẑ0
i )‖2

∑M1
i=1 ‖f(z1

i ) − f(ẑ1
i )‖2

,

s.t. ‖βi ‖1 ≤ t, i = 1, . . . , C. (4)

In Eq. (4), the numerator measures the inter-class distance for
all pairs of training samples (z0

i , ẑ0
i )|M0

i=1 from different subjects
while the denominator measures the intra-class distance for all pairs
of training samples (z1

i , ẑ1
i )|M1

i=1 from the same subject. Again, we
enforce the sparsity constraint on βi in order to only select a sparse
set of support vectors from the unlabeled data set. In this work, we
use the same parameter t for different βi in order to facilitate model
selection. By using Eq. (3) and the property ‖A‖2 = Tr(AAT ), we
rewrite G(B) in Eq. (4) as follows:

G(B) =
∑M0

i=1 ‖BT XT z0
i − BT XT ẑ0

i ‖2

∑M1
i=1 ‖BT XT z1

i − BT XT ẑ1
i ‖2

=
∑M0

i=1 Tr(BT XT (z0
i − ẑ0

i )(z0
i − ẑ0

i )T XB)
∑M1

i=1 Tr(BT XT (z1
i −ẑ1

i )(z1
i −ẑ1

i )T XB)

= Tr(BT SbB)

Tr(BT SwB)
, (5)

where Sb and Sw are defined as

Sb =
∑M0

i=1
XT (z0

i − ẑ0
i )(z0

i − ẑ0
i )T X,

Sw =
∑M1

i=1
XT (z1

i − ẑ1
i )(z1

i − ẑ1
i )T X. (6)

According to [20], [21], the objective function in Eq. (5) is in the
trace ratio form, for which the closed form solution does not exist.
We therefore reformulate the trace ratio problem in Eq. (5) into a
more tractable ratio trace form and arrive at:

B∗ = arg max
B

Tr
(
(BT SwB)−1(BT SbB)

)
, s.t. ‖βi ‖1 ≤ t,

i = 1, . . . , C. (7)

Note that generalized eigenvalue decomposition method can be
directly used to solve the ratio trace problem in Eq. (7), if there
is no constraint for βi (i = 1, 2, . . . , C). Moreover, due to the
sparsity constraint for βi (i = 1, . . . , C) in Eq. (7), the exist-
ing methods in [20], [21] for the trace ratio problem cannot be
employed to solve our problem, either. Therefore, in this work we
use an alternating optimization method in [18] to solve for the
optimal B.

B. Optimization

We first reformulate the objective function in Eq. (7) from the
ratio trace problem into a regression problem, which can be solved
by using the alternating optimization method.

1) Reformulate the Ratio Trace Problem in Eq. (7) as a
Regression Problem: Given the M0 pairs of samples {(z0

i , ẑ0
i )|M0

i=1}
from different subjects in the weakly labeled data set, let us define
two data matrices as D =

[
(z0

1 − ẑ0
1), (z0

2 − ẑ0
2), . . . , (z0

M0
− ẑ0

M0
)
]

∈
R

D×M0 and Hb = DT X ∈ R
M0×N . We also conduct Singular

Value Decomposition (SVD) of Sw in Eq. (6), i.e., Sw = RT
wRw , to

define another matrix Rw ∈ R
N×N . Following [18], we reformulate

the ratio trace problem as a regression problem by introducing an
intermediate variable A = [a1, a2, . . . , aC ] ∈ R

N×C (please refer
to [18] for more details on the reformulation):

[
A∗, B∗] = arg min

A,B

C∑

i=1

‖HbR−1
w ai −Hbβi ‖2+

C∑

i=1

λβT
i Swβi ,

s.t. AT A = IC×C , ‖βi ‖1 ≤ t, i = 1, . . . , C. (8)

2) Optimize the Regression Problem in Eq. (8): As suggested
in [18], we employ an alternating optimization method to iteratively
optimize A and B. Given A, we solve the following problem to obtain
B:

B∗ = arg min
β1,β2,...,βC

C∑

i=1

(
‖HbR−1

w ai −Hbβi ‖2+λβT
i Swβi

)
,

s.t. ‖βi ‖1 ≤ t, i = 1, . . . , C. (9)

Observing that β1,β2, . . . ,βC are independent in Eq. (9), we sepa-
rately solve for each βi by optimizing the following problem:

β∗
i = arg min

βi
‖si − Hbβi ‖2 + λβT

i Swβi

= arg min
βi

‖s̃i − W̃βi ‖2, s.t. ‖βi ‖1 ≤ t, (10)

with

si = HbR−1
w ai , s̃i =

[
sT
i , 0T

N

]T
and W̃ =

[
HT

b ,
√

λRT
w

]T
.

The Least Angle Regression solver [22] is employed to solve for the
optimal βi in this work.

Given B, we can ignore the constraint on βi and directly compute
A by solving the following problem:

A∗ = arg min
a1,a2,...,aC

∑C

i=1
‖HbR−1

w ai − Hbβi ‖2,

= arg min
A

‖HbR−1
w A − HbB‖2, s.t. AT A = IC×C (11)

The optimal A can be obtained by using SVD, namely

R−T
w

(
HT

b Hb

)
B = U�VT , and A∗ = ŨVT (12)

where Ũ = [
u1, u2, . . . , uC

]
contains the first C leading eigenvectors

of the matrix U = [
u1, u2, . . . , uN

]
. In this work, we iteratively

solve Eq. (9) and (11) until the absolute difference of B from two
successive iterations is smaller than a pre-defined threshold. The
detailed algorithm is listed in Table I.

C. Dimensionality Reduction using SILD and Final Verifica-
tion

With the learnt prototype hyperplanes, each sample can be rep-
resented as its mid-level decision values feature using Eq. (3). To
further reduce the feature dimension and improve the performance,
we employ our recent work SILD [19] for dimensionality reduction,
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TABLE I

THE PROTOTYPE HYPERPLANE LEARNING (PHL) ALGORITHM

Inputs: The unlabeled generic data set X = [x1, x2, . . . , xN ] ∈ R
D×N , a weakly labeled data set consisting of M1 pairs of samples

{(z1
i , ẑ1

i )|M1
i=1} from the same subject, and M0 pairs of samples {(z0

i , ẑ0
i )|M0

i=1} from different subjects with the corresponding data matrix

defined as D =
[
(z0

1 − ẑ0
1), (z0

2 − ẑ0
2), . . . , (z0

M0
− ẑ0

M0
)
]

∈ R
D×M0

Result: The optimal combination coefficient vectors β1,β2, . . . ,βC ∈ R
N×1 that determine the classification hyperplanes of SVM models

Initialization: Initialize A ∈ R
N×C and B ∈ R

N×C with all entries as 1, and calculate Sb and Sw using Eq. (6).

Calculate Hb = DT X ∈ R
M0×N and Rw ∈ R

N×N by conducting SVD of Sw , i.e., Sw = RT
wRw

Repeat

Given A, solve C independent Lasso problems in Eq. (10) using the Least Angle Regression solver [22]:

β∗
i = arg minβi

‖s̃i − W̃βi ‖2, s.t. ‖βi ‖1 ≤ t, i = 1, . . . , C.

Given B, conduct SVD, i.e., R−T
w

(
HT

b Hb

)
B = U�VT , and solve for A∗ by using A∗ = ŨVT , where Ũ = [

u1, u2, . . . , uC
]

contains the first C leading eigenvectors of the matrix U = [
u1, u2, . . . , uN

]

Until: The change of B between two successive iterations is smaller than ε (ε = 0.001 in this work).

which can learn a discriminative projection matrix by using only
weakly labeled training data. SILD is proven to be equivalent to
Fisher’s Linear Discriminant Analysis [23] when the class label
information of each sample is available [19]. Specifically, in the
training process of SILD [19], the within-class scatter matrix is
defined by only using the pairs of samples from the same subject and
the between-class scatter matrix is defined by only using the pairs
of samples from different subjects. After that, generalized eigenvalue
decomposition is employed to determine the projection matrix for
dimensionality reduction. In the testing process (see Fig. 1(b)), for
each pair of test data z and ẑ, we respectively generate the mid-level
feature representations f(z) and f(ẑ) by using the learnt prototype
hyperplanes, and then map the mid-level features f(z) and f(ẑ) into
a low dimensional space by using the projection matrix learnt in
the training process of SILD. Finally, the cosine function is used to
calculate the similarity for a pair of test samples before conducting
face verification. The whole process is illustrated in Fig. 1.

D. Discussion of Existing Work

While our method and the recent work in [10] both employ the
decision values from a large number of SVM models as the mid-level
feature representation for face verification, our work is intrinsically
different from [10]. The SVM models in [10] are from attributes
classifiers which require substantial manual labeling effort and simile
classifiers trained by additionally using strongly labeled face images.
In contrast, in our work the classification hyperplanes of the SVM
models are decided according to an FLD-like objective function
using the weakly labeled data set in which the support vectors are
automatically chosen from a large unlabeled data set.

Our work is also different from the SVM based semi-supervised
learning methods like Transductive SVM (TSVM) [24] based on the
cluster assumption and Laplacian SVM (LapSVM) [25] based on
the manifold assumption. In most semi-supervised learning methods
(see [26] for a recent survey) including TSVM and LapSVM, both
strongly labeled training samples (i.e., the class label of each training
sample is provided) and unlabeled training samples are required. In
contrast, in our work we only use weakly labeled training samples
and an unlabeled generic data set.

III. EXPERIMENTS

In this section, we compare our proposed Prototype Hyperplane
Learning (PHL) scheme with the state-of-the-art methods on two data
sets, Labeled Faces in the Wild (LFW) [4] and YouTube Faces [27],
which are both collected in unconstrained conditions.

A. Data Set Descriptions and Experimental Settings

The LFW database [4] is a large data set consisting of 13,233
images from 5,749 individuals. The standard evaluation protocol has
two views, in which view 1 is employed for model selection, and
view 2 is used for performance evaluation. In our experiments, the
center area of each face image provided in [11] is cropped to an
image of 80 × 150 pixels by removing the background as suggested
in [16]. The YouTube Faces Database [27] is a large unconstrained
video data set, which contains 3,425 videos from 1,595 subjects. On
average, there are 2.15 videos for each subject and the length of each
video clip is about 181 frames at 24 fps.

On both data sets, we use the so-called image-restricted training
mode, i.e., we only know whether a pair of samples are from the
same subject or different subjects without knowing the class label of
each sample. To construct the unlabeled generic data set X , 3,000
unlabeled samples are randomly selected from view 1 on the LFW
data set, and from the training set on the YouTube Faces data set.
It is worth mentioning there are no overlapping images between the
unlabeled generic data set and test set because we intend not to select
the overlapping images when constructing the generic data set. In all
experiments, the number of prototype hyperplanes C is set as 400.
On the LFW data set, the optimal parameter t in Eq. (7) is determined
by using cross validation based on the data from view 1, while this
parameter is empirically set as 0.5 on the YouTube Faces data set
because there is no additional data set for model selection. We also
take the YouTube Faces data set as an example to investigate the
performance variations of our PHL with respect to the parameters C
and t (see Section III-C).

We report the mean accuracy with the standard error (SE)/standard
deviation (std) and the ROC curve from ten-fold cross validation
according to the standard protocol [4], [27]. Given the learnt threshold
determined from the training data, the accuracy at each round of the
experiment is defined as the number of correctly classified pairs of
samples divided by the total number of test sample pairs. The standard
error is defined as σ̂ /

√
10, where σ̂ is the standard deviation.

B. Comparison with the State-of-the-Art Results

We compare our PHL with the state-of-the-art methods on the
LFW and YouTube Faces data sets.

1) Results on the LFW Database: On the LFW data set,
we use eight types of features including Intensity, LBP, Gabor
feature and Block Gabor feature as well as the square root of these
features as suggested in [11], [16], [19]. The intensity feature is
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TABLE II

PERFORMANCES (MEAN ACCURACY±STANDARD ERROR) OF OUR

PHL+SILD AND LOW-LEVEL FEATURE+SILD [19] USING DIFFERENT

TYPES OF LOW-LEVEL FEATURES ON THE LFW DATA SET

Feature Name Feature Type Low-level Feature PHL+SILD
+SILD [19] (this work)

Intensity
Original 0.8020 ± 0.0067 0.8097 ± 0.0072
Square root 0.8010 ± 0.0056 0.7925 ± 0.0045

LBP
Original 0.8412 ± 0.0034 0.8442 ± 0.0062
Square root 0.8485 ± 0.0035 0.8542 ± 0.0064

Gabor
Original 0.7902 ± 0.0059 0.8130 ± 0.0065
Square root 0.8102 ± 0.0064 0.8355 ± 0.0056

Block Gabor
Original 0.8233 ± 0.0052 0.8343 ± 0.0067
Square root 0.8452 ± 0.0044 0.8510 ± 0.0052

Combined Results 0.8768 ± 0.0050 0.8867 ± 0.0070

directly extracted by vectorizing each gray-scale image to a 12,000
dimensional feature vector. For the LBP feature, a histogram of 59
bins is first extracted from each non-overlapping block of 10x10
pixels, and then all histograms are concatenated into a single 7,080
dimensional feature vector. We use 40 Gabor kernel functions from
5 scales and 8 orientations to extract the Gabor feature [28] and the
Gabor filtered images are further downsampled by using a 10 × 10
scaling factor [16] in order to reduce the feature dimension. However,
such a significant downsampling operation may degrade the face
verification performance. Following [29], we additionally use the
block Gabor feature by dividing each Gabor filtered image into 6 non-
overlapping blocks before downsampling and the Gabor filtered sub-
images at each block are only downsampled by using a 2×2 scaling
factor. We then treat the Gabor features in each block separately rather
than concatenating them into one lengthy feature vector. In other
words, for the Gabor features in each block, we apply our PHL for
extracting mid-level features, followed by SILD for dimensionality
reduction. After that, for each pair of face images, the six similarities
after using the cosine function for the Gabor features from all the
six blocks are averaged to output one similarity score only. To fuse
eight types of features, each pair of images is represented as an 8-
dimensional similarity feature and a linear SVM is further employed
to calculate the final similarity for each pair of images.

As mentioned in Section II-C, we employ our recent work
SILD [19] for dimensionality reduction because it is generally benefi-
cial to conduct dimensionality reduction before the final verification.
We therefore refer to our scheme discussed in this work and the
method in [19] as “PHL+SILD” and “Low-level feature+SILD,”
respectively. It is worth mentioning the difference is that we use
the mid-level features (i.e., the decision values from the learnt
SVM models) in our PHL+SILD rather than the original low-level
features in Low-level Feature+SILD [19]. The results are shown
in Table II. Except for the square root of Intensity feature, our
PHL+SILD outperforms Low-level feature+SILD [19] for other types
of features and the performance improves up to 2.53% when using the
square root of Gabor feature, which demonstrates the effectiveness
of using our proposed PHL scheme to learn the optimal classification
hyperplane for extracting the mid-level features. When compared with
the single feature based method “Single LE” [7] whose performance
is 81.22%, the result of our PHL+SILD using the square root of LBP
feature is 85.42%, which is much better. Moreover, our PHL+SILD
using all eight types of features can achieve the best result of 88.67%.

We also compare our method with state-of-the-art methods
including “Multi-Region Histogram” [6], “Combined b/g sam-
ples based method” [11], “Attribute and Simile Classifiers” [10],
“Multi-LE+comp” [7], “CSML+SVM” [16], “High-Throughput

TABLE III

PERFORMANCES (MEAN ACCURACY±STANDARD ERROR (SE))

OF OUR PHL+SILD AND OTHER STATE-OF-THE-ART ALGORITHMS

ON THE LFW DATA SET

Type Methods Mean Acc. ± SE

Without
additional data

Multiregion Histograms [6] 0.7295 ± 0.0055
Multiple LE + comp [7] 0.8445 ± 0.0046
Low-level Feature+SILD [19] 0.8768 ± 0.0050
CSML + SVM [16] 0.8800 ± 0.0037
High-Throughput Brain-Inspired
Features [9] 0.8813 ± 0.0058

With labeled
additional data

Attribute and Simile classifiers [10] 0.8529 ± 0.0123
Associate-Predict [17] 0.9057 ± 0.0056

With unlabeled
additional data

Combined b/g samples based meth-
ods [11] 0.8683 ± 0.0034

PHL+SILD (this work) 0.8867 ± 0.0070

TABLE IV

PERFORMANCES (MEAN ACCURACY± STANDARD DEVIATION (STD),

AUC AND EER) OF OUR PHL+SILD, LOW-LEVEL FEATURE+SILD [19]

AND MBGS [27] USING LBP, CSLBP AND FPLBP FEATURES ON THE

YOUTUBE FACES DATA SET

Feature Methods Mean Acc. ± std AUC EER

LBP
MBGS [27] 0.764 ± 0.018 0.826 0.253

Low-level Feature+SILD [19] 0.773 ± 0.019 0.840 0.236

PHL+SILD (this work) 0.802 ± 0.013 0.872 0.203

CSLBP

MBGS [27] 0.724 ± 0.020 0.789 0.287

Low-level Feature+SILD [19] 0.736 ± 0.015 0.804 0.286

PHL+SILD (this work) 0.752 ± 0.010 0.823 0.248

FPLBP

MBGS [27] 0.726 ± 0.020 0.801 0.277

Low-level Feature+SILD [19] 0.729 ± 0.024 0.796 0.283

PHL+SILD (this work) 0.759 ± 0.015 0.825 0.244

Brain-Inspired Feature” [9] and “Associate-Predict” [17] (for all the
results, please refer to http://vis-www.cs.umass.edu/lfw/results.html).
All the results are shown in Table III and we also report the
ROC curves in Fig. 2(a). Our PHL+SILD is better than all the
existing methods without using additional data [6], [7], [9], [16],
[19]. Our PHL+SILD also outperforms the work in [11] which uses
unlabeled additional data and the mid-level feature based method [10]
which additionally uses strongly labeled training data to learn SVM
classifiers. Our work is only worse than the recent work “Associate
Predict” [17], in which a strongly labeled additional data set with
extensive intra-personal variations is required. In contrast, only an
additional unlabeled data set is needed in our PHL+SILD.

2) Results on the YouTube Faces Database: On this data set,
we directly use the three types of features (i.e., LBP, CSLBP, and
FPLBP) provided in [27]. Considering that all the faces are aligned
by fixing the detected facial key points [27], the features extracted
from all the frames within one video clip are averaged to output a
mean feature vector for further processing in our PHL+SILD and
low-level feature+SILD methods.

We compare our PHL+SILD with the state-of-the-art method
“MBGS” [27] and our recent work “Low-level Feature+SILD” [19]
in Table IV in terms of Mean Accuracy, Area under Curve
(AUC) and Equal Error Rate (EER). Compared with “Low-level
feature+SILD” [19], our work PHL+SILD is still better when using
the three types of features, and the performance improves up to
3.0% in terms of mean accuracy, which again demonstrates that
it is beneficial to use our PHL scheme to learn the classification
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Fig. 2. ROC curves of different approaches on the LFW and YouTube Faces data sets (best viewed in color).

Fig. 3. The mean accuracy and training time of our PHL+SILD when using different numbers of prototype hyperplanes (i.e., C) and sparsity parameters t
on the YouTube Faces data set with the LBP feature (best viewed in color).

hyperplanes for extracting mid-level features. Using the LBP feature,
the improvements of our PHL+SILD over MBGS are 3.8%, 4.6%,
5.0% in terms of ACC, AUC and EER, respectively. Using the CSLBP
and FPLBP features, our method PHL+SILD is also better than
MBGS. Fig. 2(b) plots the ROC curves of the work in [27] and
our PHL+SILD method using the LBP and FPLBP features. From
Fig. 2(b), it can be observed that our method PHL+SILD generally
outperforms MBGS.

C. Discussion on the Parameters

In Fig. 3, we take the YouTube Faces data set using the LBP feature
as an example to study the performance variations of our PHL+SILD
with respect to the two parameters C and t , in which we set
C = 100, 200, 400, 600. Considering that our initial experi-
ments show that the resultant βi will become non-sparse and
the computational cost will significantly increase when setting t
larger than 0.8, we set t = 0.1, 0.2, . . . , 0.8 in this work. The
experiments are conducted on a desktop (3.10 GHz CPU with
8 GB RAM).

When setting C to a larger number, the mean accuracies of our
PHL+SILD generally become better and at the same time the training
time also increases (see Fig. 3). We also have similar observations
on the YouTube Faces data set using other features and on the LFW
data set. For the tradeoff between efficiency and effectiveness, we
empirically set C = 400 on both data sets when using all types of
features. Moreover, the results of our work become relatively stable
when setting the parameter t between 0.2 and 0.8. Considering that
there is no pre-defined additional data set for model selection, we
therefore empirically fix the parameter t as 0.5 on the YouTube Faces
data set. Following existing work [4], [10], [11], [17], the optimal
parameter t on the LFW data set is decided by using cross validation
with the data from view 1.

IV. CONCLUSION

In this work, we have proposed a new scheme called Prototype
Hyperplane Learning (PHL) to seek a mid-level feature representation
for face verification in the wild by learning a set of prototype
hyperplanes of SVM models, in which the support vectors of each
SVM model are chosen from a large unlabeled generic data set.
We propose an FLD-like objective function to optimize the optimal
prototype hyperplanes by maximizing the discriminability on the
weakly labeled data set with a sparsity constraint that selects only a
sparse set of samples from the generic data set as support vectors.
The decision values from the learnt SVM models are used as the
mid-level features and the feature dimension is further reduced by
using the SILD method [19]. Finally, the cosine similarity measure is
employed for final face verification. Extensive experiments using two
unconstrained face data sets demonstrate that our scheme outperforms
most of the state-of-the-art methods.
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