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Abstract In many applications, a face recognition model
learned on a source domain but applied to a novel target
domain degenerates even significantly due to the mismatch
between the two domains. Aiming at learning a better face
recognition model for the target domain, this paper proposes
a simple but effective domain adaptation approach that trans-
fers the supervision knowledge from a labeled source domain
to the unlabeled target domain. Our basic idea is to convert the
source domain images to target domain (termed as targetize
the source domain hereinafter), and at the same time keep
its supervision information. For this purpose, each source
domain image is simply represented as a linear combina-
tion of sparse target domain neighbors in the image space,
with the combination coefficients however learnt in a com-
mon subspace. The principle behind this strategy is that, the
common knowledge is only favorable for accurate cross-
domain reconstruction, but for the classification in the tar-
get domain, the specific knowledge of the target domain is
also essential and thus should be mostly preserved (through
targetization in the image space in this work). To discover
the common knowledge, specifically, a common subspace is
learnt, in which the structures of both domains are preserved
and meanwhile the disparity of source and target domains
is reduced. The proposed method is extensively evaluated

M. Kan · J. Wu · S. Shan (B) · X. Chen
Key Lab of Intelligent Information Processing of Chinese Academy
of Sciences (CAS), Institute of Computing Technology (ICT), CAS,
Beijing 100190, China
e-mail: sgshan@ict.ac.cn

M. Kan
e-mail: kanmeina@ict.ac.cn

J. Wu
e-mail: junting.wu@vipl.ict.ac.cn

X. Chen
e-mail: xlchen@ict.ac.cn

under three face recognition scenarios, i.e., domain adapta-
tion across view angle, domain adaptation across ethnicity
and domain adaptation across imaging condition. The exper-
imental results illustrate the superiority of our method over
those competitive ones.
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1 Introduction

Machine learning has been widely used for various vision
tasks, such as image classification, multimedia retrieval, and
object recognition, etc. Typically, machine learning algo-
rithms first learn a model from the training data, and then
apply it to the test data. The learnt models generally work
well when the training data and the test data are sampled from
identical distribution, since in this case the training error is
an optimistic estimate of the test error.

Unfortunately, in many real-world applications, it is diffi-
cult to collect training data that have the same distribution as
testing data. Therefore, when the test and training data come
from mildly or sometimes even wildly different distributions,
most of the machine learning methods will seriously degen-
erate because the training error is no longer an optimistic
estimate of the test error. For instance, the face recognition
model trained from Mongolian can hardly be generalized to
recognize Caucasian accurately. And if so, as seen from our
empirical investigation shown in Fig. 1, the accuracy dramat-
ically degenerates to 59 from 96 %, when we try to recognize
Caucasian by using the model learnt from Mongolian, com-
pared with the model from Caucasian.

To address this problem, one straightforward solution is
collecting sufficient labeled data that can well describe the
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Fig. 1 An illustration of performance degeneration when applying the
model learnt from one domain to a quite different domain. The Mongo-
lian and Caucasian models are learnt by using Mongolian and Caucasian
images respectively. The accuracy is 99 % when Mongolian model is
used to recognize the Mongolian, while the accuracy is only 59 % when
it is used to recognize Caucasian. Similarly, the accuracy is 96 % when
we use Caucasian model to recognize Caucasian, while the accuracy is
only 77 % when we use it to recognize the Mongolian

distribution of the test data, and then training a new model
on these data. However, collecting and annotating sufficient
data are very tedious and labor-intensive in practice.

To avoid the aforementioned tedious re-collection of new
data, we can learn from the human vision system. As human
beings, we indeed also suffer from cross-domain recogniz-
ing problem. For example, a Mongolian who never meet any
Caucasian before may have difficulty in distinguishing the
Caucasians. However, he/she can adapt to recognize them
after facing limited number of Caucasians. What makes this
possible is that much knowledge of distinguishing different
people is common for Mongolian and Caucasian, and the
human beings can adaptively transfer the recognition knowl-
edge learnt from Mongolian to Caucasian.

A technique to analog the above procedure is domain
adaptation (Blitzer et al. 2006; Uribe 2010), which tries to
learn a better model for the target scenario/application, by
on one hand borrowing some common knowledge from the
source domain and on the other hand exploiting the particular
information from the target domain but with limited supervi-
sion (e.g., unlabeled data or a limited number of labeled data).
Domain adaptation is also more generally known as transfer
learning (Pan and Yang 2010), which has been applied in
various fields, e.g., natural language processing (Blitzer et al.
2006; Uribe 2010), computer vision (Uribe 2010; Gopalan
et al. 2011; Jhuo et al. 2012; Gao et al. 2011; Hal 2009; Xue
et al. 2007; Gong et al. 2012; Duan et al. 2012), etc.

In principle, domain adaptation attempts to transfer the
rich knowledge in a supervised domain (termed as source
domain) to another different but related domain with only
limited information (termed as target domain) to induce a
better model. Generally, the source domain and target domain
share the same task but follow different distributions. Accord-
ing to whether or not the class labels are available for the
training data of the target domain, domain adaptation can
be categorized into two settings (Gopalan et al. 2011; Shi
and Sha 2012), supervised domain adaptation and unsuper-

vised domain adaptation. In scenario of supervised domain
adaptation, labeled data (but generally in limited number) is
available in the target domain, while in scenario of unsuper-
vised domain adaptation only unlabeled data (but generally
in large-scale) is available in the target domain. This work
mainly concentrates on the unsupervised domain adaptation
problem. Thus, in the following we only review the existing
works focusing on the unsupervised domain adaptation.

In a simple scenario, the source domain shares the same
support1 as the target domain, but comprises a bias distribu-
tion due to the sampling strategy. Thus certain part of the
source domain samples can be reused. An intuitive strat-
egy is re-weighting the source domain samples to reduce the
discrepancy between the sample distribution of the source
domain and that of the target domain, e.g., sample selec-
tion bias (Zadrozny 2004; Huang et al. 2006), and partic-
ularly covariant shift (Shimodaira 2000; Sugiyamai et al.
2007; Sugiyama et al. 2008; Gretton et al. 2009; Bickel et al.
2009). Some previous works (Zadrozny 2004; Dudık et al.
2005) demonstrate how to assign the weights via estimating
the probability densities of source and target domains. How-
ever, the probability density is difficult to estimate, especially
in the high dimensional feature space. Hence, some of the
subsequent works attempt to achieve the weights or impor-
tance without probability density estimation (Sugiyama et al.
2008).

Further, if the source and target domains only share part
of the support or knowledge, it is conceivable to share part
of model parameters or priors between both domains so as to
shift the source domain model to the target domain (Bruzzone
and Marconcini 2010; Duan et al. 2009; Chen et al. 2003;
Xue et al. 2007). For instance, Chen et al. (2003) develop
a progressive transductive support vector machine model to
iteratively label and modify the unlabeled target domain, by
means of pairwise labeling and dynamic adjusting to achieve
a wider margin. The work (Wang et al. 2008) proposes to opti-
mize a low-dimensional embedding space for the unlabeled
target domain, with the information from both source and tar-
get domains embedded in the scatter matrices and the Lapla-
cian graph. In the work (Bruzzone and Marconcini 2010),
the discriminant function is adjusted step by step to the tar-
get domain by iteratively deleting the source domain samples
and adding the target domain samples with estimated label
until the final classification function is determined only based
on target domain samples. Most of these methods exploit an
iteration scheme to gradually adapt the knowledge of the
source domain to the target domain. Therefore, the success

1 In probability theory, the support of a probability distribution can be
loosely thought of as the closure of the set of possible values of a random
variable having that distribution. Here it can be regarded as the closure
of the set of all possible instances.

123



96 Int J Comput Vis (2014) 109:94–109

of the adaptation heavily depends on whether the subsequent
iteration can achieve a better model than the previous one.

When it is difficult to share parameters or priors between
the source and target domains, an alternative scheme is
exploring only the commonality of both domains, e.g., com-
mon feature representation or a common subspace for both
domains, which can diminish the disparity between domains
(Ben-David et al. 2007; Blitzer et al. 2006; Pan et al. 2011,
2009, 2008; Shi and Sha 2012; Qiu et al. 2012; Mehrotra
et al. 2012; Si et al. 2010; Geng et al. 2011; Si et al. 2011;
Raina et al. 2007; Shao et al. 2012). As a result, the distribu-
tion of the source domain and that of the target domain are in
agreement in the common feature space, and thus the model
trained on the labeled source domain can usually be used for
target domain directly.

The key point of these approaches is how to determine
the commonality of two domains. Some methods attempt
to achieve it by explicitly reducing the difference between
domains, while some other methods adopt a utility module
for two domains, e.g., a unified dictionary.

To reduce the difference between domains and thus reach
a common space, a few criterions are employed to mea-
sure the domain discrepancy, such as empirical maximum
mean, mutual information, low-rank constrains and so on.
In the work (Si et al. 2010), a transfer subspace learning
framework is proposed to optimize a common subspace by
minimizing the Bregman divergence between the distrib-
utions of two domains. In the work (Geng et al. 2011),
a novel metric learning method is presented for domain
adaptation by introducing a data-dependent regularizer that
can minimize the empirical maximum mean discrepancy
between domains in the reproducing kernel Hilbert space.
In the work (Si et al. 2011), the authors calibrate the source
and target distributions by minimizing the geodesic dis-
tance between two distributions that are represented as sym-
metric positive definite matrices in Riemannian symmet-
ric space. In the work (Pan et al. 2011), a latent common
space is obtained by finding a transform that can minimize
the discrepancy between the marginal distributions of the
source and target domains, and meanwhile preserve the data
structure of the original space. In the work (Shi and Sha
2012), information theory is employed to obtain a com-
mon space, by maximizing the mutual information between
the instances and the class labels and simultaneously min-
imizing the mutual information between the instances and
the domain labels. In the work (Shao et al. 2012), a com-
mon subspace is achieved via a low-rank representation con-
straint, which attempts to ensure that each datum in source
domain can be linearly represented by the samples in target
domain.

To establish a utility module for two domains, several tech-
niques are proposed, such as the pivot feature, or a unified
dictionary. In the work (Blitzer et al. 2006), it is suggested to

align the corresponding features of different domains by their
relevance with the predefined pivot features. In the works
(Raina et al. 2007; Mehrotra et al. 2012), it is considered that
a unified dictionary learnt from the data of all domains can
capture the commonality between domains, and the corre-
sponding sparse representation is used as the common fea-
ture representation across domain. In the work (Gopalan et
al. 2011), a common intermediate feature representation is
achieved by projecting the data to a serial of subspaces sam-
pled along the path between the source domain and target
domain on the Grassmann manifold.

In most of the above common feature/subspace based
methods, they only exploit the common characteristics of the
source and target domains, while ignore the particular knowl-
edge of the target domain that should be beneficial for the task
in target domain. Therefore, this paper makes an attempt to
achieve a better recognition model for the target domain, by
exploiting not only the common knowledge shared between
the source and target domains, but also the particular knowl-
edge about the target domain. For this purpose, we propose
to convert the labeled source domain samples to the target
domain in the image space (termed as Targetize the Source
domain), bridged by a common subspace. Hereinafter, we
abbreviate our method as TSD.

Specifically, the image targetization is achieved in the
image space by representing each source domain image as a
linear combination of sparse target domain neighbors, while
the combination coefficients are determined in a common
subspace. After the targetization, the class label of each targe-
tized sample is the same as that of the original source domain
sample. Therefore, we actually have generated a labeled “vir-
tual” target domain via the targetization, which makes it pos-
sible to learn a supervised classifier for the target domain.
In addition, for the common knowledge learning, we aim at
learning a common subspace, where the structure of each
domain is preserved and meanwhile the source and target
data are enforced to interlace sufficiently.

The reminder of this paper is organized as follows. Section
2 presents our TSD method, followed by a detailed descrip-
tion about the optimization in Section 3. In Section 4, we
evaluate the proposed method on three domain adaptation
face recognition scenarios, i.e., domain adaptation across
view angle, domain adaptation across ethnicity and domain
adaptation across imaging condition. Finally, a conclusion is
given in the last section.

2 Targetize Source Domain Bridged by Common
Subspace

In this section, we first describe the proposed TSD method in
detail, and then give some discussions about the differences
from the related works.
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2.1 Notations

For clarity, we first formally define some notations. In the
whole text, upper-case and lower-case characters represent
the matrices and vectors respectively.

The data matrix of the training images from source domain
is denoted as Xs = [xs

1, xs
2, · · · , xs

ns
] ∈ R

ds×ns , with their
class labels ys = [ys

1, ys
2, · · · , ys

ns
], ys

i ∈ {1, 2, · · · , cs},
where xs

i |ns
i=1 ∈ R

ds×1 is the feature representation of the
i-th source domain sample of ds dimension, ns is the number
of training samples in the source domain, ys

i is the class label
of the i-th source domain sample, and cs is the number of
classes in the source domain.

Similarly, the data matrix of the training data from tar-
get domain is denoted as Xt = [xt

1, xt
2, · · · , xt

nt
] ∈ R

dt ×nt

without class label, where xt
i |nt

i=1 ∈ R
dt ×1 is the feature rep-

resentation of the i-th target domain sample of dt dimension,
and nt is the number of samples in the target domain.

Unless otherwise specified, the symbols s and t used in the
superscript or subscript mean the source domain and target
domain respectively.

2.2 Domain Adaptation via TSD

Given a labeled training set of source domain, i.e., (Xs, ys),
it can be readily used to learn a discriminant model favorable
for the task in the source domain. However, what we desire
is a discriminant model for the target domain where only
the unlabeled training data Xt is available. As mentioned

before, although the model learnt from source domain is not
applicable for the target domain, the supervision knowledge
of source domain must be beneficial for the model learning
in the target domain (Pan and Yang 2010; Blitzer et al. 2006;
Uribe 2010).

Following this idea, we attempt to transfer the knowl-
edge of source domain to the target domain by directly con-
verting the source domain samples to the target domain,
along with their class labels. As a result, the labeled tar-
getized source domain has similar distribution as the tar-
get domain, and can be naturally employed for any further
supervised model learning, e.g., Fisher’s Linear Discriminant
Analysis.

In TSD, each source domain sample is targetized to the
target domain by being reconstructed via sparse neighbors
from target domain. However the source domain and target
domain might be distant from each other, which makes the
sparse reconstruction in the original sample space very diffi-
cult (if not impossible). Therefore, we propose to first project
the samples from both domains to a common subspace, and
then reconstruct each source domain sample by using only
a limited number of neighbors from the target domain in the
common subspace. After having the sparse reconstruction
coefficients, we finally apply them in the original sample
space to convert the source domain samples to the target
domain, so as to keep the particular information of the target
domain. An overall schema of the proposed framework is
shown in Fig. 2.

This subsection is organized as follows: we first formu-
late how to learn the common subspace and the sparse coeffi-

  

(a)

(b)

Fig. 2 The overall schema of the proposed method: (a) the overall
pipeline of our domain adaptation method: first targetize each source
domain sample to the target domain through a linear combination of
sparse target domain neighbors, and then conduct the supervised learn-

ing on the targetized source domain; (b) the targetization coefficients
used in (a) are learnt in a common subspace rather than in the original
sample space
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cients, followed by the targetization based on the learnt sparse
coefficients. Then, we present how the targetized source
domain is used to learn a supervised target model and how
to do classification in the target domain.

2.2.1 Common Subspace Learning

One of the key components of our TSD is the common sub-
space, where the source and target domains are sufficiently
interlaced. Since two different domains may have large dis-
crepancy or even in different space, we propose to learn two
coupled projections, denoted as Ws and Wt , to respectively
project the source and target domain into a common sub-
space. The projected source and target domain samples in
the common subspace are denoted as Zs = [zs

1, zs
2, · · · , zs

ns
]

and Zt = [zt
1, zt

2, · · · , zt
nt

] respectively:

zs
i = WT

s xs
i , i = 1, 2, · · · , ns, or Zs = WT

s Xs, (1)

zt
i = WT

t xt
i , i = 1, 2, · · · , nt , or Zt = WT

t Xt . (2)

Briefly summarizing the previous discussions, the com-
mon subspace should satisfy the following requirements:

(1) In the common subspace, the samples from both
domains should be well interlaced, so as to reduce the
discrepancy of the source and target domains.

(2) In the common subspace, the structures of both domains
should be well preserved, in order to keep enough dis-
criminant information for further model learning.

To meet the above two requirements, two terms, Sparse
Reconstruction and Max-Variance, are respectively proposed
and described as bellow, followed by their combination to
form the overall objective function.

Sparse Reconstruction: Sparse representation or sparse
coding (Wright et al. 2009; Huang and Aviyente 2007) has
been widely used for reconstruction and classification. It
attempts to reconstruct a signal or a sample x by using
only a limited number of samples from a basis set X =
[x1, x2, · · · , xn] as follows:

v∗ = arg min
v

‖x − Xv‖2, s.t. ‖v‖0 ≤ τ, (3)

where ‖v‖0 is the number of non-zero entries in v, also the
number of samples selected from X for the reconstruction.
Usually, ‖v‖0 is required to be a small number, so the selected
samples corresponding to the non-zero entries are most likely
to be the neighbors of x to ensure a small reconstruct error.
Therefore, if each sample from one domain is reconstructed
by using only sparse adjcent but distinct samples from the
other domain and vice versa, the samples from both domains
are well interlaced with each other. Specifically, in the com-
mon subspace each source domain sample should be sparsely

reconstructed by using only a few adjacent samples of target
domain as bellow:

[
V∗

s , W∗
s , W∗

t

] = arg min
Vs ,Ws ,Wt

‖Zs −Zt Vs‖2
F

=arg min
Vs ,Ws ,Wt

‖WT
s Xs −WT

t Xt Vs‖2
F ,

s.t. ‖vs
i ‖0 ≤ τ, i = 1, 2, · · · , ns, (4)

with Vs = [vs
1, vs

2, · · · , vs
ns

]. Similarly, in the common sub-
space each target domain sample should be sparsely recon-
structed via only several neighbors from source domain:

[
V∗

t , W∗
s , W∗

t

]=arg min
Vt ,Ws ,Wt

‖Zt −ZsVt‖2
F

=arg min
Vt ,Ws ,Wt

‖WT
t Xt −WT

s XsVt‖2
F ,

s.t. ‖vt
i ‖0 ≤ τ, i = 1, 2, · · · , nt , (5)

with Vt = [vt
1, vt

2, · · · , vt
nt

]. In both Eqs. (4) and (5), τ is
the parameter to control the sparsity in terms of the number
of samples used for the reconstruction.

Max-Variance: Besides reducing the discrepancy of the
source and target domains, in the common subspace the
structures of both domains are also expected to be pre-
served, so as to keep as much information as possible for
the discrimination. At the first thought, some locality or
neighborhood preserving methods, e.g., LLE (Roweis and
Saul 2000), LPP (He and Niyogi 2004), would be a good
choice. However, for our task, we actually need to balance
the global and local structures, since both are important for
building a discriminative recognition model. Methods like
LLE or LPP cannot guarantee to keep the global structure,
which might hurt the classification. Therefore, following the
works (Pan et al. 2011, 2008), the structure is preserved
just by simply maximizing the variance of each domain as
follows:

W∗
s = arg max

Ws
Tr

(
WT

s XsXT
s Ws

)
, (6)

W∗
t = arg max

Wt
Tr

(
WT

t Xt XT
t Wt

)
, (7)

where Tr(·) means the trace of a matrix, Xs and Xt are
assumed to have zero mean. In addition, the above max-
variance terms are also necessary to ensure the sparse recon-
struction feasible. Without them, all the samples from both
domains may converge together, thus degenerating to a mean-
ingless solution.

Overall Objective Function: Our goal is to obtain a com-
mon subspace, in which the above two requirements are
simultaneously satisfied. For this purpose, we combine them
together by formulating it as a Fisher criterion-like objective
function as bellow:

123



Int J Comput Vis (2014) 109:94–109 99

[
W∗

s , W∗
t , V∗

s , V∗
t

] = arg max
Ws ,Wt ,Vs ,Vt

Tr
(

1
ns

WT
s XsXT

s Ws + 1
nt

WT
t Xt XT

t Wt

)

1
ns

‖WT
s Xs−WT

t Xt Vs‖2
F+ 1

nt
‖WT

t Xt−WT
s XsVt‖2

F

s.t. ‖vs
i ‖0 ≤ τ, ‖vt

j‖0 ≤ τ, i =1,· · ·, ns, j =1,· · ·, nt .

(8)

From this formulation, it is clear that we actually jointly opti-
mize the common subspace and the sparse reconstruction
coefficients. How to optimize the objective in Eq. (8) will be
presented in detail in Section 3.

2.2.2 Targetizing the Source Domain in Image Space

After optimizing Eq. (8), we can achieve the common sub-
space in terms of

[
W∗

s , W∗
t

]
, and the sparse reconstruction

relationship in terms of
[
V∗

s , V∗
t

]
. As mentioned, existing

works generally then learn the target model directly in the
common subspace, since the source and target domains have
similar distribution in it. In this way, however, the particular
knowledge of the target domain is not exploited, which will
degrade the performance in target domain. So, we instead
perform the targetization in the original sample space so as
to keep the particular knowledge of the target domain.

Formally, the targetized source domain, denoted as Xs→t

= [
xs→t

1 , xs→t
2 , · · · , xs→t

ns

] ∈ R
dt ×ns , is achieved by

applying the sparse coefficients V∗
s = [

vs∗
1 , vs∗

2 , · · · , vs∗
ns

]

obtained from Eq. (8) in the original sample space:

xs→t
i = Xt vs∗

i , i = 1, 2, · · · , ns, (9)

which can be equivalently written in matrix form as:

Xs→t = Xt V∗
s . (10)

Meanwhile, the class label of each source domain sample ys

is kept for the transformed sample xs→t . So, in theory, any
supervised method can be used to learn a recognition model
based on (Xs→t , ys).

2.3 Supervised Model Learning and Testing

2.3.1 Supervised Model Learning in the Target Domain

Fisher’s Linear Discriminant (FLD) analysis (Belhumeur et
al. 1997) is a widely used approach for discriminative feature
extraction, and face recognition (Liu and Wechsler 2002; Su
et al. 2009). In this work, we employ FLD for supervised
feature extraction:

W∗
f ld = arg max

W

|WT SbW|
|WT St W| , (11)

where | · | means the determinant of a matrix. The total scat-
ter matrix St is calculated from the target domain while the
between-class scatter matrix Sb is calculated from the targe-
tized source domain as:

St =
∑nt

i=1

(
xt

i − μt) (
xt

i − μt)T
, (12)

Sb =
∑cs

j=1
ns j

(
μs→t

j − μs→t
) (

μs→t
j − μs→t

)T
, (13)

where μt = ∑nt
i=1

1
nt

xt
i is the mean of Xt , μs→t

j =
1

ns j

∑
ys

k= j xs→t
k is the mean of the j-th class of the targe-

tized source domain, ns j is the number of samples in the j-th

class, μs→t = ∑ns
j=1

1
ns

xs→t
j is the mean of Xs→t , and cs

is the number of classes of the source domain. With Eqs.
(12) and (13), Eq. (11) can be analytically solved by using
generalized eigenvalue decomposition.

Here, please kindly note that no class label is needed for
the computation of total scatter matrix, so it is intuitively
more plausible to directly use the unsupervised target data
for computing St . Nevertheless, it is also feasible to use the
targetized source domain, which is actually a re-sampled tar-
get domain data. Our experiments show only very trivial dif-
ference for these two alternatives.

2.3.2 Classification in Target Domain

Given a supervised source domain and an unsupervised target
domain, our TSD can output a discriminant feature extractor
W∗

f ld in Eq. (11) for the target domain. Then, to perform
face recognition in target domain, a testing set composed of
a gallery and a probe set is needed. The gallery contains the
enrolled face images with known identities, while the probe
set includes face images to be identified.

To do testing, the discriminative feature of each gallery
image xg

i is firstly extracted as W∗T
f ldxg

i . Similarly, for each
probe image xtest , its discriminative feature is extracted
as W∗T

f ldxtest . Next, its similarity to each gallery face

image is calculated via cosine function as sim(xtest , xg
i ) =

cosine(W∗T
f ldxtest , W∗T

f ldxg
i ). Finally, the identity of xtest

is determined by using the Nearest Neighbor classifier as
Label(xtest ) = Label(xg

k ), k = arg max
i

sim(xtest , xg
i ).

2.4 Discussion

2.4.1 Targetization in the Original Image Space

As mentioned before, the targetized source domain Xs→t in
Eq. (10) is expected to contain not only the common charac-
teristics of both domains, but also the particular knowledge
of target domain. To further illustrate this point, we formally
denote the commonality of Xs and Xt in the original image
subspace as X(c)

s = W∗
s W∗T

s Xs and X(c)
t = W∗

t W∗T
t Xt

respectively. Note that X(c)
s and X(c)

t only capture the com-
mon part of the source and target domains.

For the target samples, their common part shared with
the source domain are removed, the remaining part, i.e.,
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(
Xt − X(c)

t

)
V∗

s contains the particular information of the

target domain, which can be utilized to build a better discrim-
inant model for the target domain. The following rewriting
of Eq. (10) can further reveal this point:

Xs→t = Xt V∗
s = X(c)

t V∗
s︸ ︷︷ ︸

common

+
(

Xt − X(c)
t

)
V∗

s
︸ ︷︷ ︸

paticular

(14)

The commonality of the source and target domains in Eq.
(14) bridges the gap between the two domains to determine
the reconstruction relationship for them, and after that the
particular information of the target domain is recalled during
the reconstruction, which is equivalent to the reconstruction
in the original image space.

2.4.2 Difference from the Existing Works

Difference with LRR (Jhuo et al. 2012)
To our best knowledge, the LRR is the most similar one

to ours. However, our TSD is quite different from LRR in
two-fold: (1) In LRR, only the source domain samples are
projected to an intermediate subspace, which can pull the
source domain closer but not enough to the target domain.
In contrast, by removing the particular parts of both domains
(not just that of the source domain), our TSD projects both of
them into a common subspace, which can make the source
domain and target domain closer enough to each other. (2) In
LRR, the source domain samples lose the individuality when
being transformed to the target domain due to the low-rank
constraint, while in our TSD, each source domain sample is
transformed independently which can preserve the diversity
of different subjects.

Difference with LTSL (Shao et al. 2012)
In LTSL, a unified transform is exploited to project both

source and target domains into a common subspace with a
low-rank constraint, and the classification is completed in
the common subspace. On the contrary, two transforms are
exploited to respectively project the source domain and target
domain to a common subspace which can make the domain
discrepancy smaller. Another advantage of TSD is that the
targetization and the classification are both conducted in the
original sample space, which can preserve more information
about the target domain leading to a better recognition model
for the target domain.

Difference from Other Existing Works
Our method shares some common idea with the works

(Mehrotra et al. 2012; Si et al. 2010; Geng et al. 2011; Si et
al. 2011; Raina et al. 2007) in using common space. However,
these methods exploit single transform to capture the com-
monality between domains, in terms of unified dictionary,
distance metric, or projection. Specifically, our TSD method
is different from them in the following aspects: (1) Our TSD

method employs two transforms to respectively project the
source and target domains into a common subspace, which
can make the source and target domains closer to each other.
(2) Besides using the commonality, the TSD method fur-
ther exploits the particular information of the target domain,
leading to a better recognition model for the target domain. In
other perspective, the common subspace in our TSD is only
used as a bridge to link the domains, while the target model
is learnt in the original sample space, which is quite different
from the above methods. (3) The measurement of the dis-
crepancy between the source and target domains is different.
In the works (Si et al. 2010; Geng et al. 2011), the Bregman
divergence and the empirical maximum mean discrepancy
are used. They are all parameter-based measurements, while
the sparse reconstruction used in our TSD are more flexible
as a non-parameter measurement.

3 Optimization

As the optimization problem of Eq. (8) is not convex for
all variables, we exploit an alternation method to iteratively
solve the projection matrices (Ws, Wt ) and the sparse recon-
struction coefficients (Vs, Vt ).
Step 1: given Ws and Wt , optimize Vs and Vt .

As seen from Eq. (8), Vs and Vt are independent of each
other given Ws and Wt , so they can be optimized indepen-
dently. Namely, Vs is optimized as:

V∗
s = arg min

Vs
‖WT

s Xs−WT
t Xt Vs‖2

F ,

s.t. ‖vs
i ‖0 ≤ τ, i = 1, 2, · · · , ns . (15)

Furthermore, vs
1, vs

2, · · · , vs
ns

in Eq. (15) are also indepen-
dent of each other, which means each vs

i can be separately
solved as a lasso problem:

vs∗
i = arg min

vs
i

‖WT
s xs

i−WT
t Xt vs

i ‖2,

s.t. ‖vs
i ‖0 ≤ τ, i = 1, 2, · · · , ns . (16)

However, if each of the above lasso problems is solved inde-
pendently, some source domain samples may make use of the
same target samples for the sparse reconstruction. For exam-
ple, in the experiments, we found that the samples of the same
subject in one domain may select the same single sample from
the other domain, which means the targetized source sam-
ples of the same class may lose its intra-personal variations.
Therefore, to preserve the diversity of the source domain
and guarantee that the source domain and target domain are
interlaced sufficiently, an additional penalty term is added to
Eq. (16) to enhance the preference of varied samples for the
reconstruction as bellow:

vs∗
i = arg min

vs
i

‖WT
s xs

i−WT
t Xt vs

i ‖2+λ‖1−hT
t vs

i ‖2,

s.t. ‖vs
i ‖0 ≤ τ, i = 1, 2, · · · , ns . (17)
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Input: the source domain samples Xs and the target domain samples Xt .
Output: the projection matrices W∗

s , W∗
t ; the sparse reconstruction coefficients V∗

s , V∗
t ; and the targetized source domain Xs→t .

1. Initialize Ws , Wt as random matrices with the norm of each column as 1;
2. While the changes of variables is larger than ε and not reach a maximum number of iterations do

2.1 Optimize the sparse reconstruction coefficients Vs and Vt according to Eq. (18) and Eq. (21):
2.1.1 for i=1:ns

vs∗
i = arg minvs

i
‖WT

s xs
i−WT

t Xt vs
i ‖2 + λ‖1 − hT

t vs
i ‖2, s.t. ‖vs

i ‖0 ≤ τ.

ht ⇐ ht − 0.5
max(|vs∗

i |) |vs∗
i |.

end
2.1.2 for i=1:nt

vt∗
i = arg minvt

i
‖WT

t xt
i−WT

s Xsvt
i ‖2 + λ‖1 − hT

s vt
i ‖2, s.t. ‖vt

i ‖0 ≤ τ.

hs ⇐ hs − 0.5
max(|vt∗

i |) |vt∗
i |.

end
2.2 Optimize the two projection matrices Ws and Wt according to Eq. (27):

W∗ = arg maxW Tr
(

WT �bW
WT �wW

)
, whereW = [WT

s WT
t ]T .

end
3. Calculate the targetized source domain: Xs→t = Xt V∗

s ;
4. Apply FLD on the targetized (Xs→t , Ys) according to Eq. (11).

Algorithm 1: Targetize source domain bridged by common subspace learning.

Here, the indicator ht ∈ R
nt ×1 assigns a weight to each tar-

get sample, indicating how many times the sample has been
used. So, the penalty term will punish those target samples
that are over-used to reconstruct the source samples via a
small weight. As a result, it enforces different source domain
samples to select distinct target domain samples, which can
facilitate the preserving of the intra-personal variations for
the targetized source domain. In our implementation, ht is
initialized as an all-1 vector, meaning that all samples have
equal availability in the subsequent reconstruction.

The problem in Eq. (17) can be easily solved by using
a forward stepwise regression like algorithm, i.e., the Least
angle regression (Efron et al. 2004; Donoho 2006), by being
reformulated as the following form:

vs∗
i = arg min

vs
i

‖z̃s
i−Z̃t vs

i ‖2,

s.t. ‖vs
i ‖0 ≤ τ, i = 1, 2, · · · , ns, (18)

with z̃s
i =

[
WT

s xs
i√

λ

]
and Z̃t =

[
WT

t Xt√
λhT

t

]
.

After achieving the vs∗
i , those samples selected for the

reconstruction are punished by being decreased the weights
as follows:

ht ⇐ ht − 0.5

max(|vs∗
i |) |v

s∗
i |. (19)

|vs∗
i | means the absolute operation on each element of the

vector vs∗
i . The sparsity parameter τ in Eq. (18) can ensure

that only a limited number of entries in vs∗
i are non-zero.

As a result, Eq. (19) decreases the availability of those sam-
ples selected for reconstruction in this turn, while keeps the
availability of the rest ones unchanged.

Similarly, each vt
i in Vt is also independent of each other

and can be separately optimized as:

vt∗
i = arg min

vt
i

‖WT
t xt

i−WT
s Xsvt

i ‖2+λ‖1−hT
s vt

i ‖2,

s.t. ‖vt
i ‖0 ≤ τ, i = 1, 2, · · · , nt , (20)

which can be easily solved by using the Least angle regres-
sion by further being reformulated as:

vt∗
i = arg min

vt
i

‖z̃t
i−Z̃svt

i ‖2,

s.t. ‖vs
t ‖0 ≤ τ, i = 1, 2, · · · , nt , (21)

with z̃t
i =

[
WT

t xt
i√

λ

]
and Z̃s =

[
WT

s Xs√
λhT

s

]
.

The indicator hs ∈ R
ns×1 is employed to reflect the avail-

ability of source domain samples for reconstructing target
domain samples. hs is also initialized as an all-1 vector and
is updated as follows:

hs ⇐ hs − 0.5

max(|vt∗
i |) |v

t∗
i |. (22)

Step 2: given Vs and Vt , optimize Ws and Wt .
Fixing Vs and Vt , Eq. (8) can be re-formulated to:

[
W∗

s , W∗
t

] = arg max
Ws ,Wt

Tr
(

1
ns

WT
s XsXT

s Ws + 1
nt

WT
t Xt Xt WT

t

)

1
ns

‖WT
s Xs−WT

t Xt Vs‖2
F+ 1

nt
‖WT

t Xt−WT
s XsVt‖2

F

(23)

By concatenating Ws and Wt as one matrix W=[WT
s WT

t ]T ,
Eq. (23) can be further re-formulated as the following prob-
lem with a norm-1 constraint:

W∗ = arg max
W

Tr
(
WT �bW

)

Tr
(
WT �wW

) , s.t. ‖wi‖2 =1, (24)
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where wi is the i-th column of W. �b and �w are defined
as:

�b =
[

1
ns

XsXT
s 0

0 1
nt

Xt XT
t

]

, (25)

�w =
⎡

⎣
Xs

(
I

ns
+ Vt VT

t
nt

)
XT

s , −Xs

(
VT

s
ns

+ Vt
nt

)
XT

t

−Xt

(
VT

t
nt

+ Vs
ns

)
XT

s , Xt

(
I

nt
+ Vs VT

s
ns

)
XT

t

⎤

⎦ . (26)

According to the works (Wang et al. 2007; Jia et al. 2009),
Eq. (24) is in the trace ratio form, for which the closed form
solution does not exist. We therefore relax Eq. (24) into a
more tractable ratio trace form:

W∗ = arg max
W

Tr

(
WT �bW
WT �wW

)
, s.t.‖wi‖2 =1. (27)

Eq. (27) can be easily solved by using the generalized eigen-
value decomposition.

Step 3: Repeat Step 1 and 2 until Ws, Wt , Vs and Vt

converge or exceeds a maximum number of iterations. For
clarity, the overall algorithm is summarized in Algorithm 1.

4 Experiments

In this section, after describing the experimental settings and
the partition of each dataset, we validate the proposed method
from several different perspectives. Firstly, we investigate
the insensitivity of our TSD method to the parameters. Sec-
ondly, we validate the necessity of each component in TSD
method. Thirdly, we empirically check the convergence of
the objective function. Finally, we evaluate the TSD method
by comparing with existing methods on three face recog-
nition scenarios: (1) domain adaptation across view angle,
where the source and target domains correspond to differ-
ent view angles on MultiPIE dataset (Gross et al. 2007); (2)
domain adaptation across ethnicity, where the source and
target domains contain subjects from two different ethnic-
ities: a Mongolian dataset OFD (XianJiaotong 2006) and a
Caucasian dataset XM2VTS (Messer et al. 1999); (3) domain
adaptation across imaging condition, where the images in the
source and target domains are captured under two different
imaging conditions, which is simulated by the constrained
XM2VTS (Messer et al. 1999) and the unconstrained FRGC
(Phillips et al. 2005).

4.1 Basic Experimental Settings

As this work mainly focuses on the unsupervised domain
adaptation problem, in all experiments, the source domain
training data is labeled, while the target domain training data
is unlabeled. Besides, a gallery and a probe set from the
target domain are also needed to evaluate the performance of

the learnt target model. The measurement for performance is
classification accuracy, i.e., rank-1 recognition rate.

In all experiments, the face images are aligned according
to the manually labeled eye locations, and then normalized
to 80 × 64 pixels on OFD, XM2VTS and FRGC datasets, but
to 40 × 32 pixels on MultiPIE dataset for quick evaluation
of multiple settings. After this normalization, each image is
represented as a column vector by stacking its raw pixels, of
which the dimensionality is further reduced through principal
component analysis (PCA) (Turk and Pentland 1991) with
98 % energy kept, and then used as the input feature (i.e.,
to form the Xs and Xt ). Please note that PCA is applied
separately for the source and target domains.

The parameters of all involved methods are tuned to report
the best results unless otherwise specified. For our TSD
method, the dimension of the common subspace, i.e., the
column size of Ws and Wt , is empirically set to 300 in all
the experiments. For fairness, all the reported results of our
TSD method are the mean accuracy of 10 trials with ran-
domly initialized Ws and Wt .

4.2 Partition of Datasets for the Evaluation

4.2.1 Datasets for Domain Adaptation Across View Angle

In this work, we define domain adaptation across view angle
as that: one view is used as the source domain, e.g. frontal
view, and another view, e.g. the profile, as the target domain.
For this evaluation, the MultiPIE dataset (Gross et al. 2007)
is exploited. It contains more than 750,000 images of 337
subjects under various poses, illuminations and expressions.
Specifically, a subset including about 14,450 images from all
subjects from four collecting sessions at seven poses (−45◦,
−30◦, −15◦, 0◦, 15◦, 30◦, 45◦), with three expressions (Neu-
tral, Smile, Disgust) and no flush illumination is selected
as the evaluation dataset. This evaluation dataset is further
divided into seven subsets according to view angle. For each
view angle, the images of 200 subjects with about seven ran-
domly selected images per subject are used for training, and
the images of the remaining 137 subjects are used for testing.
Among the testing images, 1 and 4 images per subject are ran-
domly selected as the gallery and probe images respectively.
Some exemplar images are shown in Fig. 3a.

In summary, for each view angle on MultiPIE, 1,383
images from 200 subjects are used as the training data, 137
images from the rest 137 subjects are used as gallery, and
553 images from 137 subjects are used as probes.

In order to simulate the domain adaptation across view
angle, two view subsets, e.g., view −45◦ subset and view 45◦
subset, are selected as source and target domain respectively.
If one view is used as source domain, the class label of its
training data will be given; otherwise, the class label will not
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Fig. 3 The exemplar images from (a) MultiPIE dataset, (b) OFD dataset, (c) XM2VTS dataset, and (d) FRGC dataset.

Table 1 An exemplar of evaluation settings for MutiPIE dataset.

domain datasets #subjects #images

-45 (source domain) labeled training data 200 1383 (about 7 images per subject)

45 (target domain)

unlabeled training data 200 1383 (about 7 images per subject)

test data
gallery 137 137 (1 image per subject)

probe set 137 553 (about 4 images per subject)

be given for the target training data. An illustration of this
evaluation setting is shown in Table 1.

4.2.2 Datasets for Domain Adaptation Across Ethnicity

For domain adaptation across ethnicity, the XM2VTS dataset
(Messer et al. 1999) consisting of mainly Caucasian and the
Oriented Face Dataset (OFD) (XianJiaotong 2006) consist-
ing of mainly Mongolian are used. The XM2VTS dataset
contains 3,440 images of 295 subjects taken over a period
of 4 months with different pose and illumination variations.
Eight images per subject with slight pose variations are ran-
domly selected for evaluation. Specifically, for each subject,
4 of the 8 images are randomly selected to form the training
set. Then, the remaining images form the testing set: for each
subject, 1 image is enrolled into gallery and the left 3 images
are used as probes. Some exemplar images are shown in Fig.
3b.

To match the scale of XM2VTS, we use only a sub-
set of OFD dataset, containing 800 subjects with 4 images
per subject under slight lighting variations. For OFD data-
base, images of the first 400 subjects are used as training
data, and images of the rest 400 subjects are used for test-
ing. Specifically, 1 image per subject is randomly selected

to form the gallery, and the rest 3 images of each subject
are used as the probes. Some exemplar images are shown in
Fig. 3c.

In summary, for XM2VTS, 1,180 images from 295 sub-
jects are used as training data, 295 images from 295 subjects
are used as gallery, and 885 images from 295 subjects are
used as probe. For OFD, 1,600 images from 400 subjects are
used as training data, 400 images from 400 subjects (one per
subject) are used as gallery, and 1,200 images from 400 sub-
jects are used as probes. For both datasets, if one is used as
source domain, the training data of this dataset is used along
with class label; if the dataset is used as the target domain,
the training set is used without class label.

4.2.3 Datasets for Domain Adaptation Across Imaging
Condition

For face recognition, another important factor that can cause
the distribution different is the imaging condition, e.g., the
images collected in constrained environment usually look
different from the images collected in unconstrained envi-
ronment. To simulate this scenario, we employ the XM2VTS
dataset (Messer et al. 1999) collected in constrained environ-
ment and FRGC datasets (Phillips et al. 2005) collected in
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unconstrained environment for evaluation. The XM2VTS is
organized the same as previously mentioned.

The FRGC dataset consists of about 50,000 recordings.
It has six experiments, but here, we follow the protocol for
Experiment 4 which is designed for unconstrained face verifi-
cation. Differently, we perform face recognition in this work.
For the evaluation, we randomly select 10 images per subject
from the standard training set to form a new training set, then
randomly select 1 image per subject from the standard target
set as the gallery, and select 2 ∼ 6 images per subject from
the standard query set as the probe. In total, 2,220 images
are included in the training set, 2,520 in probe set, and 466
images in gallery set, respectively. Some exemplar images
are shown in Fig. 3d.

Similarly, for both XM2VTS and FRGC, if one is used as
source domain, the training set of this dataset is used along
with class label; if the dataset is used as target domain, the
training set is used without class label.

4.3 Influence of the Parameters in TSD

Our TSD method has two parameters, τ and λ in Eq. (17),
which are used to control respectively the sparsity and the
disperse selection of samples for reconstruction. To test their
influence on the recognition performance, we conduct an
experiment on the MultiPIE dataset with −45◦ as source
domain and 45◦ as target domain. The results are shown
in Fig. 4. We can observe that the performances roughly
increase first and then decrease with the increase of λ, inde-
pendent of the parameter τ . From the results, how the perfor-
mances change with the parameter τ is not so clear for differ-
ent lambda. However, it seems clear that the best choice for τ

is 1. The possible principle behind is that the smaller the num-
ber of neighbors used for the cross-domain reconstruction,
the closer both domains are. Please note that, although the
performances of our TSD change with respect to the parame-
ters τ and λ, the fluctuation is trivial as seen in Fig. 4, which
demonstrates that TSD is insensitive to τ and λ.
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Fig. 4 The performance of TSD w.r.t different λ and τ on MultiPIE
dataset with −45◦ as source domain, and 45◦ as target domain.

4.4 Necessity of each Component in TSD

As emphasized, the key feature of our TSD is targetizing
the source domain in the original sample space but learn-
ing the reconstruction coefficients in the common subspace.
So, it is desirable to validate the essentiality of each com-
ponent in our TSD method, by investigating the follow
strategies:

(1) Sparse Reconstruction (SR_Ori) only. In this setting, the
coefficients for the targetization is directly achieved in the
original sample space rather than common subspace.

(2) Common Subspace (CS) only. In this setting, the whole
process is conducted in the common subspace, i.e., the
supervised model is learnt on the source domain, and
is directly applied for the target domain in the common
subspace (without returning to the original sample space).
This strategy discards the particular knowledge of the
target domain.

(3) TSD without the Max Variance term and the Indica-
tor ht /hs (TSD w/o MV&I). This setting evaluates the
necessity of max variance term and the indicators. Please
kindly note that the indicators hs and ht are designed
to explicitly enforce different source/target samples to
be sparsely constructed by different target/source sam-
ples, so as to guarantee the diversity of targetized source
domain.

(4) TSD without the max variance term, but with the indi-
cator ht/hs (TSD w/o MV). This setting evaluates the
performance when without the max variance term.

The above settings are evaluated on three tasks, i.e.,
domain adaptation across view angle, ethnicity and imaging
condition respectively, as shown in Tables 2 and 3.

As seen, the SR_Ori strategy performs much worse than
TSD. We conjecture that it is because the two domains depart
too far away from each other, which makes it too difficult
(if not impossible) to reconstruct the source domain sample
with the target domain samples. As a result, the coefficients

Table 2 Evaluation of each component in TSD in terms of domain
adaptation across view angle on MultiPIE dataset

View angles

Source −45◦ 45◦ 0◦ 0◦ −30◦ 30◦

Target 45◦ −45◦ −45◦ 45◦ 30◦ −30◦

SR_Ori 0.436 0.488 0.591 0.564 0.515 0.523

CS 0.629 0.600 0.620 0.707 0.653 0.671

TSD w/o MV&I 0.707 0.702 0.694 0.713 0.768 0.752

TSD w/o MV 0.707 0.712 0.716 0.714 0.782 0.771

TSD 0.718 0.709 0.725 0.731 0.791 0.773
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Table 3 Evaluation of each component in TSD in terms of domain
adaptation across ethnicity and imaging condition

Ethnicities Imaging conditions

Source OFD XM2VTS FRGC XM2VTS

Target XM2VTS OFD XM2VTS FRGC

SR_Ori 0.815 0.932 0.779 0.075

CS 0.811 0.966 0.769 0.168

TSD w/o MV&I 0.813 0.980 0.825 0.228

TSD w/o MV 0.816 0.981 0.827 0.229

TSD 0.858 0.974 0.855 0.232

for the sparse reconstruction obtained in the original sample
space are not reliable as those obtained in the common space,
which implies the importance of bridging the two domains
via a common subspace. This conclusion is further proved
by the better performance of CS than SR_Ori.

It can be also seen that the TSD outperforms the CS strat-
egy significantly. This gain can be safely attributed to the use
of the particular knowledge of the target domain, which are
not preserved in the common subspace.

Another observation from Tables 2 and 3 is that TSD
degenerates if the max-variance term and/or the indicator
are removed. The reason behind is that, without these two
terms many source domain samples may be reconstructed

by the same target domain samples, which might lead to
smaller reconstruction error, but cannot promise the close-
ness between domains with enough structural information.

The above observations and investigations demonstrate
that the common subspace is fundamental for knowledge
transfer, while making use of more information about tar-
get domain can further benefit the adaptation. This argu-
ment forms the principle of our basic idea that converting
the source samples to target domain in the original sample
space, with the converting parameters however learnt in the
common space, where the two domains preserve their own
structures but are pulled as close as possible.

4.5 Convergency of the Optimization for TSD

Since the objective in Eq. (8) is optimized in an alternation
way, we would like to explore the convergency of the algo-
rithm. While it is hard to prove its convergence theoretically,
we can anyway show some empirical evaluation. Here, we
show the objective values of Eqs. (24) and (27) on MultiPIE
with −45◦ as source domain and 45◦ as target domain. The
results are shown in Figs. 5 and 6. As seen, the algorithm
steadily converges after a number of iterations.

Besides, TSD is generally not time consuming. For exam-
ple, the training time on MultiPIE only takes about 6 minutes
on a desktop PC with 3.10 GHz CPU and 8 GB memory.

Fig. 5 The objective values of
Eqs. (24) and (27) in scenario of
domain adaptation across pose,
with -45◦ and 45◦ as the source
and target domains respectively

(a) (b)

Fig. 6 The objective values of
Eqs. (24) and (27) in scenario of
domain adaptation across
imaging condition, with
XM2VTS and FRGC as source
and target domains respectively

(a) (b)
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4.6 Comparison with the Existing Works

To further validate our method, we compare it with several
existing methods under three scenarios, i.e., domain adap-
tation across view angle, domain adaptation across ethnic-
ity and domain adaptation across imaging condition. Several
competitive approaches are briefly described as bellow.

PCA (Turk and Pentland 1991): PCA is a typical unsu-
pervised method, taken as the baseline. PCA is directly con-
ducted on target domain, and the dimension is determined by
keeping 98 % energy.

FLD (Belhumeur et al. 1997): Fisher’s Linear Discrimi-
nant analysis is a widely-used supervised method for feature
extraction. The FLD model learnt from the supervised source
domain without any adaptation is also tested as a baseline by
being directly applied to the target domain.

TDR (Wang et al. 2008): Transferred Dimension Reduc-
tion method is an effective method to directly combine the
information from both domains into one model, i.e., assem-
ble the scatter of source domain and the estimated scatter of
target domain into one FLD-like model.

ITL (Shi and Sha 2012): Information Theoretical Learn-
ing method aims at obtaining a common subspace through
information theory. ITL endeavors to reduce the disparity of
two domains measured by the mutual information of samples
and domain labels, and keeps the discrimination on the target
domain measured by the entropy of predicted class label at
the mean time.

SGF (Gopalan et al. 2011): In Sampling Geodesic Flow
approach, a series of intermediate common representations
are created by projecting the data onto the sampled interme-
diate subspaces. These subspaces are sampled along the path
from the source domain to target domain on the Grassmann
manifold. As suggested in the work (Gopalan et al. 2011),
partial least squares (PLS) method is employed for final clas-
sification.

Among these methods, PCA only exploits the unlabeled
training data of target domain and FLD only exploits the

labeled training data of source domain, while the rest domain
adaptation methods, i.e., TDR, ITL, SGF and our TSD, make
use of both labeled training data of source domain and unla-
beled training data of target domain. For clarity, in all tables,
we use “Source Model” representing the models learnt by
using only the training data of source domain, and “Tar-
get Model” representing the models learnt by using only the
training data of target domain.

4.6.1 Domain Adaptation Across View Angle

Domain adaptation across view angle attempts to adapt the
knowledge from one view to another. This problem is prac-
tical and interesting, because we can generally have suffi-
cient labeled training images in frontal view, but lack of
enough labeled data in side view. The MultiPIE datasets are
employed to simulate this scenario: with one view as the
source domain and another view as the target domain.

The evaluation results are shown in Table 4. As seen,
FLD performs only slightly better than PCA since the two
domains are different from each other and thus it is dif-
ficult to achieve a good performance by directly applying
the source domain model to the target domain without any
adaptation. Among the existing domain adaptation methods,
SGF and ITL achieve much better performance than PCA, as
they exploit the source domain knowledge via common sub-
space or domain-invariant feature representation. TDR out-
performs both of them as it combines all the information from
both domains in the original sample space, not only the com-
monality. However, TDR is worse than our TSD, especially
when the difference of the source and target domains is rela-
tively large, e.g. from −45◦ to 45◦. The improvement of our
TSD benefits from on one hand targetizing the source domain
in the original samples space, where particular knowledge of
the target domain is preserved, and on the other hand achiev-
ing the reconstruction coefficient for the targetization in a
common subspace, which can ensure a more stable cross-
domain reconstruction relationship.

Table 4 Rank-1 face
recognition rates of domain
adaptation across view angle on
MultiPIE dataset

Source Target Target model Source model Domain adaptation

PCA FLD TDR SGF ITL TSD

−45◦ 45◦ 0.533 0.644 0.679 0.631 0.664 0.718

45◦ −45◦ 0.535 0.637 0.669 0.608 0.640 0.709

0◦ −45◦ 0.535 0.586 0.685 0.609 0.620 0.725

0◦ 45◦ 0.535 0.467 0.697 0.631 0.671 0.731

−45◦ 30◦ 0.534 0.691 0.748 0.664 0.658 0.785

45◦ −30◦ 0.543 0.671 0.741 0.667 0.696 0.764

−30◦ 30◦ 0.588 0.692 0.789 0.635 0.666 0.791

30◦ −30◦ 0.584 0.696 0.752 0.676 0.698 0.773
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Table 5 Rank-1 face
recognition rates of domain
adaptation across ethnicity.

Source Target Target model Source model Domain adaptation

PCA FLD TDR SGF ITL TSD

OFD XM2VTS 0.745 0.768 0.845 0.783 0.715 0.858

XM2VTS OFD 0.268 0.593 0.971 0.653 0.110 0.974

Table 6 Rank-1 face
recognition rates of domain
adaptation across imaging
condition

Source Target Target model Source model Domain adaptation

PCA FLD TDR SGF ITL TSD

FRGC XM2VTS 0.745 0.767 0.831 0.791 0.731 0.855

XM2VTS FRGC 0.012 0.083 0.183 0.073 0.041 0.232

4.6.2 Domain Adaptation Across Ethnicity

For domain adaptation across ethnicity, the Mongolian OFD
dataset (XianJiaotong 2006) and the Caucasian XM2VTS
dataset (Messer et al. 1999) are exploited, with one as source
domain and the other as target domain. The evaluation is
shown in Table 5, from which similar conclusion can be
drawn. The unsupervised PCA performs worst, followed by
FLD and SGF. TDR and our TSD perform the best with com-
parable performance. This is because the source domain is
not significantly different from target domain, considering
that the images of both domains are frontal without large
variations in expression and occlusion.2

4.6.3 Domain Adaptation Across Imaging Condition

For domain adaptation across imaging condition, the XM2
VTS dataset (Messer et al. 1999) collected in constrained
condition and the FRGC dataset (Phillips et al. 2005) col-
lected in unconstrained condition are employed, with one as
source domain and the other as target domain. The evaluation
results are shown in Table 6. As seen, all methods performs
better on XM2VTS than on FRGC, since XM2VTS is col-
lected under constrained environment, which means an easier
task than that on FRGC. When FRGC is used as the target
domain, the recognition rates of PCA, FLD, SGF and ITL are
extremely low, even lower than 10 %. This might be attributed
to the quite large variations from the uncontrolled condition
which forms a challenging task. Compared with the above

2 In this experiment the performance of ITL is even worse than PCA,
however this does not mean the inferiority of ITL since the data distri-
bution in this setting does not agree with the assumption of ITL: ITL
assumes that the data in both source and target domains are tightly clus-
tered, and clusters from both domains are aligned if they correspond to
the same class. In this setting here, the source and target domains only
have several samples in each class which are difficult to form a tight
cluster, and even worse the samples from the source and target domains
are from totally different classes.

methods, TDR can achieve much better performance up to
18.3 %, while our method can impressively outperform TDR
with the accuracy up to 23.2 %.

4.7 Discussion

As clearly seen from the above evaluation, our proposed TSD
outperforms other domain adaptation approaches. Specially,
from the comparison results in Tables 2 and 3, the superiority
of our TSD is attributed to the exploiting not only the common
knowledge of source and target domains, but also the partic-
ular knowledge of the target domain. The principle behind is
twofold: firstly, it is more reasonable to determine the recon-
struction coefficients in a common subspace, in which the
particular parts of both domains are removed, because they
are useless for determining the cross-domain relationship;
secondly, the particular characteristics of target domain are
well preserved by applying the reconstruction coefficients
in the original sample space, i.e., targetization of the source
domain. Such a strategy actually replaces the source-domain-
particular components with target-domain-particular compo-
nents, while keeping the common components of source and
target domains.

A big difference of our TSD from most existing works,
e.g., TDR and ITL, is that, the whole targetization is totally
unsupervised, even without using any supervision informa-
tion of the source domain. However, the class label naturally
remains unchanged for the targetized source domain, which
can be further used by any supervised method, e.g., Fisher’s
linear discriminant analysis.

Another intrinsic advantage of our method is that, it can
still work even when the feature dimensions of the source and
target domains are different, while many previous methods,
e.g., the TDR, cannot survive in this scenario. This advantage
of our method comes from that two different projections are
exploited for source and target domains.

In case of domain adaption between the flipped view
angles, e.g., (−45◦, 45◦) and (−30◦, 30◦), the optimal Ws
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and Wt should be the flip of each other and the best recog-
nition model for target domain can be obtained from the
flipped source images. In current work, we are unable to
achieve this optimal solution. This indeed forms a very
good future direction to deepen the proposed framework.
However, we mildly think that this does not degenerate our
method too much, as our TSD is a general method without
assuming this kind of strong correspondence between view
angles.

5 Conclusions and future works

In this work, we propose an unsupervised domain adaptation
method via targetizing the source domain images bridged by
the common subspace learning. Our method directly con-
verts the source domain data to the target domain in the
image space rather than in the common subspace, while the
sparse reconstruction coefficients are learnt in the common
subspace. For each source domain image, such a Targetiz-
ing strategy actually preserves the commonality between
domains, while substitutes some target-particular compo-
nents for its source-particular components.

The evaluations on three face recognition tasks demon-
strate the superiority of our TSD to the existing methods.
Besides, the investigations also imply that both the common-
ality between domains and the particularity of target domain
are essential for domain adaptation: the commonality can
bridge the gap between domains, while the particularity of
the target domain can preserve its specific characteristics,
which are beneficial for the task in target domain.

As discussed, only unsupervised information is consid-
ered in our targetization. But, the supervised information of
the source domain does provide more discriminative infor-
mation, which can be further exploited to guide the targetiza-
tion of the source domain. Therefore, one of our future works
will study on how to exploit the supervision information in
the procedure of adaptation, especially during the common
subspace learning.
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