
Pattern Recognition Letters 133 (2020) 48–54 

Contents lists available at ScienceDirect 

Pattern Recognition Letters 

journal homepage: www.elsevier.com/locate/patrec 

Learning deep face representation with long-tail data: An 

aggregate-and-disperse approach 

Yuhao Ma 

a , b , Meina Kan 

a , b , ∗, Shiguang Shan 

a , b , c , Xilin Chen 

a , b 

a Key Laboratory of Intelligent Information Processing of Chinese Academy of Sciences, Institute of Computing Technology, CAS, Beijing 100190, China 
b University of Chinese Academy of Sciences, Beijing 10 0 049, China 
c CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai 20 0 031, China 

a r t i c l e i n f o 

Article history: 

Received 5 July 2019 

Revised 29 November 2019 

Accepted 6 February 2020 

Available online 7 February 2020 

Keywords: 

Face recognition 

Deep representation learning 

Long-tail distribution 

Aggregate-and-disperse 

a b s t r a c t 

In this work, we study the problem of deep representation learning on a large face dataset with long-tail 

distribution. Training convolutional neural networks on such dataset with conventional strategy suffers 

from imbalance problem which results in biased classification boundary, and the few-shot classes lying in 

tail parts further make the model prone to overfitting. Aiming to learn more discriminative CNN model 

from long-tail data, we propose a novel aggregate-and-disperse training schema. Firstly, our proposed 

method aggregates similar classes in tail part to avoid imbalance problem. Based on the aggregated super 

classes and those original head classes, a model is pre-trained to capture accurate discrimination in head 

classes as well as coarse discrinimation in tail classes. Secondly, we selectively disperses those aggregated 

super classes to learn precise inter-class variations and refine the representation for better generalization. 

We perform extensive experiments on MS-Celeb-1M, BLUFR and MegaFace. Compared with baselines and 

existing methods, our method achieves better performance of face recognition, demonstrating its effec- 

tiveness of handling long-tail distribution. 

© 2020 Published by Elsevier B.V. 
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1. Introduction 

In recent years, the Convolutional Neural Networks (CNNs) have

achieved great success in various computer vision tasks such as

image classification [19] , segmentation [23] and object detection

[8] , etc. In the specific field of face recognition, CNNs have also

made a breakthrough with a few works exhibiting excellent per-

formance [22,24,29,31,34] . These remarkable advancements benefit

a lot from the large-scale datasets and CNN’s ability to learn from

massive training data. However, CNN does not perform well when

encountered unusual data distribution, e.g., long-tail distribution.

Particularly, in this work we study the problem of training CNN on

a face dataset exhibiting long-tail characteristics, in which a con-

siderable portion of classes have only very few face images (re-

ferred to as tail classes) while other classes have relatively abun-

dant samples (head classes). Such long-tail distribution often arises

when collecting large-scale face datasets with a large number of

classes since the number of samples in each class easily varies. It

is meaningful to investigate the impact of tail classes and develop

an approach to handle these data for enhancement. 
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Fig. 1 illustrates long-tail distribution on a cleansed version of

 large-scale face dataset MS-Celeb-1M [11] . In this dataset, only

 small portion of identities, about 10%, have a large number of

ace images, while a considerable portion have only very few sam-

les. Empirically, deep CNN models can be improved by increas-

ng the training data, but it might not be the case when introduc-

ng tail classes. For head classes, they contain many samples with

ich intra-class variations, and thus dominate the learning process

ithout obvious imbalance problem. The tail classes, although in-

lude substantial samples in total, tend to induce imbalance prob-

em and push the decision boundary towards them, resulting in a

iased classifier. Moreover, the scarcity of few-shot samples could

ot guarantee an accurate estimation of class boundary, making

he trained model prone to overfitting. These factors might crip-

le the model when tail classes are involved. A straighforward so-

ution is to directly ignore these tail classes to avoid these nega-

ive side effects, but much valuable information is also removed.

o are there any better alternatives? Although few works explore

his specific problem, many existing works are highly relevant. 

For face recognition tasks, [33] indicates that some metric-

ased loss such as [29,34] are superior to conventional softmax

oss when dealing with few-shot samples. Furthermore, an im-

roved version called range loss [37] is especially proposed to deal

ith the long-tail problem. There are also some other methods
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Fig. 1. Long-tail distribution of a large-scale face dataset MS-Celeb-1M [11] . Class 

index is sort according to the number of samples per class. 
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elevant to imbalance or few-shot problem, which are inherent

roblems of long-tail distribution. Typical strategies against imbal-

nce problem include resampling [4,13] and cost-sensitive learning

7,32] . These principles have been applied to some recent works

nder deep learning frameworks [18,21] . However, these solutions

ave some inherent limitations such as abandoning samples due to

nder-sampling or introducing undesirable noises (e.g., assigning

arger penalty on outlier samples). Few-shot learning aims at rec-

gnizing classes with only one or a few samples for training. Some

orks try to synthesize data based on generation rules as augmen-

ation [12,35] . Some other works regularize the weight norm of

lassifier in adaptation of few-shot classification [10] . Most of these

orks rely on a base set with adequate samples and focus more

n few-shot classification rather than learning a general represen-

ation under data with long-tail distribution. In [25] , we proposed

 method to learn deep face representation on a purely few-shot

ace dataset, and in this work we further extend [25] to handle

ong-tail face dataset. 

Since the scarcity of samples makes it difficult to directly ac-

uire accurate discrimination, we propose to utilize the inter-class

imilarity between those tail classes. For a group of similar classes

hose samples are close in feature space, they share similar dis-

inction from other classes, and thus could make up a super class.

ased on this key insight, we design a two-step training schema,

hich includes an aggregation step followed by a dispersion step,

n a coarse-to-fine manner. Firstly, based on visual similarity, we

ggregate tail classes to super classes, which are similar to head

lasses in terms of data capacity and intra-class variations. With

hese super classes and those fine head classes, a coarsely accu-

ate model (referred to as prototype model) is obtained by learning

ccurate discrimination in head classes and coarse discrimination

n tail classes. Organizing tail classes with aggregation helps us to

btain a prototype model with better generalization, which also

egularizes the optimization of the succeeding training to achieve

etter performance as well. In the second step, the aggregated

lasses in active super classes (whose samples appear in the cur-

ent mini-batch) are dispersed to learn accurate discrimination be-

ween these tail classes. Meanwhile, those classes from inactive su-

er classes still remain aggregated to alleviate the data imbalance

roblem. 

The contributions of this work are summarized as follows: 

• An aggregate-and-disperse training schema is proposed to

simultaneously handle the data imbalance problem and few-

shot problem in long-tail distribution. 
• Extensive experiments are performed on two benchmarks

(BLUFR [20] and MegaFace [27] ) by using a long-tailed

dataset sampled from MS-Celeb-1M for training, demon-

strating that the proposed method could effectively ame-

liorate the negative influences of long-tail distribution and

make better use of the information in tail classes. 

. Related work 

The problem of learning with long-tail data involves both data

mbalance and few-shot problems. So methods that handle these

wo issues are also related to this work. All related works we

eview in this section generally fall into four categories, includ-

ng data re-sampling, data generation, regularization-based and

etric-based methods. 

Data re-sampling methods. Re-sampling techniques 

4,13,26] aim to balance the number of samples by changing

he sampling frequency to handle imbalance problem. Oversam-

ling methods like SMOTE [4] improves replication-based method

y interpolating new samples around scarce samples. However,

his process still suffers from overfitting and introduces unde-

irable noises [7] . Another alternative of undersampling frequent

lasses might discard a large portion of data and remove valuable

nformation. Recently, some of these methods designed for classic

ata imbalance problem have been extended in the context of

eep learning [1,2] . Except for some specific problem (e.g. binary

lassification in detection), the improvement is quite limited due

o the above mentioned drawbacks. 

Data generation methods. Data generation is to augment a

arge number of samples with diversity, which makes it a straight-

orward solution to few-shot problem. As for generation in feature

pace, SMOTE [4] mentioned above could be regarded as a naive

pproach for data generation. Hariharan and Girshick [12] proposes

o hallucinate the features of few-shot classes and get additional

amples by learning pair-wise variations from regular classes. Dixit

t al. [6] creates an attribute-guided feature descriptor for data

ugmentation. Yin et al. [35] assumes a Gaussian prior across all

egular classes and transfers their variations to tail classes to si-

ultaneously learn a less biased classifier and representation. As

or generation in image space, Generative Adversarial Networks

GANs) [9] have achieved great progress in the last few years. GAN-

ased methods are capable of generating HD face images [17] or

diting attributes (e.g. pose, age, etc.) of face images [30] . However,

t still remains challenging to augment samples with high diversity

hile maintaining the identity. 

Regularization-based methods. These methods modify the 

onventional settings (e.g. weights of samples, evaluation of loss,

raining schema, etc.) to regularize the learning process by design.

lassic cost-sensitive learning approaches assign adaptive weights

or different samples [7,32,36] to address the imbalance issue. Re-

ent work [21] also re-weights samples for online hard example

ining (OHEM) in object detection. Another method [10] adapts

he classifier to recognize few-shot samples, which is achieved

y aligning the norms of classification weight vectors of these

ew-shot classes to those of regular classes. Differently, Ma et al.

25] aims to learn face representation from a few-shot dataset. A

wo-step approach is proposed, which is to firstly cluster similar

ew-shot classes into super classes and then disperse them, form-

ng a coarse-to-fine manner as regularization against overfitting. 

Metric-based methods. For classes which only contain a scarce

mount of samples, training with conventional classification eas-

ly lead to overfitting. In this scenario, metric-based methods

ould bring some extra supervision by adding desirable con-

traints on the distance between samples in the feature space.

uang et al. [15] proposes to sample quintuplets and apply

inge loss to enlarge both inter-cluster and inter-class margins for
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Fig. 2. Negative influences of tail classes. Yellow dots are tail class samples, and 

blue triangles are head class samples. Arrows are weight vectors, and the black 

dashed lines are the decision boundaries. (a) The imbalance problem results in a 

biased boundary due to different magnitude of weight norm. [10] (b) Due to few- 

shot property, yellow dots with black border are unseen in training. Such mistaken 

estimation of neighbourhood leads to an inaccurate boundary. (For interpretation 

of the references to color in this figure legend, the reader is referred to the web 

version of this article.) 

Fig. 3. Open-set identification ROC on BLUFR. The same CNN models are trained on 

dataset with uniform and long-tail distribution respectively. 
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solving imbalance problem in face attribute classification. Triplet

loss [29] and center loss [34] have proved their effectiveness for

learning face representation, and the research of [33] indicates that

such metric-based methods are superior when dealing with few-

shot samples. For the long-tail problem, an improved version called

range loss [37] is proposed. The objective is to minimize the har-

monic mean of k largest distance in one class and maximize the

shortest inter-class distance within the mini-batch. A prominent

disadvantage of this method is that a suitable sampling strategy

is indispensable to construct effective data batches for training. 

Most of the above mentioned related works are proposed

to handle imbalance or few-shot problem, which are the sub-

problems of learning from long-tail data. These methods can par-

tially solve or be inspirational to address the long-tail problem al-

though not specifically designed for it. As an extension of [25] ,

our method is a kind of regularization-based method. It proposes a

novel idea of selectively dispersing the aggregated super classes to

address both the few-shot and imbalance issue in long-tail prob-

lem. 

3. Method 

In this section, we firstly formulate the problem of learning

deep face representation on a dataset with long-tail distribution.

Then, we discuss the problems caused by the long-tail distribution

and present the details of our two-step training schema. 

3.1. Problem formulation 

The objective of face recognition is to obtain a face descriptor

which could extract discriminative features from face images. To

achieve this in the context of deep learning, we adopt a deep CNN

model denoted as F(•, θ ) and apply classification task to super-

vise the learning process. This CNN model consists of a series of

operations such as convolution, pooling and ReLU, which are pa-

rameterized as θ . This CNN model maps the input face image X to

feature vector f : 

f = F(X , θ ) . (1)

Then with the feature f and the weights W in the fully-connected

layer (FC), the softmax classifier σ ( f , W ) calculates the class-wise

probabilities p : 

p = σ ( f , W ) . (2)

Cross entropy loss L is computed for back propagation: 

L = −1 

n 

n ∑ 

j=1 

N ∑ 

i =1 

I (y j = i ) logp 

j 
i 
. (3)

n is the number of the samples in the input batch, and N denotes

the number of classes involved in classification. I (•) is the indica-

tor function, y j is the label of the j th sample, and p 

j 
i 

denotes its

predicted probability on class i . 

The above-mentioned training schema is widely used in con-

ventional settings. All samples are treated equally in the learning

process no matter which class they belong to. However, for a face

dataset exhibiting long-tail distribution (e.g. dataset illustrated in

Fig. 1 ), such schema might be inappropriate because the impor-

tance of distinct classes are quite different, which is mainly caused

by the difference in number of samples. So we divide the long-

tail dataset into two parts based on the number of samples in a

class. Thus, we get N t tail classes which have fewer samples and

the other N h head classes. We find out that using all classes leads

to worse performance than only using N h head classes, as shown

in Table 2 . The tail classes seem to impose negative impact on the

learning process. In this work, we argue that with proper modifi-

cation to the training schema, the tail classes could help boost the

performance of deep face representation learning. 
.2. Negative influences of long-tail distribution 

To address this issue, it is crucial to understand how the long-

ail distribution influences representation learning. Several previ-

us works study this problem and provide their explanations from

ifferent perspectives. Zhang et al. [37] performs empirical analysis

n feature vectors and calculates kurtosis which indicates the exis-

ence of infrequent extreme samples. Experiment shows that intro-

ucing tail classes leads to higher kurtosis, implying more outlier

amples in the feature space. Guo and Zhang [10] discovers that

he norm of classifier weights for one-shot classes are smaller than

hose of regular classes (as displayed in Fig. 2 (a)), which is also the

ase in a long-tail settings [35] . This results in a biased classifi-

ation boundary and harms the representation learning. Moreover,

he few-shot property makes it difficult to learn a genuine neigh-

ourhood of tail samples, which makes the model prone to over-

tting [15] . In Fig. 2 , we display the above-mentioned situations in

he feature space to help better understanding of the influences of

ail classes. 

Furthermore, we perform an empirical study to demonstrate

uch negative influences. For fair comparison, we construct two

atasets with 40 0,0 0 0 faces samples from 80 0 0 identities based on

 large-scale face dataset [3] . One have a relatively uniform distri-

ution across different identities and another exhibits long-tail dis-

ribution. The same CNN models are trained on these two datasets

ith different distributions. The performance is examined on the

enchmark BLUFR [20] (see Section 4.1 for details). The results in

erms of ROC on open-set identification are displayed in Fig. 3 . Not
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Fig. 4. An overview of the proposed aggregate-and-disperse training schema. The shape of sample indicates its intrinsic label, similar color indicates high similarity, and the 

arrows are weight vectors. Aggregation is to cluster similar tail classes into super classes to coarsely supervise the training of the prototype model. Dispersion is to fine-tune 

this prototype model by selectively dispersing the tail classes within super classes that appear in the current batch. Best viewed in color. (For interpretation of the references 

to color in this figure legend, the reader is referred to the web version of this article.) 

s  

t  

o

3

 

t  

p  

d  

c  

m

3

 

t  

l  

i  

t  

g  

i  

T  

a

 

f  

e

m

f  

n  

i  

E  

{  

t  

l  

s

 

c  

o  

c  

s

L

N  

i  

c  

s  

(  

p  

l  

t  

h  

r  

w  

c  

c  

p  

c  

o  

r  

i  

t  

t  

c

3

 

i  

a  

s  

o  

i  

w  

e  

l  

v  
urprisingly, the model trained with long-tail dataset is worse than

he one with uniform distribution, illustrating the negative impact

f long-tail distribution on deep face representation learning. 

.3. Proposed aggregate-and-disperse training schema 

An overview of the proposed two-step training schema is illus-

rated in Fig. 4 . The first step aggregates similar tail classes into su-

er classes for training a robust prototype model. The second step

isperses these similar tail classes in active super classes to pre-

isely learn inter-class discrimination by fine-tuning the prototype

odel. Next we respectively introduce these two steps in details. 

.3.1. Step I: aggregation 

As mentioned above, direct learning of inter-class discrimina-

ion from these tail classes could be harmful. Fortunately, with a

arge number of identities, it is not hard to find many visually sim-

lar samples which share similar distinction from the rest ones. In

his step, we propose to exploit such inter-class similarity to ag-

regate similar tail classes into super classes which can avoid the

mbalance problem and thus results in a robust training process.

hen we train a prototype model based on the fine head classes

nd these aggregated super classes. 

Clustering. Firstly we use a base CNN face descriptor to extract

eatures of tail class samples and compute the mean feature m of

ach class as its representation: 

 i = 

1 

n i 

n i ∑ 

j=1 

f j 
i 
. (4) 

 

j 
i 

denotes the feature of the j th sample from tail class i , which has

 i samples in total. Based on m i , we simply adopt k-means cluster-

ng to aggregate N t tail classes into N k super classes { ̂  C 1 , ˆ C 2 , ..., ˆ C N k } .
ach of them contains a group of similar tail classes (e.g. ˆ C i =
 C a , C b , C c } ), thus the number of samples in a super class is closer

o those of head classes. Suppose C i is a head classes with a fine

abel if i ∈ [1, N h ], then we have a collection of head classes and

uper classes C = { C 1 , C 2 , ..., C N h , ˆ C 1 , ˆ C 2 , ..., ˆ C N k } . 
Prototype training. Now that we have a dataset with (N h + N k )

lasses, the prototype model is trained under the joint supervision
f the coarse labels of super classes and the fine labels of head

lasses according to Eqs. (2) and (3) , i.e. the loss for a single input

ample X 

j is defined as follow: 

 

j = −
N c ∑ 

i =1 

I (y j = i ) log p 

j 
i 
. (5) 

 c is the number of classes that equals ( N h + N k ), and correspond-

ngly we have W proto = { w 1 , w 2 , ..., w N h 
, ̂  w 1 , ̂  w 2 , ..., ̂  w N k 

} , which

ontains weight vectors of softmax classifier for head classes and

uper classes. As illustrated in Fig. 4 , samples of similar tail classes

e.g. C a , C b ) share the same color. As the tail classes in each su-

er class share the same supervision in this step, their features

ie around the corresponding super weight vector after optimiza-

ion (see scatters and arrows in the same color in Fig. 4 ). For

ead classes ( C 1 , C 2 , ..., C N h ), which have abundant samples and

ich variations, accurate inter-class discrimination can be learned

ith ease. For super classes (e.g. ˆ C x , ˆ C y ), they are similar to head

lasses in terms of data capacity and variation because they in-

lude a bunch of similar intrinsic tail classes. Classifying these su-

er classes enables the prototype model to learn coarse (i.e. inter-

luster) discrimination from tail classes as complement. At the end

f this step, we obtain a prototype model F ( •, θproto ) and the cor-

esponding classifier W proto , which have learned accurate discrim-

nation in head classes and meanwhile captured the coarse varia-

ions in tail classes. In general, this aggregation step leads to a pro-

otype model with better generalization and regularizes the suc-

eeding training. 

.3.2. Step II: dispersion 

The intra-cluster variations are not considered in previous train-

ng but they are relevant to distinguishing similar identities. So

iming to precisely learn detailed variations, the second disper-

ion step is to continue training based on the prototype model

btained in the first aggregation step. A straightforward solution

s to disperse all super classes and fine-tune the prototype model

ith intrinsic fine labels, which treats tail classes and head classes

qually. However, this would somehow bring the model back to the

ong-tail distribution curse again. In order to model the detailed

ariations and avoid the long-tail problem as well, we propose to
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Fig. 5. The long-tail face dataset for training is divided into four groups A,B,C,D 

according to the number of face samples in each identity. 
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Table 1 

The details about the division of the long-tail face dataset displayed in 

Fig. 5 . # denotes the amount, % denotes the proportion. Image per class 

denotes the range of number of samples per identity in this group. 

Groups Identities Images Image Per Class 

# % # % 

A 17,032 20.0% 695.8K 62.3% [21,217] 

B 15,000 18.6% 207.0K 18.6% [10,20] 

C 27,000 31.7% 163.5K 14.6% [4,9] 

D 26,132 30.7% 49.9K 4.5% [1,3] 

Total 85,164 100% 1116.2K 100% [1,217] 
selectively disperse them. Specifically, for a training sample from

a super class appearing in the current batch, it should be distin-

guished from other similar classes in the same super class, so this

super class should be dispersed. If a super class is inactive, which

means no training sample of this super class appears in current

batch, it should be regarded as a whole and thus remains aggre-

gated to avoid imbalance problem. This is achieved with a modi-

fied softmax classifier. 

Firstly we introduce how the parameters are initialized. For the

CNN parameter θ , we start with θproto , which is from the proto-

type model in the first step. As for classifier weights, the previous

W proto for N c classes should be adapted to a new classifier W for

all the (N h + N t ) classes in this step. This initialization process is

displayed in Fig. 4 . For N h head classes, the weight vectors of their

own class from W proto are used as the initialization, and each pair

is marked in the same color. For the last N t tail classes in W , the

weight vectors of the corresponding super classes are used as the

initialization. Tail classes within the same super class are marked

in similar colors. 

Next we introduce the modification to the softmax clas-

sifier in details. Suppose W = W h ∪ W t = { w 1 , w 2 , ..., w N h 
} ∪

{ w N h +1 , ..., w N } , N = N h + N t . W h and W t denote the sets of weight

vectors for head classes and tail classes. For a sample with label

k , its corresponding weight vector is w k and its feature is denoted

as f k (here we omit the superscript for simplicity). If C k is a head

class, we have the following form of softmax: 

σ (f k , W ) = 

exp(w 

T 
k 

f k ) ∑ 

w i ∈ W h 
exp(w 

T 
i 

f k ) + 

∑ 

w i ∈ W t 

1 
n g i 

exp(�T 
i 

f k ) 
. (6)

g i denotes the index of the super class which includes the tail class

i (e.g. C i ∈ 

ˆ C g i ), n g i is the number of tail classes it includes. �i is

defined as the mean weight vectors of the tail classes that belong

to this super class: 

�i = 

1 

n g i 

∑ 

k | C k ∈ ̂ C g i 

w k . (7)

In this setting, weight vectors of those similar tail classes within a

super class are updated as a whole, maintaining uniform distribu-

tion for better optimization. See the solid arrow in yellow for ˆ C y in

Fig. 4 , it is the mean of the dashed arrows for tail classes C c , C d . 

As for another situation that C k is a tail class, we have another

form of softmax: 

σ (f k , W ) = 

exp(w 

T 
k 

f k ) ∑ 

w i ∈ W h 
exp(w 

T 
i 

f k )+ 

∑ 

w i ∈ W k 
exp(w 

T 
i 

f k )+ 

∑ 

w i ∈ W t \ W k 

1 
n g i 

exp(�T 
i 

f k ) 
. (8)

W k = { w i | C i ∈ 

ˆ C g k } denotes the set of weight vectors that belong

to the same super class as tail class C k . The super class which in-

cludes the current class C k is expanded as the second term in the

denominator according to their intrinsic labels. Their weight vec-

tors are updated separately for accurate discrimination between

the classes within this super class. Fig. 4 displays the situation that

C a and C b are dispersed within the super class ˆ C x . In contrast, for

tail classes in the rest super classes, the weight vectors remain ag-

gregated for updating. 

With the modification according to Eqs. (6) and (8) , we selec-

tively determine how the weight vectors are updated in the soft-

max classification depending on whether they are compared with

the classes within the same super class. Overall, in this dispersion

step, similar tail classes are separated when distinguished from the

ones within the same super class, while they are gathered and up-

dated as a whole when compared with the ones from other su-

per classes or the head classes. This modified softmax can achieve

accurate discrimination between fine classes and also effectively
meliorate the negative influences of long-tail distribution. The in-

ormation in tail classes are better utilized to enhance the repre-

entation learning. 

. Experiments 

In this section, we first introduce the two benchmarks for eval-

ation, i.e. BLUFR and MegaFace. Then we build a long-tail face

ataset for training based on MS-Celeb-1M [11] , which is the most

hallenging dataset collected from wild scenarios for face recogni-

ion. We further investigate the long-tail effect on this dataset and

onduct extensive experiments to demonstrate the effectiveness of

he proposed method in comparison with center loss [34] , range

oss [37] , the state-of-the-art loss function ArcFace [5] , and other

aselines. 

.1. Experimental settings 

The two benchmarks to evaluate the performance of deep face

epresentation learning are BLUFR [20] and MegaFace [27] . BLUFR

s a benchmark protocol based on the dataset LFW [16] to ex-

loit all the 13,233 face images for large-scale unconstrained face

ecognition evaluation. It contains both verification (VR) and open-

et identification (DIR) scenarios, with a focus at low false accept

ate (FAR). With ten random trials of experiments, VR @FAR = 0.1%

nd DIR @FAR = 1% are adopted for performance measurement.

egaFace is a benchmark to evaluate performance of face recogni-

ion at the million scale of distractors. It contains gallery set with

ore than 1 million face images from 690K identities. The stan-

ard protocol uses Facescrub [28] as the probe set. Rank-1 identi-

cation accuracy is reported with 1 million distractors. 

To thoroughly investigate the long-tail effect, we construct a

ong-tail face training set from a cleansed version of MS-Celeb-1M

11] . It consist of 85,164 identities and about 1.1 million face im-

ges. As illustrated in Fig. 5 , we divide this dataset into 4 groups

A,B,C and D) according to the number of samples in a class. The
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Table 2 

Performance on BLUFR and MegaFace w.r.t different composi- 

tions of training data. Trained with conventional softmax loss 

on ResNet34. 

Groups BLUFR MegaFace 

Rank-1 Acc. 
VR @ FAR 0.1% DIR @ FAR 1% 

A 96.08% 79.57% 61.25% 

AB 96.62% 83.78% 63.48% 

ABC 96.48% 82.45% 61.37% 

ABCD 96.50% 82.11% 60.33% 
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Table 3 

Performance of the proposed method compared with baselines and other 

state-of-the-art methods on BLUFR and MegaFace. 

Groups BLUFR MegaFace 

Rank-1 Acc. 
VR @ FAR 0.1% DIR @ FAR 1% 

ABCD 96.50% 82.11% 60.33% 

AB 96.62% 83.78% 63.48% 

AB-ABCD 96.69% 84.27% 63.55% 

Resampling 96.73% 84.36% 63.16% 

Center Loss [34] 97.24% 83.74% 62.88% 

Range Loss [37] 96.90% 84.13% 63.30% 

Ours 97.33% 86.73% 64.90% 

ArcFace [5] 97.92% 90.26% 68.63% 

ArcFace + Ours 97.90% 90.72% 69.27% 

Table 4 

Ablation study on hyper-parameter N k . 

N k BLUFR MegaFace Rank-1 Acc. 

VR @ FAR 0.1% DIR @ FAR 1% 

Baseline 96.50% 82.11% 60.33% 

1800 96.88% 84.16% 62.90% 

3600 97.29% 86.82% 64.69% 

7200 97.33% 86.73% 64.90% 

14,400 97.05% 85.89% 64.02% 
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l  
xact division is displayed in Table 1 . Simply, we examine the per-

ormance of conventional training schema with different composi-

ions of training data. We use a 34-layer ResNet [14] as the base

odel for training. The results are shown in Table 2 . We can see

hat training with all the samples (i.e. ABCD) does not leads to the

est performance, and removing some tail classes such as C and D,

.e. training only with AB, achieves better performance. Therefore,

he classes from CD are regarded as tail classes, while AB are used

s head classes. In detail, we have N h = 32 , 032 head classes and

 t = 53 , 132 tail classes in this dataset. The head classes from AB

ake up about 80% of all the samples but only consists of 40% of

he identities. This dataset is used for training with all methods in

he following experiments. 

Our proposed method is implemented as follows. In the aggre-

ation step, the base CNN model we adopt for feature extraction is

rained only with N h head classes (i.e. AB). Since tail classes from

roup C and group D are different in sample scarcity, we separately

luster the group C and group D. Specifically, group C and group D

re respectively gathered into 180 0 and 540 0 super classes (i.e. N k 

 7200) to make them share similar number of samples in each

ategory as that of head classes. The prototype model is trained

ith SGD optimizer with momentum for 40 epochs. The base

earning rate is set as 0.1 and divided by 10 when the training error

lateaus. In the dispersion step, fine-tuning starts with a smaller

earning rate of 0.02 and lasts for 60 epochs for convergence. The

ggregate-and-disperse training schema contains 100 epochs in to-

al, and random sampling is adopted during the whole training

rocess. For fair comparison, the baselines and other methods are

lso trained with the same number of epochs or iterations. 

.2. Performance and comparison 

We evaluate the performance of the proposed method and

ompare it with baselines and state-of-the-art methods. The base-

ines include training with all the classes (i.e. ABCD), simply re-

oving tail classes (i.e. AB), pre-training on head classes and then

ne-tune with all the classes (i.e. AB-ABCD) and increasing the fre-

uency of tail class samples (i.e. Resampling). Metric-based meth-

ds for comparison includes center loss [34] , which is a classic

etric-based loss for deep face representation learning, and range

oss [37] , which is proposed to handle such long-tail dataset. More-

ver, the state-of-the-art ArcFace [5] is also included. The results

re compared in Table 3 . 

As can be seen in Table 3 , simply removing the tail classes can

oost the DIR in BLUFR from 82.11% to 83.78% and the rank-1 accu-

acy in MegaFace from 60.33% to 63.48%, illustrating the negative

nfluences of long-tail distribution. Pre-training on AB and then

netune on ABCD, referred to as AB-ABCD, only reports marginally

etter performance than only using AB, which illustrates that the

ail classes are not fully utilized. Resampling the tail class samples,

s another baseline, gives similar results. Center loss outperforms

he inferior baseline of ABCD but still legs behind other baselines,

s conventional softmax loss in center loss still makes it affected

y the long-tail distribution. As for range loss, since it requires a
pecific strategy to construct mini-batch, it does not show the ex-

ected performance (i.e. outperforms AB with an obvious margin)

ven if with carefully tuning. In contrast, our method boosts the

IR in BLUFR from 82.11% to 86.73% and the rank-1 accuracy in

egaFace from 60.33% to 64.90%, which demonstrates that it could

ffectively make better use of the information in tail classes by in-

roducing super classes for the two-step training schema. More-

ver, by introducing a most advanced loss function called ArcFace,

he performance could be further boosted with a considerable mar-

in. Fortunately, as an orthogonal method, our modified softmax

oss could be simply added alongside ArcFace during training. Our

dditional term could still help improve the final performance,

hich demonstrate its complementarity to other methods and ef-

ectiveness when stronger baselines are involved. 

.3. Hyper-parameter sensitivity investigation 

The main hyper-parameter N k , which determines how many su-

er classes are obtained after the first aggregation step, would have

n impact on the final performance. In this section, we perform

everal experiments to investigate whether the performance is sen-

itive to N k . We keep the principle to separately cluster group C

nd group D, and the ratio of corresponding number of clusters

aintain 1:3 while N k varies. Specifically, the value of N k is set to

80 0, 360 0, 720 0 and 14,400 respectively, and the corresponding

verage number of samples in each super class is about 118, 59,

0 and 15. The results are displayed in Table 4 . As can be seen,

t reports similar results when N k is set to 3600 or 7200, which

re much better than the baseline. While when N k is too small or

oo large (e.g. 180 0 or 14,40 0), the results become inferior. Overall

peaking, our method is not so sensitive to N k within a wide range.

o empirically, we determined N k based on the goal to have similar

umber of samples in the super class compared to the head class.

ince for head class this number is about 28 on average, we corre-

pondingly set N k to 7200, which turns out to be a proper choice

or this task. 

. Conclusion 

In this work, we explore the problem of deep representation

earning on large face dataset with long-tail distribution. Empirical
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study shows that with conventional training schema, tail classes

with scarce samples might cripple the performance in the train-

ing process. To address this issue, we propose a two-step train-

ing schema with aggregation and dispersion in a coarse-to-fine

manner. The first step aggregates those similar classes together

to avoid the imbalance and few shot problem, and the second

step selectively disperse the aggregated super class with a mod-

ified softmax to ensure accurate discrimination. Our proposed

method achieves satisfactory results on two benchmarks (BLUFR

and MegaFace) compared with baselines and other state-of-the-art

methods, which demonstrates its effectiveness when dealing with

long-tail data. 
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