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Abstract— Face recognition is an important problem in com-
puter vision, however, it is still challenging due to a few wild
factors, such as large variations caused by pose, expression,
lighting, etc. In this work, we mainly focus on dealing with
the pose variations for face recognition. The proposed method
attempts to directly transform a non-frontal face image into
frontal one by Learning a Displacement Field network (LDF-
Net) and then recognizes with the transformed images. The
existing methods, that follow the same scheme of transforming
non-frontal faces into frontal ones, either transform by using
3D-model (3D methods) or transform by using 2D reconstruc-
tive methods (2D methods). The 3D methods may lead to the
invisibility of some pixels in the transformed frontal images,
while the 2D methods may lead to difference between the pixels
in the transformed frontal images and the original non-frontal
images. Our proposed LDF-Net method can handle these two
problems by learning a morphable displacement field for each
pixel in the transformed frontal image. Therefore, LDF-Net can
achieve a frontal image where all pixels are from the original
non-frontal image pixels and no invisible pixels exist, so as
to maintain the informative information from the non-frontal
images as much as possible. The experiments on MultiPIE
dataset show that the proposed LDF-Net achieves state-of-the-
art performance for face recognition across pose, especially for
those large poses.

I. INTRODUCTION

Face recognition has attracted more and more attentions,

as it is widely used in the area of access control, law

enforcement, surveillance, watch-list, and even electronic

payment in recent years. Although significant progress of

face recognition in the wild has been witnessed [23], it is still

a challenging problem due to the extremely large within-class

appearance variations in terms of pose, illumination, expres-

sion, etc. Among these factors, pose variation is notoriously

difficult since the appearance of a face image can change

significantly as pose changes, as shown in Fig. 1.

To address this problem, many methods have been pro-

posed which can be roughly grouped into 3D methods and

2D methods based on the type of information they utilize.

A. 3D Methods

3D methods utilize 3D structure information to model the

transformation between poses. They first use 3D face data to

obtain morphable displacement fields and then apply them

Fig. 1. An example of face images with variant poses (−45◦ to +45◦).

to obtain 2D face data in different pose angles. The work

in [21] presents a fully automatic system for pose-invariant

face recognition. It finds the accurate 2D facial feature points

and then does 3D pose normalization on the face images. In

[22], a 3D model is constructed for each subject by applying

a 3D generic elastic model to the frontal face images and

then novel 2D pose views are synthesized for matching. In

[4], a morphable displacement field is obtained from 3D face

model after alignment with their 2D face images. Then the

morphable displacement field acts on 2D face images to get

new frontal face images. Finally all images are compared in

the frontal view. [25] proposes to represent the face image

using the un-occluded facial texture that is automatically

detected in the 3D pose normalized face image. These

3D methods keep more original information and usually

have better performance than the methods without using 3D

information. However, the transformed or frontalized images

from these methods may have some invisible pixels (i.e.,

some black holes), especially for those large poses.

B. 2D Methods

2D methods only use the information from the 2D images

rather than 3D structure model, therefore, most of them are

learning-based methods. They usually attempt to learn pose-

invariant feature representation or learn the 2D mapping

between two poses. In [18], a discriminant coupled latent

subspace framework is proposed to extract pose-invariant

features. In [16], a Gaussian mixture model (GMM) is trained

to decide if a pair of face tracks is matched or not. In

the work of [17], a dynamic programming stereo algorithm

is designed to deal with large occlusions, non-linear corre-

spondences, and significant changes in appearance for face
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recognition across pose. In [19], a deep neural network with

random faces as target values is proposed. It extracts pose-

invariant features via constraining unique target value of

the same identity from different poses. In [20], the deep

network classifies different poses and then explicitly tackles

pose variation by using multiple pose specific models and

rendering face images. In [26], a deep convolutional neural

network learns the split node and CNN parameters at the

same time to handle different poses separately. There are

also some methods decoding their pose-invariant features

into frontal face images. The work proposed in [9] designs

a deep network that learns face identity-preserving (FIP)

feature and then uses it to reconstruct the face images in

canonical view. The work SPAE proposed in [10] transforms

the non-frontal face images to frontal ones through a deep

network in a progressive way. Each stacked part of the deep

network learns the adjustment between small poses, and

then the whole network can reconstruct corresponding frontal

face images for the non-frontal face images. In both GMA

[24] and MvDA [11], a supervised multi-view discriminant

method is proposed to obtain pose-invariant features by

optimizing multiple view-specific projection.

These 2D methods, especially those attempt to transform

non-frontal face images to frontal images, are simpler and

more efficient than those 3D methods. However, the retained

information in the transformed frontal images is generally

different from that in the non-frontal images, as the pixels in

transformed images are usually combinations of the pixels

in non-frontal images rather than the shifted original pixels

in non-frontal images as in 3D methods. This difference

results in information loss for the transformed images and

performance degeneration of face recognition.

C. The Proposed Method

As illustrated above, the 3D methods have better perfor-

mance than 2D methods but are usually much more time-

consuming. These methods can preserve the values of pixels

in original images but may lead to invisible pixels in the

transformed image. On the contrary, the 2D methods are

usually efficient, but are less powerful than the 3D methods.

These methods can avoid black holes in the transformed

images (i.e., more smooth visualization), but the values of

pixels are varied compared to the original images leading to

performance degeneration.

Considering the advantages and disadvantages of both

methods, this work proposes a method that can combine the

advantages of both methods and avoid the shortcomings of

them. The proposed method endeavors to predict a displace-

ment field for each pixel in the transformed frontal images

by using a displacement field network with the non-frontal

2D face images as input, named as LDF-Net. As a result,

all pixels in the transformed frontal image are all from the

original non-frontal images without invisible parts, i.e., black

holes, so the transformed images preserve the information

as much as possible. Besides, the LDF-Net is a 2D method

which is quite efficient and 3D information is an auxiliary

for better effects.

Our contribution is three-fold. (1) We design a deep neural

network named LDF-Net to recover frontal faces from non-

frontal ones via learnable displacement field with which more

details can be preserved in the recovered frontal faces. (2)
LDF-Net can recover the pixels which are self-occluded in

the non-frontal face images. (3) LDF-Net achieves the state-

of-the-art performance on face recognition across pose.

The rest of this paper is organized as follows: section

II presents the formulation of the proposed method and

its optimization; section III evaluates LDF-Net and other

methods on MultiPIE database, followed by the conclusion

in the last section.

II. METHOD

A. Overview

Fig. 2. Schema of our method, LDF-Net. LDF-Net is an end-to-end method
to learn the transformation from a non-frontal face image to a frontal one,
composing of a displacement field network F and a translation layer T.

The proposed method, LDF-Net, attempts to transform

a non-frontal face image into a frontal one and uses the

transformed images for recognition. The objective is that the

output frontal face image of the LDF-Net should approximate

the ground truth frontal one as much as possible. Each pixel

in the transformed frontal face image is either directly the

pixel in the original image, or linear interpolation of four

neighboring pixels. In this way, we can preserve as much

informative information as possible. Moreover, the LDF-Net

implicitly employs the symmetry of human faces to obtain

a transformed frontal face image without invisible pixels.

As shown in Fig. 2, the LDF-Net consists of two parts.

The main part, the displacement field network F , whose

details are shown in Fig. 3, learns the displacement field

for the pixels between the target frontal face images and the

input non-frontal ones. The other part, the translation layer

T , transforms the input non-frontal face image into a frontal

one with this displacement field given by F . The two parts

are learnt end-to-end.

B. Formulation of LDF-Net

To train the LDF-Net, a set of n non-frontal face images,

I = I1, I2, ..., In ∈ R
h×w is used as input, and the

corresponding frontal images Igt = Igt1 , Igt2 , ..., Igtn ∈ R
h×w

as target frontal images, where Ik and Igtk are the non-

frontal and frontal images of the same subject, respectively.

The output is a set of estimated frontal face images denoted

as Iest = Iest1 , Iest2 , ..., Iestn ∈ R
h×w. The objective of the
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Fig. 3. Overview of the displacement field network. It composes of several fully connected layers with batch normalization and ReLU activation function
and outputs a displacement field C for the input image. The displacement field is not only for the visible pixels (denoted as A) like 3D methods, but also
for the self occluded part (denoted as B) shown in the bottom box.

proposed method is to minimize the difference between the

output images Iest and the ground truth Igt, i.e.,

min

n∑
k=1

||Igtk − Iestk ||22. (1)

1) Displacement Field Network: The displacement field

models the shifting relationship of two pixels, a pixel in the

transformed frontal image and its corresponding pixel in the

original non-frontal image. The structure and workflow are

shown in Fig. 3. Specifically, the displacement field network

takes the non-frontal images Ik as input and outputs the

displacement field Dk for all pixels in the transformed frontal

images, i.e.,

Dk = FW (Ik). (2)

Here, the displacement field Dk ∈ R
h×w×2 consist-

s of the displacement of two dimensions for each pixel

in the transformed frontal images. Let (Δh
kij ,Δ

w
kij) �(

Dk(i, j, 1), Dk(i, j, 2)
)

denote the translation distances of

the pixel located at (i, j) in h and w axis. FW is used to

denote the displacement field network with model parameters

W .

The displacement field network can be any kind of deep

network structure, such as CNN, or fully connected network.

2) Translation Layer: With the displacement field Dk, the

translation layer transforms the input image Ik into a frontal

face image Iestk by shifting the pixels in the input image,

i.e.,
Iestk = T (Ik, Dk) = T

(
Ik, FW (Ik)

)
. (3)

If Δh
kij and Δw

kij are integers, each pixel Iestk (i, j) in the

predicted frontal face image is directly shifted from one of

the source pixels, calculated as follows:

Iestk (i, j) = Ik (̂i, ĵ). (4)

where

î � i+Δh
kij , (5)

and

ĵ � j +Δw
kij . (6)

However, Δh
kij and Δw

kij are computed from the displace-

ment field network, which may be real value. So generally,

the Iestk (i, j) can be obtained as the weighted sum of the

four neighboring pixels not just rounded to integer:

Iestk (i, j) =

�̂i�∑
m=�̂i�

�ĵ�∑
n=�ĵ�

Ik(m,n)(1− |̂i−m|)(1− |ĵ − n|),

(7)

Note that (4) is a special case of (7). Inferred from (4) and

(7), with the displacement field, each pixel in the transformed

frontal face image is either directly the pixel in the original

image or linear interpolation of four pixels. Therefore, the

LDF-Net can preserve the informative information of input

images. Moreover, the displacement field outputted from the

displacement field network is for the transformed images,

i.e., Iestk (i, j) = Ik(i+Δh
kij , j+Δw

kij) rather than the input

images as in most 3D methods like Iestk (i+Δh
kij , j+Δw

kij) =
Ik(i, j). As a consequence, for the pixels of which the

corresponding pixels in the input images are invisible, the

LDF-Net can still recover these pixels from its symmetrical

area of the face with a large (Δh
kij ,Δ

w
kij), even if there is

small area of unsymmetrical appearance, e.g., nevus, scar

and so on.

3) Overall Objective: In the training of LDF-Net, the

overall objective of the LDF-Net is to minimize the differ-

ence between the transformed images and the ground truth

frontal face images, formulated as below:

1111111111



TABLE I

ATTRIBUTES OF DIFFERENT METHODS

Method Linear vs. Non-linear 2D vs. 3D Pose Estimation

PLS [5] Linear 2D Manually

MCCA [6] Linear 2D Manually

GMA [24] Linear 2D Manually

MvDA [11] Linear 2D Manually

MvDN [12] Non-linear 2D Manually

MDF [4] Non-linear 3D Automatically

FIP [9] Non-linear 2D No Need

SPAE [10] Non-linear 2D No Need

LDF-Net (Ours) Non-linear 2D No Need

W = argmin
W

n∑
k=1

||Igtk − Iestk ||22

= argmin
W

n∑
k=1

||Igtk − T (Ik, Dk)||22

= argmin
W

n∑
k=1

∣∣∣∣∣∣Igtk − T
(
Ik, FW (Ik)

)∣∣∣∣∣∣2
2
.

(8)

C. Optimization

The whole network in (8) is optimized by using the

gradient descent method. Just as most existing deep neural

network, the gradient is firstly calculated following the chain

rule, then the parameters are updated along the descent

direction of the gradient. In each iteration of update, the

loss of whole network is firstly calculated feed-forwardly,

and then the gradients are back-propagated to minimize the

loss during this iteration.

1) Step 1-Gradient of loss layer: Let l be the loss of the

whole network, then it is formulated as below:

l =

n∑
k=1

||Igtk − Iestk ||22. (9)

We need to compute the gradient of the loss w.r.t. the

image ∂l
∂Iest

k
. Each element in the gradient can be calculated

separately w.r.t. each pixel of Iestk as below:

∂l

∂Iestk (i, j)
= −2

(
Igtk (i, j)− Iestk (i, j)

)
. (10)

2) Step 2-Gradient of translation layer: The gradient of

translation layer is computed similarly with spatial trans-

former network [1] as follows. As seen in (8), the input

consists of the input image Ik and the displacement field

Dk, so we need to obtain the gradient of the predicted frontal

face image Iestk w.r.t. the variable Dk denoted as
∂Iest

k

∂Dk
. As

the elements in the translation layer T are independently

transformed, so each element
∂Iest

k (i,j)
∂Dk(i,j)

in
∂Iest

k

∂Dk
can be

separately computed as
(

∂Iest
k (i,j)

∂Δh
kij

,
∂Iest

k (i,j)
∂Δw

kij

)
.

∂Iest
k (i,j)

∂Δh
kij

is calculated as follows:

∂Iestk (i, j)

∂Δh
kij

=
∂Iestk (i, j)

∂î
· ∂î

∂Δh
kij

=
∂Iestk (i, j)

∂î

=

�̂i�∑
m=�̂i�

�ĵ�∑
n=�ĵ�

Ik(m,n)(1− |ĵ − n|)
{

1 î ≤ m

−1 î > m

}

(11)

Similarly,
∂Iest

k (i,j)
∂Δw

kij
can be calculated as below:

∂Iestk (i, j)

∂Δw
kij

=
∂Iestk (i, j)

∂ĵ
· ∂ĵ

∂Δw
kij

=
∂Iestk (i, j)

∂ĵ

=

�̂i�∑
m=�̂i�

�ĵ�∑
n=�ĵ�

Ik(m,n)(1− |̂i−m|)
{

1 ĵ ≤ n

−1 ĵ > n

}
.

(12)

3) Step 3-Gradient of displacement field network: After

calculating the gradient of all elements in Dk, the gradient

of displacement field network w.r.t parameters ∂Dk

∂W can be

easily achieved like any existing deep neural network.

4) Step 4-Overall parameter update via gradient descent:
The gradient of overall LDF-Net is calculated with chain

rule. With each part’s gradient, the gradient of LDF-Net is

∂l

∂W
=

∂l

∂Iestk

· ∂I
est
k

∂Dk
· ∂Dk

∂W
. (13)

With the gradient, in each iteration t, the parameters W
of the whole network can be updated with a learning rate η
as below:

Wt = Wt−1 + η
∂l

∂W
. (14)

After a number of updates with (14), the LDF-Net in (8)

can be optimized.

D. Differences with the Existing Methods

1) Difference with FIP and SPAE: FIP [9], SPAE [10] and

our LDF-Net are all 2D methods that attempt to transform a

non-frontal image into a frontal one. FIP and SPAE are end-

to-end networks learning the value of each pixel directly. The

pixels in the transformed frontal images in FIP and SPAE are

obtained from a complex transformation and combination of
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the pixels of the original non-frontal image. They usually

result in a smoothed frontal image. Differently, our method,

LDF-Net learns the translating relationship of pairs of pixels.

The pixels in the transformed frontal images in LDF-Net are

directly shifted from the original non-frontal image, so the

pixels in the transformed frontal image are almost the same

as those in the original non-frontal image. In this way, LDF-

Net can preserve more informative information to achieve

better performance.

2) Difference with MDF: MDF [4] is a 3D method that

employs an auxiliary 3D dataset to estimate the displacement

field for each image, while our LDF-Net is 2D method that

employs a deep neural network to predict the displacement

field for each image. Besides, in MDF, some pixels are

invisible in the transformed frontal image for those large

poses, while in our LDF-Net, every pixel is visible benefitting

from that the displacement field network can implicitly

employ the symmetry of the face to predict the displacement

field even for those invisible pixels. Moreover, as a 2D

method, LDF-Net is faster than MDF for testing.

III. EXPERIMENTS

A. Experimental Settings

1) Dataset: This work mainly focuses on the pose vari-

ations of face images, and the MultiPIE [7] dataset is

employed for the evaluations as this dataset contains rich

pose variations. The MultiPIE dataset contains images of 337

subjects under various poses, illuminations and expressions.

These images were captured in four sessions during different

periods. The detailed setting and result of three different

experiments are showed below.

Setting-I was introduced in [12]. 337 subjects are chosen

from 4 sessions with 13 poses (from −90◦ to 90◦), neutral

illumination and expression(708 images of the first 229

subjects for training and 213 images of the remaining 108

for testing in each pose).

Setting-II was also the same with experiment setting in

[12] but with smaller pose variance. Still, 337 subjects are

chosen from 4 sessions with 7 poses (from −45◦ to 45◦),
neutral illumination and expression (708 images of the first

229 subjects for training and 213 images of the remaining

108 for testing in each pose).

Setting-III was introduced in [4] and [9]. The images of

the first 200 identities in all the 4 sessions with 7 poses (from

−45◦ to 45◦) are chosen for training, and the images of the

remaining 137 identities for test.

In all of the three experiments, the images are cropped

into size of 40 ∗ 32. Some exemplar images are shown in

Fig. 4. In the stage of testing, the images from the pose

in 0◦ (i.e., frontal images) are used as the gallery, and the

images from the rest poses are used as the probe. The rank-1

recognition rate is used as the measurement of performance

for all methods.

2) Methods for Comparison: In this work, the methods of

PLS [5], MCCA [6], GMA [24], MvDA [11], MvDN [12],

FIP [9], SPAE [10], MDF [4] are compared. Among them,

the PLS, MCCA, GMA, and MvDA are linear methods that

Fig. 4. The face images in MultiPIE are in 13 poses from −90◦ to +90◦.

attempt to extract pose-invariant features. MvDN is a deep

method for extracting pose-invariant features. The FIP, SPAE

and MDF are also deep methods but they endeavor to directly

transform the non-frontal face image into the frontal one like

our proposed method in this work. The MDF is a 3D method,

while the rest are 2D methods. The characteristics of each

method is detailed in Table I. As PLS, MCCA, SPAE, FIP

and our LDF-Net are unsupervised methods for recognition,

the Linear Discriminant Analysis (LDA) [3] is applied for

supervised feature extraction for face recognition across

pose. Besides, for all methods, the Principal Component

Analysis (PCA) [2] is used for dimension reduction, and the

reduced dimension is determined by preserving 95% energy

at least.

For all these methods, we try our best to tune their

parameters to report the best results. Specifically, in PLS,

MCCA and MvDA, the number of the projection matrix is

tuned; in GMA, the λ and γ are tuned; in SPAE, 6 hidden

layers are used instead of 3 layers for recognition of large

poses, i.e., from 0◦ to 90◦; in FIP, batch normalization layer

[15] is added to each convolution layer and fully connected

layer. Besides, the pixel values of input images are scaled to

[0, 1] for better performance.

3) The Structure of Our Method: Our LDF-Net consists of

a displacement field network and a translation layer, among

which only the displacement field network includes variables.

Specially, the displacement field network composes of four

fully connected layers. But note that convolutional layers

are also applicable. The bottom three layers are followed

by a batch normalization layer [15] and a ReLU activation

function [14]. The last fully connected layer outputting the

displacement field has 2560 (= 40× 32 × 2) output units

with the sigmoid activation function 1
1+e−f(x) . The activation

function of the last layer scales the output into a fixed

range to make it convenient to map the output into arbitrary

height and width. Different activation functions and number

of nodes of the bottom three layers of the displacement field

network are tried respectively, and the recognition results

are shown in Table II and Table III, which imply that using

structure like the Pyramid and batch normalization with Re-

LU has better effect for feature extracting. Among them, we

choose the parameters with the best performance. The details

of the chosen structure of the displacement field network are

summarized in Table IV. LDF-Net is implemented by using
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the Caffe platform [13].

TABLE II

AVERAGE RECOGNITION RATES IN SETTING-I WITH DIFFERENT

ACTIVATION FUNCTION OF THE BOTTOM THREE LAYERS IN THE

DISPLACEMENT FIELD NETWORK

Activation Function Sigmoid TanH bn+ReLU

Average Accuracy 0.880 0.887 0.898

TABLE III

AVERAGE RECOGNITION RATES OF IN SETTING-I WITH DIFFERENT

NUMBER OF NODES OF THE DISPLACEMENT FIELD NETWORK

Number of Nodes (4096, (4096, (4096, (1024, (1024,

4096, 2048, 1024, 1024, 256,

4096) 1024) 512) 1024) 128)

Average Accuracy 0.890 0.890 0.901 0.887 0.898

TABLE IV

COMPONENTS OF LDF-NET

Layer 1 Layer 2 Layer 3 Layer 4

fc(4096) fc(1024) fc(512) fc(2560)

bn bn bn

ReLU ReLU ReLU Sigmoid

Our proposed LDF-Net is 2D method, and the outputted

displacement field is also 2D dimensional. However, we can

pre-train the 2D displacement field with the displacement

fields estimated from any 3D methods. In this work, to obtain

a better performance of LDF-Net and reduce the training

time, the displacement field network is pre-trained before the

end-to-end training by minimizing
∑n

k=1 ||Dk −Dest3D
k ||22,

where the displacement field Dest3D
k are estimated from

BJUT-3D [8] dataset. From BJUT-3D, only single displace-

ment field can be obtained for all images in one pose which is

quite coarse. The occluded pixels in the estimated displace-

ment field are filled by their symmetrical ones. Though the

displacement field is coarse, our displacement field network

will refine it and obtain the displacement field for all target

pixels including self occluded ones in the process of end-to-

end training.

B. Face Recognition Across Pose on MultiPIE

All the methods are evaluated on MultiPIE in terms of

rank-1 recognition rate for face recognition across pose. For

all methods, the training dataset and testing data are the

same as illustrated in section III-A. The evaluation results

are shown in Table V and Table VII.

As seen from Table V, the PLS and MCCA perform worse

than other compared methods as they are both unsupervised.

By incorporating supervised information, the PLS+LDA,

MCCA+LDA, GMA and MvDA perform much better. Fur-

thermore, the deep method MvDN performs even better

benefitting from the characteristic of non-linearity in deep

network. The methods of SPAE, FIP and our LDF-Net are all

transformation based methods, i.e., firstly transform a non-

frontal image into a frontal image followed by supervised

method LDA [3] for the final recognition. In recognizing

phase, for fair comparison, we only use the transformed

frontal face images of FIP and SPAE as input of LDA.

All these three methods are slightly worse than the MvDN

in some poses, however the advantage of them is that

they do not need to know the pose of the testing images,

while MvDN must know the pose of testing images (either

manually labeled or estimated automatically). As seen, LDF-

Net significantly outperforms all methods especially for

large poses, which can be attributed to the combination

of the advantages of both 2D methods and 3D methods

demonstrating the effectiveness of the proposed method.

Furthermore, we evaluate several representative methods

on MultiPIE following the protocol used in MDF for fair

comparison as we can not fully re-implement the perfor-

mance of MDF. The evaluation results are shown in Table

VII. In this protocol, face recognition is evaluated only

within 45◦. Similar observations can be obtained as that

the LDF-Net outperforms all methods even the 3D method

MDF, benefitting from the end-to-end LDF-Net which has

the advantages of preserving more of the original face

information as well as with no invisible pixels.

Fig. 5. The frontal image obtained from MDF, FIP, SPAE and our method,
LDF-Net.

To visually compare the results of different methods that

transform the non-frontal face images into frontal images,

Fig. 5 shows the transformed frontal images of different

methods. As seen from Fig. 5, the transformed frontal image

from the 3D method MDF is almost as clear as the original

frontal image, but has some invisible pixels. The transformed

images from the 2D methods of SPAE and FIP are without

invisible pixels but look more smooth and average than the

original image. This indicates the loss of information in the

transformed image. The transformed frontal image from our

LDF-Net can avoid the shortcomings of them, which implies

that the transformed frontal image of LDF-Net can preserve

the information of original image as much as possible with

no invisible pixels and obtain the image that looks more

alike the ground truth frontal image. More exemplar images

transformed from SPAE, FIP and LDF-Net are shown in Fig.

6. The results of SPAE and FIP are more smooth and blur,

and some details of the hair, beard, glasses are missing.

On the contrary, these details are well preserved in the

transformed frontal images from our LDF-Net.
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TABLE V

FACE RECOGNITION ACROSS POSE IN SETTING-I

Method
Pose of Testing Images

Average
−90◦ −75◦ −60◦ −45◦ −30◦ −15◦ +15◦ +30◦ +45◦ +60◦ +75◦ +90◦

PLS [5] 0.319 0.775 0.892 0.934 0.883 0.981 0.981 0.934 0.906 0.873 0.723 0.268 0.789

MCCA [6] 0.409 0.742 0.822 0.723 0.685 0.920 0.906 0.798 0.747 0.779 0.714 0.376 0.718

PLS [5]+LDA 0.380 0.798 0.869 0.944 0.920 0.995 0.986 0.967 0.883 0.850 0.709 0.319 0.802

MCCA [6]+LDA 0.488 0.662 0.817 0.887 1.000 1.000 1.000 0.995 0.831 0.803 0.676 0.568 0.811

GMA [24] 0.526 0.732 0.845 0.901 1.000 1.000 1.000 1.000 0.906 0.859 0.718 0.573 0.838

MvDA [11] 0.568 0.723 0.845 0.920 0.967 1.000 1.000 0.991 0.897 0.864 0.714 0.559 0.837

MvDN [12] 0.704 0.822 0.883 0.911 0.991 1.000 1.000 0.991 0.930 0.911 0.798 0.709 0.887

FIP [9]+LDA 0.578 0.775 0.859 0.953 0.995 1.000 1.000 1.000 0.962 0.826 0.756 0.573 0.856

SPAE [10]+LDA 0.516 0.751 0.892 0.948 0.986 0.991 0.995 0.995 0.939 0.864 0.770 0.545 0.849

LDF-Net (Ours)+LDA 0.639 0.873 0.930 0.981 0.986 0.972 1.000 0.991 0.986 0.944 0.850 0.667 0.901

TABLE VI

FACE RECOGNITION ACROSS POSE IN SETTING-II

Method
Pose of Testing Images

Average
−45◦ −30◦ −15◦ +15◦ +30◦ +45◦

MCCA [6] 0.774 0.930 1.000 0.997 0.976 0.850 0.759

MvDA [11] 0.800 0.948 0.997 0.994 0.985 0.872 0.933

FIP [9]+LDA 0.977 0.995 1.000 1.000 1.000 0.967 0.990

SPAE [10]+LDA 0.967 0.991 1.000 1.000 1.000 0.967 0.988

LDF-Net(Ours)+LDA 0.995 1.000 1.000 1.000 1.000 0.981 0.996

TABLE VII

FACE RECOGNITION ACROSS POSE IN SETTING-III

Method
Pose of Testing Images

Average
−45◦ −30◦ −15◦ +15◦ +30◦ +45◦

MDF [4] 0.930 0.987 0.997 0.997 0.983 0.936 0.972

FIP [9]+LDA 0.956 0.985 1.000 0.993 0.985 0.978 0.983

LDF-Net(Ours)+LDA 1.000 1.000 1.000 1.000 1.000 0.970 0.995

Fig. 6. Exemplar frontal images obtained from FIP, SPAE and LDF-Net in all 13 poses. As seen, image details and identity features such as glasses can
be better reserved in LDF-Net.
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IV. CONCLUSIONS AND FUTURE WORKS

To deal with the face recognition across pose problem,

we introduce an end-to-end deep neural network (LDF-Net)

to transform a non-frontal face image into a frontal one.

To achieve the transformation, the proposed method, LDF-

Net learns the displacement field, which reflects the shifting

relationship of pixels from the non-frontal face image and

the transformed frontal face images. LDF-Net can achieve

a frontal image which preserves the informative information

from the original image as much as possible and has no

invisible pixels. Benefited from the end-to-end training, our

LDF-Net can achieve a relatively smooth displacement field

even without smoothness constraint, which is considered

beneficial for better visual quality. Besides, LDF-Net can

also generalize to handle other variations. As evaluated on

MultiPIE, LDF-Net achieves quite promising performance

for face recognition across pose, especially for those large

poses.

Although LDF-Net is an end-to-end method for transform-

ing non-frontal-face images into frontal-face images, it is

not an end-to-end method for recognition. In the future, we

will improve this work to an end-to-end one for both the

transformation and recognition.
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