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Image captioning

a group of children playing baseball out side. 

Image Language description

a young boy in a striped shirt is leaning against a 

tree while another child sits at a picnic table

a tan and white dog swimming towards a waterfall
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CNN-RNN based Image captioning model

a tan and white dog 

swimming towards 

a waterfall

Deep CNN:

• GoogLeNet

• VGGNet

RNN:

• RNN

• LSTM

[1] O Vinyals, A Toshev, S Bengio, D Erhan, Show and tell:  A neural image caption generator, CVPR 2015.



Limitations

• An image contains too much information to be precisely described in one sentence.

• Image captioning suppose to be a highly customized task, and the user may have different focus 

for one image.

1. A boy hiding behind a tree

2. A boy in a striped t-shirt is standing by a tree in front of the 

picnic tables

3. A little boy in a striped shirt is standing behind a tree

4. A young boy in a striped shirt is leaning against a tree while 

another child sits at a picnic table 

5. Two boys in a park , one standing near a tree and one sitting at a 

picnic table with the playground behind them .

Ambiguity 



Prior arts 
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Dense captioning [1, 2]
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Ours: Keyword-driven Image Captioning

boy

child

table

boys

park

Output

(0.58) a boy in a blue shirt is jumping on a field

(0.61) a child is playing in a blue shirt in front of a large rock

(0.86) a little girl is sitting at a table

(0.50) two young boys are playing on a grassy  field

(0.88) a young boy is playing in a park

Ground truth sentence:

Boys kicking soccer ball in the grass under a tree

Input

Input: An Image

Output: customized captions

Context-

depended 

Bilateral 

LSTM 

Model

Two steps:
• Keywords generation

• Sentence generation



Keywords Generation

'women', 'people', 'lady', 

'womans', 'woman', 

'person', 'girl', 'children', 

'child', 'man', 'men',

'persons'

'food', 'sweeping', 'fully', 'knick-knacks', 'trailer', 'soapy', 

'since', 'dunk', 'bass', 'protruding', 'dirt', 'pug', 'pub', 

'base', 'coastline', 'ash', 'pup', 'dip', 'cheering', 'scouts', 

'grime', 'reflected', 'elder', 'florets', 'airborne', 'storm', 

'jordan', 'performers', 'deciding', 'bridles', 'kart', 'juicy', 

'juice', 'bridled', 'flaming', 'quote', 'eaten', 'blend', 

'cowgirl', 'rifle', 'booze', 'pretty', 'trees', 'famous', 'treed', 

'gloved', 'withe', 'witha', 'gloves', 'corgi', 'patties', 'won', 

'wok', 'readying', 'stoplight', 'awnings', 'badminton', 

'likes', 'ciabatta', 'maintenance', 'partly', 'packs', 'crack', 

'grille', 'grills', 'overlooked', 'belong', 'shuttered', 'used', 

'temporary', 'overweight', ．．．．．．．．

Total dictionary:

---9584 words

'kids’ 'glass’

'wine' 

'backpack’

'bowls’

'grapes’

'shower' 

'zebras'

'women'

'flowers'

'sandwich'
'rackets' 'people', 

'skiis' 
'boat’

'skate'

Keywords vocabulary:

---537 words

80 object categories

• Keyword sources
• Word dictionary refinement

• Object Detection

MS COCO dataset

person

[1] R. Rehurek and P. Sojka. Software framework for topic modelling with large corpora. LREC Workshop on New Challenges for NLP Frameworks, 2010.
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Sentence generation

• Pipeline of the context-dependent bilateral LSTM model (CDB-LSTM) 

CDB-LSTM is an end-to-end model 

that contains two cascaded sub-models:

GT: a brown and black dog swimming in a river

wY b Y f

B-LSTM F-LSTM 
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Sentence generation



• Pipeline of the context-dependent bilateral LSTM model (CDB-LSTM) 

Backward Model Y b = LSTM b ( v, w )

Sentence generation



• Pipeline of the context-dependent bilateral LSTM model (CDB-LSTM) 

Y f = LSTM f ( v, w, Y b )Forward Model

Sentence generation



• Pipeline of the context-dependent bilateral LSTM model (CDB-LSTM) 

Unified Loss Function

Sentence generation



• Pipeline of the context-dependent bilateral LSTM model (CDB-LSTM) 

Context Transfer Module

Forward propagation: 

Back propagation: 

Sentence generation



Experiments

• CNN model: VGGNet

• Word embedding: one hot vector

• RNN model: LSTM

• Dataset: MSCOCO(120K)

• Evaluation:

• Human evaluation

• Automatic evaluation



Results

Human evaluation                                                       
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100 images, 50 participants 
The descriptiveness is rated on a four-point scale [1, 2], and higher is better.

Higher cumulative distribution

[1] M. Hodosh et al. Framing image description as a ranking task: Data, models and evaluation metrics. JAIR 2013.

[2] O. Vinyals et al. Show and tell: a neural image caption generator. CVPR 2015.



Results

Automatic evaluation:

--- BLEU, Meteor, CIDEr, ROUGE. (precision, recall grammaticality)



CDB-LSTM vs LSTM

CDB-LSTM

(man) -- a man is holding a woman on a skateboard

(skis) -- two people on skis in the snow

(child) -- a child is on a snow covered slope

(girl) -- a girl is standing on a snow covered slope

(person) -- a person on a snowy hill with a large snow covered hill

CDB-LSTM 

(children) -- a group of children playing a game of baseball

(baseball) -- a baseball player is playing baseball on a field

(gloves) -- a group of people are with gloves on a field

(kids) -- a group of kids standing on a field

(grass) -- a group of people are standing in the grass

GT: A man riding skis on top 

of a snow covered slope.

LSTM: a man riding skis 

down a snow covered slope

GT: a group of children 

playing baseball out side.

LSTM: a group of people 

playing a game of frisbee

CDB-LSTM 

(field) -- two men are playing on a field

(uniforms) -- two girls in uniforms are playing with a ball

(player) -- a soccer player in a white shirt is running on the grass

(girls) -- two girls are playing in a field

GT: Two girls in soccer strips 

are playing on a sports field .

LSTM: a young boy is 

running through a field

CDB-LSTM

(boy) -- a boy in a blue shirt is jumping on a field

(table) -- a little girl is sitting at a table

(boys) -- two young boys are playing on a grassy  field

(park) -- a young boy is playing in a park

GT: A boy in a striped t-shirt is 

standing by a tree in front of the 

picnic tables .

LSTM: a boy in a red shirt is 

jumping over a tree



CDB-LSTM vs I-LSTM

I-LSTM: a young boy is playing with a ball

CDB-LSTM: a young boy is playing with a ball in a 

field

I-LSTM: a boy in an orange 

CDB-LSTM : a boy in an orange shirt is playing 

with a ball

I-LSTM: a boy is doing a trick

CDB-LSTM: a boy is doing a trick on a skateboard

I-LSTM: a boy in a red jacket

CDB-LSTM: a boy in a red jacket is jumping on a 

skateboard

Given word: person

I-LSTM: a person in the snow 

CDB-LSTM: a person in a blue shirt 

and a black dog is in the air

The independent LSTM have two directions 

blind to each other and more likely to predict 

incoherent , inaccurate, or incomplete sentence.



Conclusion

• Keyword-driven image captioning

• CDB-LSTM

• Superiority in evaluation
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