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Image captioning

Language description

a group of children playing baseball out side.

a young boy in a striped shirt is leaning against a
tree while another child sits at a picnic table

a tan and white dog swimming towards a waterfall
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CNN-RNN based Image captioning model

Vision Language
Deep CNN Generating
RNN
S a tan and white dog
| @ swimming towards
@ @ a waterfall
Deep CNN: RNN:
« GoogLeNet « RNN
* VGGNet e LSTM

[1] O Vinyals, A Toshev, S Bengio, D Erhan, Show and tell: A neural image caption generator, CVPR 2015.



Limitations

. Aboy hiding behind a tree

. Aboy in a striped t-shirt is standing by a tree in front of the
picnic tables

. Alittle boy in a striped shirt is standing behind a tree

. Ayoung boy in a striped shirt is leaning against a tree while
another child sits at a picnic table

. Two boys in a park , one standing near a tree and one sitting at a
picnic table with the playground behind them .

Ambiguity

« Animage contains too much information to be precisely described in one sentence.
« Image captioning suppose to be a highly customized task, and the user may have different focus
for one image.




Prior arts

Dense captioning [1, 2] Paragraph description [3]

man wearing a man in a a black helmet on  a crowd of people
a blue shirt red shit a baseball pla watching the game

a tree
a catcher’s
mask ) A
4 )
blue shirt on baseball ( Sentences )
umpire in the air 1) A girl is eating donuts with a boy in a restaurant
= 2) A boy and girl sitting at a table with doughnuts.
the catcher’s r 3) Two kids sitting a coffee shop eating some frosted donuts
shin guards the manis 4) Two children sitting at a table eating donuts.
wearing 5) Two children eat doughnuts at a restaurant table.
black shoes Paragraph
white lines on Two children are sitting at a table in a restaurant. The
the field children are one little girl and one little boy. The little girl is

eating a pink frosted donut with white icing lines on top of it.
The girl has blonde hair and is wearing a green jacket with a
black long sleeve shirt underneath. The little boy is wearing a
black zip up jacket and is holding his finger to his lip but is
not eating. A metal napkin dispenser is in between them at
the table. The wall next to them is white brick. Two adults are
on the other side of the short white brick wall. The room has
white circular lights on the ceiling and a large window in the
\front of the restaurant. It is daylight outside. )

caicher wearing g paseball  black and

: chi : a baseball game
a blue shirt player white shoe e

1. Justin Johnson, Andrej Karpathy, Li Fei-Fei. DenseCap: Fully Convolutional Localization Networks for Dense Captioning. CVPR 2016 .
Linjie Yang, Kevin Tang, Jianchao Yang, Li-Jia Li. Dense Captioning with Joint Inference and Visual Context. CVPR 2017.
3. Jonathan Krause, Justin Johnson, Ranjav Krishna. Li Fei-Fei. A Hierarchical Approach for Generating Descriptive Imaage Paragraphs. CVPR 2017.
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Ours: Keyword-driven Image Captioning

————————————————————————————————————————————————————————————————————————————————

Ground truth sentence:

Boys kicking soccer ball in the grass under a tree

Output

» (0.58) a boy in a blue shirt is jumping on a field

child

» (0.61) a child is playing in a blue shirt in front of a large rock

table

» (0.86) a little girl is sitting at a table

» (0.50) two young boys are playing on a grassy field

boys

park

» (0.88) a young boy is playing in a park

Input: An Image

Output: customized captions

- Two steps:

« Keywords generation
« Sentence generation




Keywords Generation

Total dictionary: Keywords vocabulary:
---9584 words MS COCO dataset ---537 words

80 object categories

‘food', 'sweeping', ‘fully’, 'knick-knacks', 'trailer', 'soapy’,
'since’, 'dunk’, 'bass', 'protruding’, ‘dirt', ‘pug’, ‘pub’,
‘base’, ‘coastline', ‘ash’, 'pup’, 'dip’, ‘cheering', 'scouts’,
‘grime’, 'reflected’, ‘elder’, 'florets', 'airborne’, 'storm’,

. _'kids’'glass’
Wwomen: 'wine' 'skate'

']:o_rdan',b'pngc()jrmftirs', "decidingt', 'bridtles', 'I;ialrt'(,j'juicy', ' "SandW| ChI

‘juice’, 'bridled’, 'flaming’, ‘quote’, 'eaten’, 'blend’, 1 1
‘cowgirl’, 'rifle’, 'booze’, ‘pretty’, ‘trees’, ‘famous', 'treed’, raCk.gEE ack’ people ]
'gloved', ‘withe', ‘witha', 'gloves', 'corgi’, ‘patties’, ‘won’, ; P : 'flowers'
'wok', 'readying', 'stoplight’, 'awnings', '‘badminton’, 'boat’bOWIS

'likes', ‘ciabatta’, 'maintenance’, 'partly’, 'packs’, ‘crack’,
‘grille’, 'grills', ‘overlooked', 'belong’, 'shuttered', 'used’,
‘temporary’, 'overweight', . . . . . . . .

arapes” 'skiis

'shower’

'zebras'

» Keyword sources . 'women', ‘people’, ‘lady’,
.. : mapping ‘womans', ‘woman’,

« \Word dictionary refinement oerson araat, i, e
* Object Detection ‘child’, ‘man’, 'men’,

'‘persons’

[1] R. Rehurek and P. Sojka. Software framework for topic modelling with large corpora. LREC Workshop on New Challenges for NLP Frameworks, 2010.



Sentence generation

* Pipeline of the context-dependent bilateral LSTM model (CDB-LSTM)

Given word w
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CDB-LSTM is an end-to-end model
that contains two cascaded sub-models:

B-LSTM F-LSTM

GT: a brown and black dog swimming in a river
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Sentence generation

* Pipeline of the context-dependent bilateral LSTM model (CDB-LSTM)
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Sentence generation

* Pipeline of the context-dependent bilateral LSTM model (CDB-LSTM)

Given word w
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Sentence generation

* Pipeline of the context-dependent bilateral LSTM model (CDB-LSTM)
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Sentence generation

* Pipeline of the context-dependent bilateral LSTM model (CDB-LSTM)

Given word w
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Unified Loss Function
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Sentence generation

* Pipeline of the context-dependent bilateral LSTM model (CDB-LSTM)

v

Given word w
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Context Transfer Module
Forward propagation:
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Experiments

 CNN model: VGGNet

» Word embedding: one hot vector
« RNN model: LSTM

 Dataset: MSCOCO(120K)

e Evaluation:
« Human evaluation
« Automatic evaluation




Results

Human evaluation

1.25 e=@==| STM

==@== CDB-LSTM

0.75

0.5

Higher cumulative distribution

cumulative distribution(% of scores>x)

100 images, 50 participants
The descriptiveness is rated on a four-point scale [1, 2], and higher is better.

[1] M. Hodosh et al. Framing image description as a ranking task: Data, models and evaluation metrics. JAIR 2013.
[2] O. Vinyals et al. Show and tell: a neural image caption generator. CVPR 2015.



Results

Automatic evaluation:

--- BLEU, Meteor, CIDEr, ROUGE. (precision, recall grammaticality)

Method B-1 B-2 B-3 B-4 M C R
Google NIC|[3] 66.6  46.1 329 246 — — —
Hard-Attention[21] 71.8 504 357 25.0 23.04 — —
gLSTM[14] 67.0 491 35.8 264 | 2274 — —
m-RNNJ[22] 67.- 49.- 35.- 25.- — — —
ATTI[8] 709 537 40.2 304 24.3 — —
LSTM 69.8 522 3835 28.7 239 534 | 429

N V
[-LLSTM(GM)

CDB-LSTM(GR)

CDB-LSTM(GM)

CDB-LSTM(DR)

CDB-LSTM(DM




CDB LSTI\/I VS LSTI\/I

1" 1“1 GT: Two girls in soccer strips ¥4
‘f"‘ . are playing on a sports field .

GT: Aboy in a striped t-shirt is
standing by a tree in front of the
picnic tables .

LSTM: a young boy is
running through a field LSTM: a boy in a red shirt is

jumping over a tree

CDB-LSTM CDB-LSTM

(field) -- two men are playing on a field boy) -- a boy in a blue shirt is jumping on a field
(uniforms) -- two girls in uniforms are playing with a ball a little girl is sitting at a table

(player) -- a soccer player in a white shirt is running on the grass (boys) -- two young boys are playing on a grassy field
(girls) -- two girls are playing in a field (park) -- a young boy is playlng in a park

GT: a group of children GT: A man riding skis on top

=8 playing baseball out side. e ~ of asnow covered slope.
LSTM: a group o people LSTM: a man riding skis
playing a game o frlsbee down a snow covered slope !

CDB-LSTM CDB-LSTM
hildren) -- a group of children playing a game of baseball ~ (man) -- a man is holding a woman on a skateboard
basebal)}-- a baseball player is playing baseball on a field (skis) -- two people on skis in the snow

a group of people are with gloves on a field (child) -- a child is on a snow covered slope
+ (kids) --a group of kids standing on a field (girl) -- a girl is standing on a snow covered slope

' (grass) -- a group of people are standing in the grass (person) -- a person on a snowy hill with a large snow covered hill



CDB-LSTM vs I-LSTM

I-LSTM: a boy is doing a trick

CDB-LSTM: a boy is doing a trick on a skateboard
I-LSTM: a boy in a red jacket

| CDB-LSTM: a boy in ared jacket is jumping on a
- skateboard

I-LSTM: a young boy is playing with a ball
CDB-LSTM: a young boy is playing with a ball in a
field

I-LSTM: a boy in an orange

CDB-LSTM : aboy in an orange shirt is playing

§ with a ball

Given word: person

' |-LSTM: a person in the snow
' CDB-LSTM: a person in a blue shirt
and a black dog is in the air

The independent LSTM have two directions
blind to each other and more likely to predict
incoherent , inaccurate, or incomplete sentence.

8 ====T,STM (without given word)
7 e [-LSTM (back)
e [-LSTM (forw)
6 ——(CDB-LSTM
5
@
=
14
3
—
2
1
1 2 3 4 5 6 7 8 9 10

Iterations in the epoch interval



Conclusion

« Keyword-driven image captioning

 CDB-LSTM

 Superiority in evaluation
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Ground truth sentence:

Boys kicking soccer ball in the grass under a tree

Input l Output
boy » (0.58) a boy in a blue shirt is jumping on a field
child » (0.61) a child is playing in a blue shirt in front of a large rock
table » (0.86) a little girl is sitting at a table
boys » (0.50) two young boys are playing on a grassy field
park — (0.88) a young boy is playing in a park




