

Keyword-driven Image Captioning via Context-dependent Bilateral LSTM

Xiaodan Zhang^{1,2},

Shuqiang Jiang², Qixiang Ye², Jianbin Jiao², Rynson W.H. Lau¹

¹ City University of Hong Kong ² University of Chinese Academy of Sciences

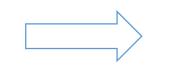
Image captioning

Image

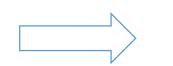


Language description

a group of children playing baseball out side.

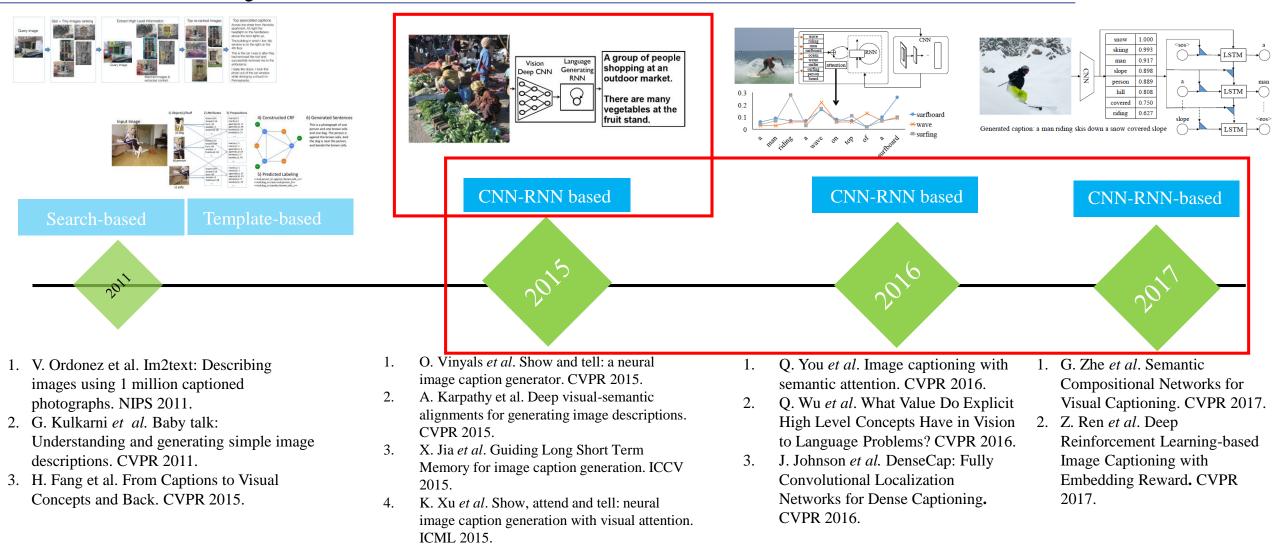


a young boy in a striped shirt is leaning against a tree while another child sits at a picnic table

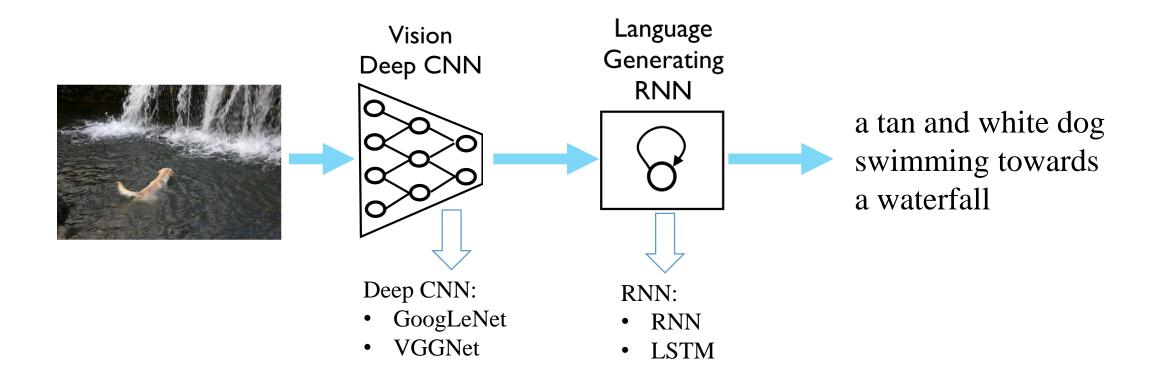


a tan and white dog swimming towards a waterfall

History and related works

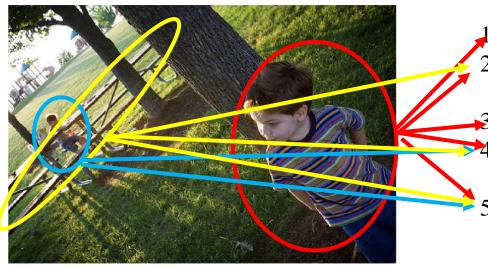


CNN-RNN based Image captioning model



[1] O Vinyals, A Toshev, S Bengio, D Erhan, Show and tell: A neural image caption generator, CVPR 2015.

Limitations



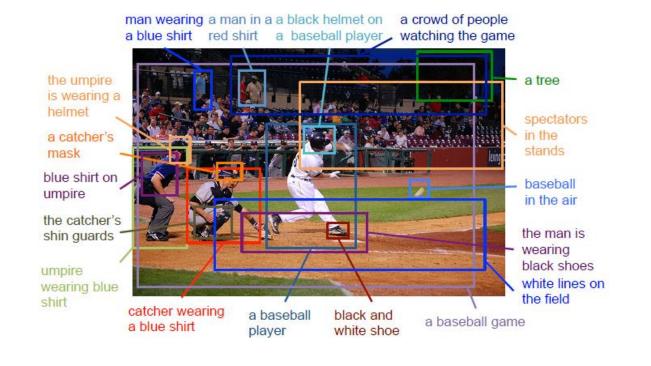
- . A boy hiding behind a tree
 - A boy in a striped t-shirt is standing by a tree in front of the picnic tables
 - A little boy in a striped shirt is standing behind a tree A young boy in a striped shirt is leaning against a tree while another child sits at a picnic table
- 7. Two boys in a park , one standing near a tree and one sitting at a picnic table with the playground behind them .

Ambiguity

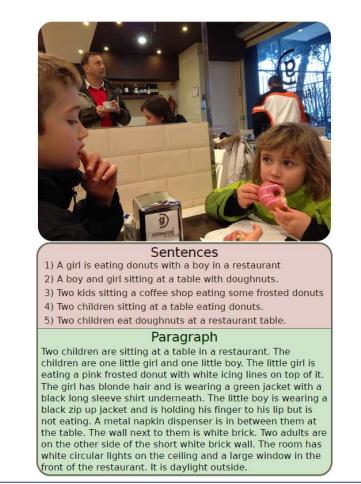
- An image contains too much information to be precisely described in one sentence.
- Image captioning suppose to be a highly customized task, and the user may have different focus for one image.

Prior arts

Dense captioning [1, 2]



Paragraph description [3]



- 1. Justin Johnson, Andrej Karpathy, Li Fei-Fei. DenseCap: Fully Convolutional Localization Networks for Dense Captioning. CVPR 2016.
- 2. Linjie Yang, Kevin Tang, Jianchao Yang, Li-Jia Li. Dense Captioning with Joint Inference and Visual Context. CVPR 2017.
- 3. Jonathan Krause, Justin Johnson, Ranjay Krishna, Li Fei-Fei. A Hierarchical Approach for Generating Descriptive Image Paragraphs. CVPR 2017.

Ours: Keyword-driven Image Captioning

Context-

depended <u>Bilate</u>ral

LSTM

Model

Input

boy

child

table

boys

park

Ground truth sentence:

Boys kicking soccer ball in the grass under a tree

Output (0.58) a boy in a blue shirt is jumping on a field

- ▶ (0.61) a child is playing in a blue shirt in front of a large rock
- (0.86) a little girl is sitting at a table
- ► (0.50) two young boys are playing on a grassy field
- \rightarrow (0.88) a young boy is playing in a park

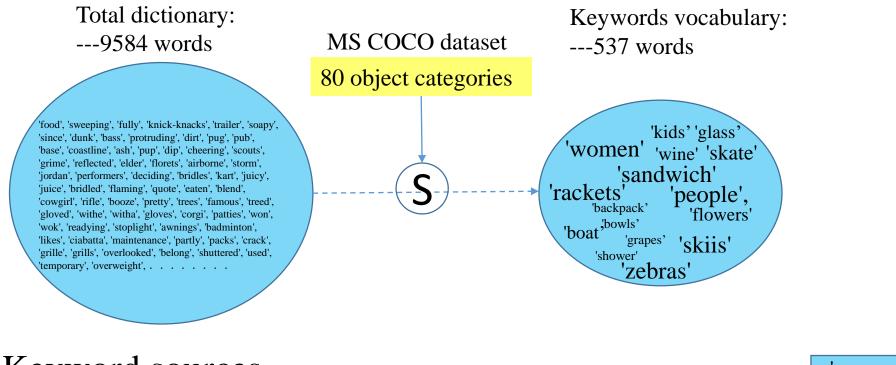
Input: An Image

Output: customized captions

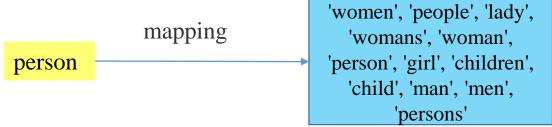
Two steps:

- Keywords generation
- Sentence generation

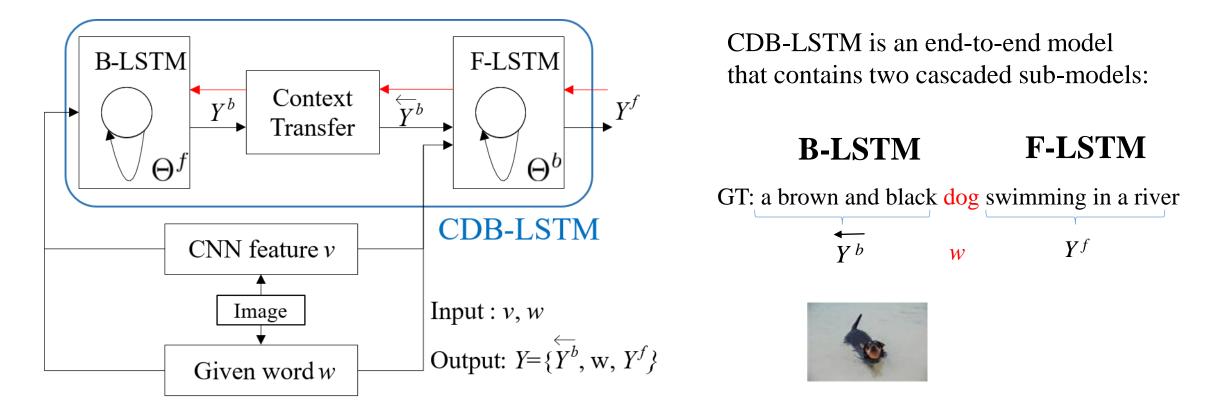
Keywords Generation

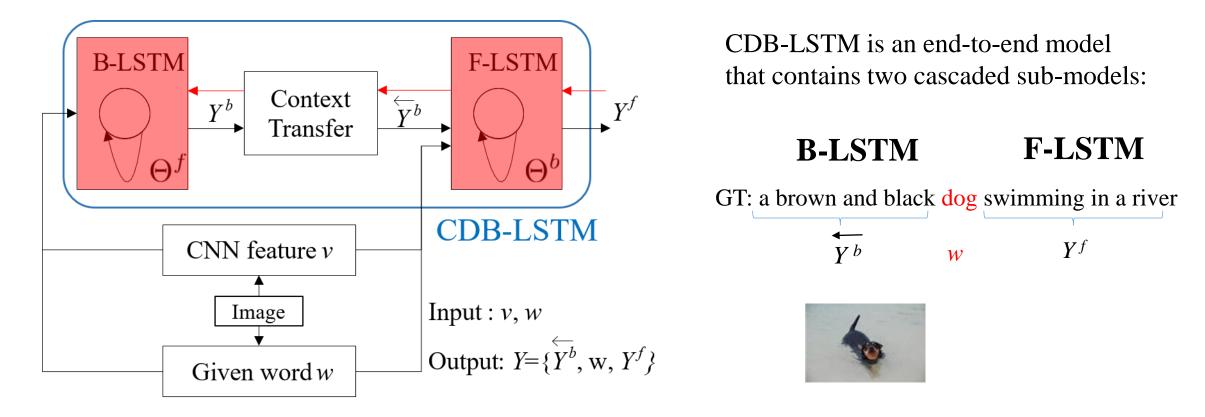


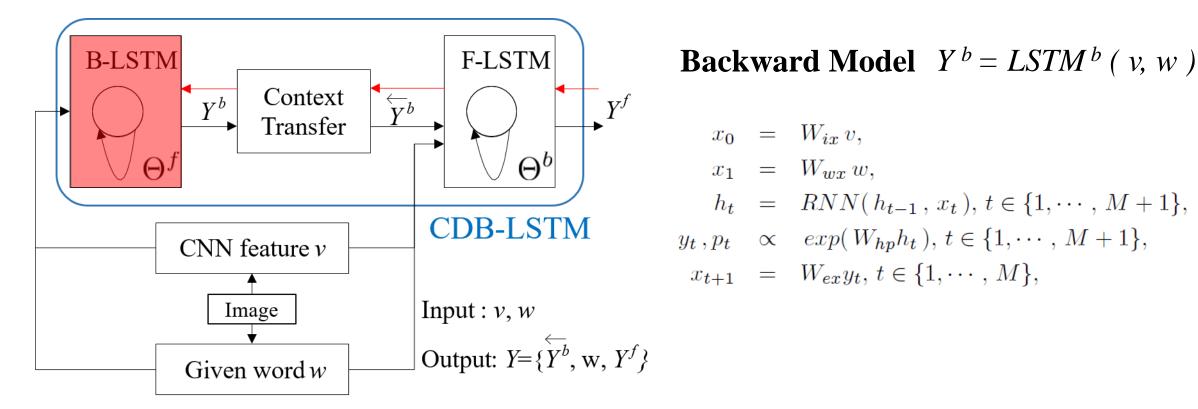
- Keyword sources
 - Word dictionary refinement
 - Object Detection

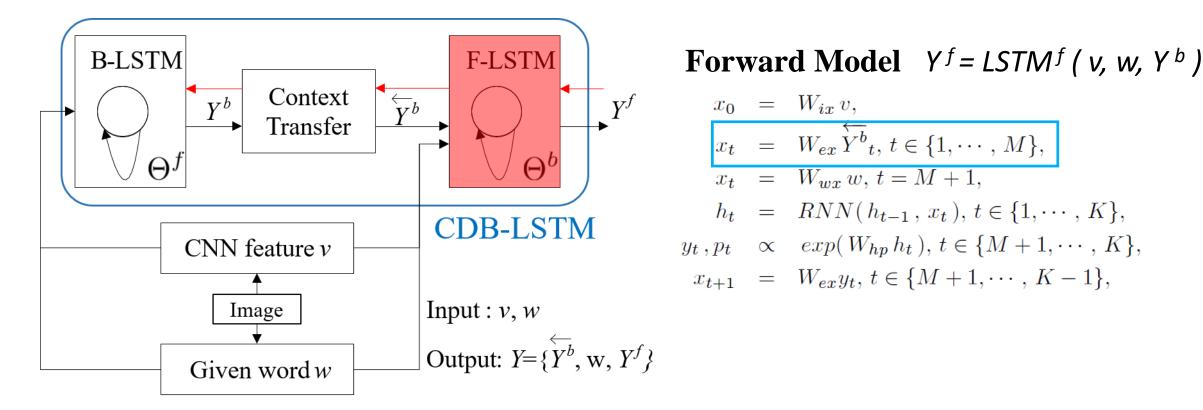


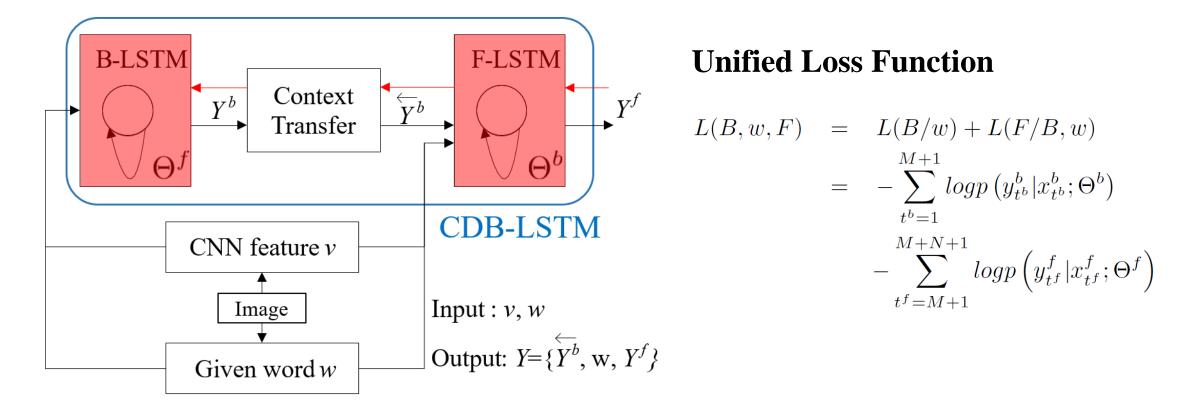
[1] R. Rehurek and P. Sojka. Software framework for topic modelling with large corpora. LREC Workshop on New Challenges for NLP Frameworks, 2010.

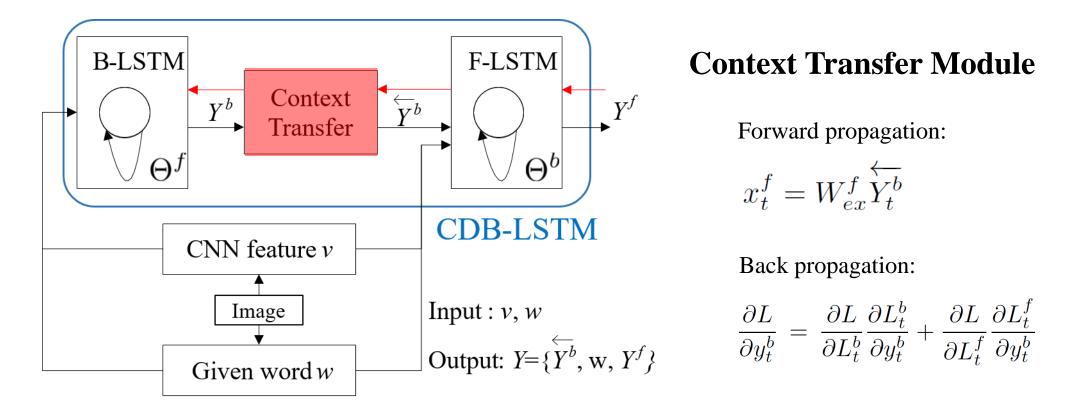








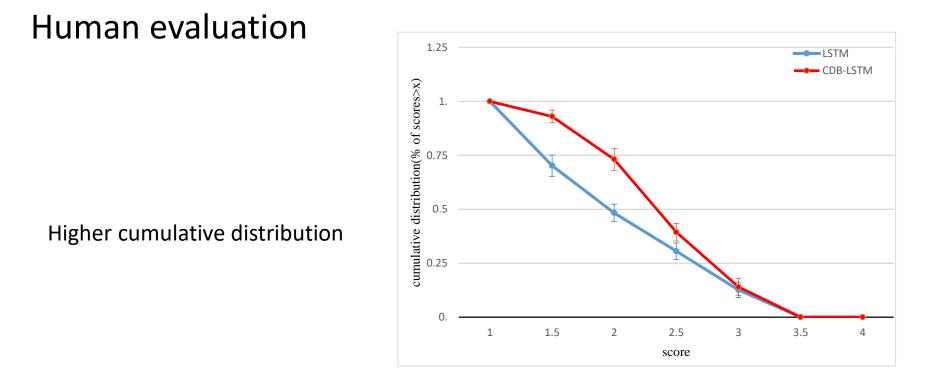




Experiments

- CNN model: VGGNet
- Word embedding: one hot vector
- RNN model: LSTM
- Dataset: MSCOCO(120K)
- Evaluation:
 - Human evaluation
 - Automatic evaluation

Results



100 images, 50 participants

The descriptiveness is rated on a four-point scale [1, 2], and higher is better.

[1] M. Hodosh *et al.* Framing image description as a ranking task: Data, models and evaluation metrics. JAIR 2013.[2] O. Vinyals *et al.* Show and tell: a neural image caption generator. CVPR 2015.

Results

Automatic evaluation:

--- BLEU, Meteor, CIDEr, ROUGE. (precision, recall grammaticality)

Method	B-1	B-2	B-3	B-4	М	C	R
Google NIC[5]	66.6	46.1	32.9	24.6	_	_	-
Hard-Attention[21]	71.8	50.4	35.7	25.0	23.04	_	-
gLSTM[14]	67.0	49.1	35.8	26.4	22.74	_	-
m-RNN[22]	67	49	35	25	_	_	-
ATT[8]	70.9	53.7	40.2	30.4	24.3	_	-
LSTM	69.8	52.2	38.5	28.7	23.9	53.4	42.9
I-LSTM(GR)	45.3	34.8	24.9	17.3	18.5	64.9	45.0
I-LSTM(GM)	66.1	50.6	35.0	23.4	20.9	77.2	48.0
CDB-LSTM(GR)	73.1	53.2	35.8	23.6	21.6	78.5	49.9
CDB-LSTM(GM)	78.8	58.3	40.4	27.5	23.4	83.6	51.8
CDB-LSTM(DR)	62.9	42.5	27.9	18.4	17.2	47.1	43.2
CDB-LSTM(DM)	76.3	56.1	38.9	26.5	22.5	77.3	51.4

CDB-LSTM vs LSTM

GT: Two girls in soccer strips are playing on a sports field.

LSTM: a young boy is running through a field

GT: A boy in a striped t-shirt is standing by a tree in front of the picnic tables.

LSTM: a boy in a red shirt is jumping over a tree

CDB-LSTM

(field) -- two men are playing on a field (uniforms) -- two girls in uniforms are playing with a ball (player) -- a soccer player in a white shirt is running on the grass (boys) -- two young boys are playing on a grassy field (girls) -- two girls are playing in a field

(boy) -- a boy in a blue shirt is jumping on a field (table) - a little girl is sitting at a table (park) -- a young boy is playing in a park

GT: a group of children playing baseball out side.

LSTM: a group of people playing a game of frisbee

GT: A man riding skis on top of a snow covered slope.

LSTM: a man riding skis down a snow covered slope

CDB-LSTM

CDB-LSTM

(children) -- a group of children playing a game of baseball (baseball) -- a baseball player is playing baseball on a field (gloves) -- a group of people are with gloves on a field (kids) -- a group of kids standing on a field (grass) -- a group of people are standing in the grass

CDB-LSTM

(man) -- a man is holding a woman on a skateboard (skis) -- two people on skis in the snow (child) -- a child is on a snow covered slope (girl) -- a girl is standing on a snow covered slope (person) -- a person on a snowy hill with a large snow covered hill

CDB-LSTM vs I-LSTM

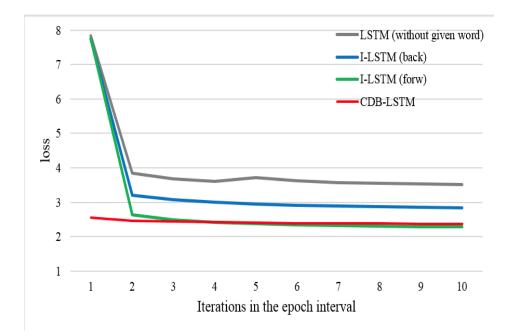
I-LSTM: a boy is doing a trick **CDB-LSTM**: a boy is doing a trick on a skateboard **I-LSTM**: a boy in a red jacket **CDB-LSTM**: a boy in a red jacket is jumping on a skateboard

I-LSTM: a young boy is playing with a ball **CDB-LSTM**: a young boy is playing with a ball in a field **I-LSTM**: a boy in an orange

CDB-LSTM : a boy in an orange shirt is playing with a ball

Given word: person

I-LSTM: a person in the snow **CDB-LSTM**: a person in a blue shirt and a black dog is in the air The independent LSTM have two directions blind to each other and more likely to predict incoherent, inaccurate, or incomplete sentence.



Conclusion

- Keyword-driven image captioning
- CDB-LSTM
- Superiority in evaluation

