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Abstract

Dense captioning is a challenging task which not only detects
visual elements in images but also generates natural language
sentences to describe them. Previous approaches do not lever-
age object information in images for this task. However, ob-
jects provide valuable cues to help predict the locations of
caption regions as caption regions often highly overlap with
objects (i.e. caption regions are usually parts of objects or
combinations of them). Meanwhile, objects also provide im-
portant information for describing a target caption region as
the corresponding description not only depicts its properties,
but also involves its interactions with objects in the image. In
this work, we propose a novel scheme with an object context
encoding Long Short-Term Memory (LSTM) network to au-
tomatically learn complementary object context for each cap-
tion region, transferring knowledge from objects to caption
regions. All contextual objects are arranged as a sequence
and progressively fed into the context encoding module to
obtain context features. Then both the learned object context
features and region features are used to predict the bound-
ing box offsets and generate the descriptions. The context
learning procedure is in conjunction with the optimization of
both location prediction and caption generation, thus enabling
the object context encoding LSTM to capture and aggregate
useful object context. Experiments on benchmark datasets
demonstrate the superiority of our proposed approach over
the state-of-the-art methods.

Introduction
Over the past few years, significant progress has been made
in image understanding. In addition to image classification
(Krizhevsky, Sutskever, and Hinton 2012; Simonyan and
Zisserman 2015; Hu, Shen, and Sun 2018), object detection
(Ren et al. 2015; Redmon et al. 2016; Hu et al. 2018) and im-
age captioning (Karpathy and Fei-Fei 2015; Xu et al. 2015;
Gu et al. 2018), some more challenging tasks such as scene
graph generation (Xu et al. 2017; Li et al. 2017; Kla-
wonn and Heim 2018) and visual question answering (Shih,
Singh, and Hoiem 2016; Anderson et al. 2018) can be im-
plemented by state-of-the-art visual understanding systems.
In order to reveal more details in images and alleviate the
problem of reporting bias (Gordon and Van Durme 2013),
dense captioning (Johnson, Karpathy, and Fei-Fei 2016;
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Figure 1: Illustration of caption regions and contextual ob-
jects which provide valuable cues for predicting locations
and generating the target descriptions (Best viewed in color).

Yang et al. 2017) aims to describe the content of images at
local region level, which not only detects visual elements but
also generates natural language sentences to describe them.

Dense captioning is similar to object detection in the sense
that they both need to locate regions of interest in images.
The difference is that dense captioning generates natural lan-
guage descriptions for regions while object detection assigns
fixed class labels to them. Currently, the prevailing frame-
work for dense captioning consists of three components: (i)
A region proposal component is used to reduce the num-
ber of candidates to be described, which is similar to the
region proposal network (RPN) (Ren et al. 2015) in object
detection. (ii) A language component is used to generate de-
scriptions for all the proposals. (iii) A regression component
is used to predict the bounding boxes of the captioned re-
gion candidates. Johnson et al. (Johnson, Karpathy, and Fei-
Fei 2016) utilize a fully convolutional localization network
for this task. As bounding boxes of target regions are highly
overlapped with each other and the annotated concepts are
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Figure 2: The spatial distributions of caption regions and ob-
jects in ground truth annotations on the VG-COCO dataset.

huge, Yang et al. (Yang et al. 2017) add a joint inference
module where localizing bounding boxes is jointly predicted
from the features of the target regions and features of the pre-
dicted descriptions. In their work, the whole image is used
as context to help locate and describe caption regions.

Previous work either uses the local appearance indepen-
dently or just complements it with the whole image as the
context to locate and describe caption regions. In this paper,
we propose a framework to exploit object context for dense
captioning, transferring the knowledge from objects to cap-
tion regions. Regions in dense captioning have correlations
with objects from object detection mainly in two aspects.

The first one is that caption regions and objects have high
overlaps in spatial locations. For example, as shown in the
right of the first row in Figure 1, the region with the descrip-
tion of “the head of a girl” is a part of the object instance
of “person”, which is completely contained by the object.
Some caption regions are almost the same with objects in
locations or are the combinations of several objects. To get a
holistic view, we present the statistical information of over-
laps between caption regions and objects in the VG-COCO
dataset (which will be elaborated in our experiments). Figure
2 (a) illustrates the number of objects that a caption region
overlap with. It can be observed that most of the caption re-
gions (86.5%) overlap with objects in spatial locations with
the number of objects varying from 1 to 5. We categorize
these caption regions according to their spatial relationships
with objects into four types: (i) Caption regions which are
almost the whole objects (Whole): They have Intersection-
over-Union (IoU) values with objects that are bigger than
0.7, as this value is widely used to evaluate the effectiveness
of a detected region in object detection (Girshick et al. 2014;
Ren et al. 2015). (ii) Caption regions which are parts of ob-
jects (Part): They are completely contained in objects and
the IoU values between them are smaller than 0.7. (iii) Cap-
tion regions which have spatial contact with objects but they
are neither the whole objects nor parts of objects (Other
contact). (iv) Caption regions have no spatial contact with
objects (Noncontact): They are usually abstract concept re-

gions which have no overlap with any objects (i.e. sky, grass
and street). The examples in Figure 1 correspond to these
four kinds of relationships. Figure 2 (b) shows the percent-
ages of these four kinds of regions. Objects in an image pro-
vide useful indications to predict caption regions. For exam-
ple, caption regions which are parts of objects appear in very
distinctive locations within objects. As shown in the right of
the first row of Figure 1, the caption region of a head usually
tends to be near the upper middle of the person object.

The second aspect is that the descriptions for caption re-
gions and objects have commonalities in semantic concepts.
The descriptions for caption regions not only describe the
properties such as color, shape and texture, but also involve
their interactions with the surrounding objects. For example,
in the first row of Figure 1, the description for the boy also
involves its relationship (i.e. riding) with the horse. Even for
the abstract concepts regions (i.e. Noncontact), their predic-
tions are closely related with the objects in the image.

Hence, objects provide valuable cues to help locate cap-
tion regions and generate descriptions for them. To capture
useful object information in an image, we propose a novel
framework to learn complementary object context for each
caption region, as shown in Figure 3. We first detect a set of
objects, and then all the objects are put into a context encod-
ing Long Short-Term Memory network to form informative
context. The LSTM cell progressively takes each object as
inputs and decides whether to retain the information from
the current input or discard it, based on the information cap-
tured from its previous states and current input. At last, the
learned context is used as guided information to help gen-
erate the descriptions and predict the bounding box offsets.
The results show that the learned context is beneficial to de-
scribe and locate caption regions.

In summary, our contributions are as follows: First, we
propose an architecture to model complementary object con-
text for dense captioning. As dense captioning and object de-
tection are image understanding tasks at different levels, ex-
periments demonstrate that bringing features from object de-
tection can benefit dense captioning. Second, we explore dif-
ferent architectures to fuse the learned context features and
the features of caption regions and analyze the mechanisms
for them. We also visualize the internal states of the con-
text encoding LSTM cells. The visualization shows that our
model can automatically select the relevant context objects
to form discriminative and informative context features.

Related work
Image Captioning. Many approaches have been explored
for the task of image captioning, which aims to generate nat-
ural language descriptions for the whole image. Most pre-
vailing methods are based on the CNN-RNN framework.
Karpathy et al. (Karpathy and Fei-Fei 2015) use a deep
CNN to extract visual features and put these features into
an RNN as the initial start word to generate image descrip-
tions. Jin et al. (Fu et al. 2017) utilize the attention mech-
anism to change gaze on different objects when generating
each word in the sentence. Gan et al. (Gan et al. 2017) gen-
erate sentences based on detected high-level semantic con-
cepts. In order to optimize captioning models on test metrics
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Figure 3: Overview of our framework. A region proposal network (RPN) is used to generate regions of interest (ROIs). To
leverage objects information in the image, a pre-trained Faster R-CNN model is used to detect objects in the image. For both
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to form the complementary object context features. At last, the features of the target regions and the learned context are used to
generate descriptions and bounding boxes.

(e.g. CIDEr, SPICE), many methods based on Reinforce-
ment Learning (RL) have been proposed (Rennie et al. 2017;
Luo et al. 2018). In this paper, we address the task of dense
captioning. For each caption region, we use the features of
target regions as guidance to learn the corresponding com-
plementary object context. After getting the learned context,
we then use the context to guide the prediction of its descrip-
tion and bounding box offset.

Object Detection. The task of object detection identifies
a set of objects in the given image, providing both their pre-
defined categories and the corresponding bounding box off-
sets. There has been a lot of significant progress in object de-
tection (Redmon et al. 2016; Liu et al. 2016; Hu et al. 2018).
The first attractive work is the combination of region propos-
als and CNNs (R-CNN) (Girshick et al. 2014). To achieve
the goal of processing regions in an image only with a sin-
gle feedforward pass of the CNN, Girshick et al. (Girshick
2015) have modified this pipeline by sharing computation
of convolutionals. Some further approaches explore region
proposal strategies based on neural networks without extra
algorithms to hypothesize object locations (Ren et al. 2015;
Redmon et al. 2016). Our work is built on top of the region
proposal network (RPN) of Faster R-CNN (Ren et al. 2015).
Similar to our work, Chen et al. (Chen and Gputa 2017) pro-
pose a Spatial Memory Network (SMN) to model object-
level context to improve modern object detectors. In this
work, we automatically learn complementary object context
to help predict more precise locations and generate better
descriptions for dense captioning.

Our Approach
The overall architecture is shown in Figure 3. In this section,
we will describe each component of the proposed approach.

Region Proposal Network
We use VGG-16 (Simonyan and Zisserman 2015) as the
base network. For the region proposal network, we apply
the method proposed by Ren et al. (Ren et al. 2015) to gen-
erate regions of interest for dense captioning. It has 3 con-
volutional layers where the first one transforms the features
of conv5 3 to suitable representations with filter size 3 × 3.
And the remaining two layers with filter size 1 × 1 are for
foreground/background classification and bounding box re-
gression respectively. At each location, anchors with differ-
ent scales and ratios are used to generate possible regions.

During training and testing, the region proposal network
outputs a number of rectangular region proposals. We feed
each proposal to the ROI pooling layer to obtain its feature
cube. Afterwards, they are flattened into a vector and passed
through 3 fully-connected layers. In this way, for each gener-
ated caption region i, we can obtain a vector Vi of dimension
D = 512 that compactly encodes its visual appearance.

Object Context Encoding
As objects in images not only provide valuable cues for lo-
cating caption regions but only offer useful information for
describing them, it is important to model the context among
objects for dense captioning. In order to model different ob-
ject context for each caption region, we use the LSTM which
updates with guidance information (i.e. gLSTM) (Jia et al.
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Figure 4: Illustration of object context encoding network
module and region caption generation and localization mod-
ule: (a) Object context encoding, (b) Object context decoded
with a LSTM, and (c) Object context used as guidance.

2015) as our object context encoding module. It takes the
output of the previous time step, the input of the current time
step and the fixed guidance as the its current inputs. The up-
date equations at time t can be formulated as:

it = σ(Wixxt + Wimmt−1 + Wigg) (1)
ft = σ(Wfxxt + Wfmmt−1 + Wfgg) (2)
ot = σ(Woxxt + Wommt−1 + Wogg) (3)
ct = ft � ct−1 + it � φ(Wcxxt + Wcm + Wcgg)) (4)
mt = ot � φ(ct) (5)

where g denotes the guidance information, t ranges from the
start of the input sequence to the end of it; it, ft and ot
represent the input gate, forget gate, and output gate at time
step t; ct is the memory cell and mt is the hidden state; �
represents the element-wise multiplication, σ(·) represents
the sigmoid function and φ(·) represents the hyperbolic tan-
gent function; W[·][·] denote the parameters of the model. In
this work, we use CNN features of the target region as the
guidance for the object context encoding LSTM.

In order to obtain rich object information, we use a pre-
trained Faster R-CNN to extract a set of objects from the
image. Like previous approaches (Fu et al. 2017), the entire
image is also utilized as a specific object region. We then put
its bounding box offset of each object j to the ROI pooling
layer and the 3 fully-connected layers (i.e. the same architec-
ture used to extract the feature vectors for caption regions)
to obtain the features voj from the shared conv5 3 layer. To
acquire more information, we also extract location and size
features lj for each object j :

lj = [
xtl
W
,
ytl
H
,
xbr
W

,
ybr
H
,
jj · hj
W ·H

] (6)

where x and y are the locations of the top left and bottom
right corners of the object j , wj and hj are the width and
height of j, W and H are the width and height of the image.
We then concatenate the CNN features voj , the location and
size features lj to represent object j. At last, we use a fully-
connected layer to transform the concatenated features to the

final representations objj which has the same size with Vi.

objj = Wob[voj , lj ] + b (7)

where [·] denotes the concatenation operation, Wob and b
are the parameters for the fully-connected layer.

After we get the features for each detected object, we
arrange them as a sequence which will be fed into the ob-
ject context encoding LSTM. As the spatial information of
objects is an important information for many visual tasks
(Bell et al. 2016; Chen and Gputa 2017), we sort these ob-
jects by their locations in the image. More accurately, they
are arranged with the order of from left to right and top to
down. Some other orders (e.g. area order, confidence or-
der) will also be explored in our experiments. In this way,
given an image I , we utilize seq(I) to denote its object
information, which contains a sequence of representations
seq(I) = {obj1, obj2, ... , objN ). For the object context de-
coding procedure, we use the features of the target caption
region vi as the guidance at each step, as illustrated in Figure
4 (a). The object context encoding LSTM takes in seq(I)
progressively and encodes each object into a fixed length
vector. Thus, we can obtain the encoding hidden states com-
puted from:

hent
= LSTMen(seq(I)t, Vi, hent−1

),

t = 1, 2, ...N (8)

whereN is the number of objects. Once the hidden represen-
tations from all the context objects are obtained, we use the
last the hidden state to represent the complementary object
context ci for the caption region i: Ci = henN

. The features
for the caption region Vi and the corresponding context Ci

will be used in the next stage to generate the description and
predict the bounding box offset.

Region Caption Generation and Localization
The description for a caption region usually depicts its prop-
erties and its interactions with objects in the image. So ob-
ject context is of great importance for describing a caption
region. It is an essential part of the input information which
provides a broader understanding of the image and delivers
visual cues to generate better descriptions.

We explore two different architectures to leverage the fea-
tures of caption region Vi and the learned object context Ci

to generate an appropriate description for each caption re-
gion i. The first architecture uses a LSTM to decode the ob-
ject context into recurrent representations, of which the out-
puts are fused with the outputs of the caption LSTM. At each
time step, the concatenation of them is utilized to generate
the description, as shown in Figure 4 (b). As the learned
complementary object context is decoded with a LSTM,
this architecture is denoted as COCD for convenience. This
one is similar to the architecture used in (Yang et al. 2017),
where they use the whole image as the context but our con-
text is automatically learned from objects in the image. In
the second architecture, the context is used as guidance in-
formation which is fed into the caption LSTM, as shown in
Figure 4 (c). It is denoted as COCG for convenience. For
the region caption generation procedure, the learned com-
plementary object context works at a global level and guides



the caption LSTM at each time step to encode the features
of the region into a language description. The motivation for
COCG is as follows: Because COCD has four LSTMs, it
is hard to train. Removing the context decoding LSTM will
alleviate the vanishing gradient problem.

For region localization, our networks are designed with
the same spirits in (Yang et al. 2017). The features of the re-
gion Vi are put into the location LSTM as an initial word. In
the following steps, it progressively receives the outputs of
the caption LSTM. After all of the predicted words (except
the token <EOS> which indicates the end of a sentence)
are put into the location LSTM, the last hidden state is used
to predict the box offset. In this manner, the predicted box
offset is interrelated with the corresponding description.

Training and Optimization
To obtain objects in images, we train a Faster CNN (Ren et
al. 2015) model using the ResNet-101 (He et al. 2016). The
model is first pre-trained on ImageNet (Russakovsky et al.
2015) dataset and then is fine-tuned on MS COCO (Lin et al.
2014) (except the test and validation images in VG-COCO).
For each image, we detect 10 objects with high confidence.
Because each image has an average of 7 objects (which will
be introduced our experiments), most of objects will be cov-
ered. For the RPN, 12 anchors are used to generate possible
proposals at each location and 256 boxes are sampled for
each forward procedure. The size of our vocabulary is 1000.
The max length of all the sentence is set to 10. For all of the
LSTM networks, the size of the hidden state is set to 512.
We train the full model end-to-end in a single step of opti-
mization. Our training batches consist of a single image that
has been resized so that the longer side has 720 pixels.

Experiments
Datasets and Evaluation Metrics
We use the Visual Genome (VG) dataset (Krishna et al.
2017) and the VG-COCO dataset which is the intersection
of VG V1.2 and MS COCO (Lin et al. 2014) as the evalua-
tion benchmarks.

VG. Visual Genome currently has three versions: V1.0,
V1.2 and V1.4. As the region descriptions in V1.4 are the
same with the region descriptions in V1.2, we conduct our
experiments on V1.0 and V1.2. The training, validation and
test splits are the same with (Johnson, Karpathy, and Fei-
Fei 2016). There are 77,398 images for training and 5,000
images for validation and test respectively.

VG-COCO. Even though Visual Genome provides object
annotations for each image, the target bounding boxes are
much denser than the bounding boxes in other object detec-
tion benchmark datasets such as MS COCO (Lin et al. 2014)
and ImageNet (Russakovsky et al. 2015). For example, each
image in the training set of VG V1.2 contains an average of
35.4 objects, but the average value for MS COCO is only
7.1. To get proper object bounding boxes and caption region
bounding boxes for each image, the intersection of VG V1.2
and MS COCO is used in our paper, which is denoted as VG-
COCO. There are 38,080 images for training, 2,489 images
for validation and 2,476 for test.

Table 1: The results on the VG-COCO dataset (%).
Method mAP

FCLN (Johnson, Karpathy, and Fei-Fei 2016) 4.23
JIVC (Yang et al. 2017) 7.85

Max pooling 7.86
COCD 7.92
COCG 8.90
ImgG 7.81

COCG−LocSiz 8.76
COCG&GT 9.79
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Figure 5: Illustration of detected regions and the correspond-
ing descriptions generated by our method. Predictions with
high confidence scores are represented.

For evaluation, we use mean Average Precision (mAP),
which is same with (Johnson, Karpathy, and Fei-Fei 2016;
Yang et al. 2017). It measures localization and description
accuracy jointly. Average precision is computed for different
IoU thresholds and different Meteor scores (Lavie and Agar-
wal 2007), then averaged to produce the mAP score. For lo-
calization, IoU thresholds 0.3, 0.4, 0.5, 0.6, 0.7 are used.
Meanwhile, Meteor scores 0, 0.05, 0.10, 0.15, 0.20, 0.25
are used for language similarity. For each test image, top 300
boxes with high confidence after non-maximum suppression
(NMS) with IoU of 0.7 are generated. The beam search size
is set to 1 when generating descriptions. The final results are
generated with a second round of NMS with IoU of 0.3.

Effectiveness of the Learned Object Context
In this section, we evaluate the effectiveness of the comple-
mentary object context learned by our methods on the VG-
COCO dataset. The results are shown in Table 1. We use the
method proposed by Yang et al. (Yang et al. 2017) as our
baseline method which incorporates joint inference and vi-
sual context fusion (denoted as JIVC). The performance of
fully convolutional localization network (denoted as FCLN)
proposed by Johnson et al. (Johnson, Karpathy, and Fei-Fei
2016) is also provided. The mAP scores for different vari-
ants of models are shown in Table 1.



As shown in Table 1, the learned complementary object
context helps to improve mAP scores with gains ranging
from 0.07 to 1.05. Several conclusions can be obtained: (i)
The learned object context is effective, demonstrating its
complementarity to the caption region features and its su-
periority to the whole image context. For the architecture
where the learned context is decoded with a LSTM (COCD),
it surpasses the baseline with an improvement of 0.07. It
demonstrates that the learned context is better than using the
whole image as the context. While the method using max
pooling to obtain the context (Max pooling) almost gets the
same performance with the baseline, this demonstrates that
it is better to use the proposed method to model the con-
text. (ii) The architecture which uses the learned context as
guidance (COCG) gets the best performance. COCG injects
the context into the caption LSTM and location LSTM as
guidance. Meanwhile, the context learning procedure is bun-
dled together with location prediction and caption genera-
tion. In this way, the context encoding LSTM is adapted to
the caption and location LSTMs, and thus captures and ag-
gregates useful context. (iii) The improvements of COCG
mainly come from the learned region specific context. The
architecture which uses the whole image as contextual infor-
mation for COCG (ImgG) almost has the same performance
with JIVC. Because the whole image context is fixed for
each caption region, using the whole image context as the
guidance is not superior to decoding it with an extra LSTM
(as JIVC is a litter better than ImgG). The results demon-
strate that the improvements of COCG mainly come from
the learned region specific context instead of the utilization
of gLSTM. (iv) The results show that only using the CNN
features to represent objects (COCG−LocSiz) leads a little
drop in the performance. The experiments also show that
learning the complementary object context on the ground
truth objects (COCG&GT) can obtain better performance. It
demonstrates that accurate object bounding boxes are bene-
ficial to obtain better results.

Figure 5 shows some examples generated by our method
which automatically learns complementary object context
for each caption region. Figure 6 shows quantitative compar-
ison between the baseline (JIVC) and our method (COCG).
With the Meteor score of 0, our proposed method obtains
promising improvements. The results show that our method
can obtain better locations. Meanwhile, it is illustrated that
the proposed method obtains better performance at all set-
tings, demonstrating that our complementary object context
is useful for both describing and locating caption regions.
Figure 7 shows several examples which qualitatively demon-
strate that our method is better both at generating descrip-
tions and predicting bounding box offsets. The last column
in Figure 7 shows a negative example, as the generated cap-
tion of COCG is slightly worse than the one of JIVC.

Context Encoding with Different Orders
For the evaluations above, we only use the location order
to arrange the detected objects. In this section, we evalu-
ate the performance when the objects are sorted with dif-
ferent orders. Besides location order which has been used,
we explore the other two kinds of orders: area and confi-
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Figure 6: Average precision with different Meteor scores and
different IoU thresholds on the VG-COCO dataset.

Table 2: The mAP performance on the VG-COCO dataset
when context objects are arranged with different orders (%).

Method mAP
Location 8.90

Area 8.74
Confidence 8.89

dence. Area order is that context objects are sorted by their
areas from big to small, as we often focus on big objects
and neglect small objects. Confidence order is that context
objects are sorted with their confidence scores from big to
small, where the confidence scores are provided by the ob-
ject detection model. Table 2 shows the mAP for different
orders. It can be observed that location order achieves the
best performance and the other two also obtain comparable
performance. So in the following sections, we only use the
location order to arrange the objects.

Results on Visual Genome
We also evaluate the effectiveness of our method on Visual
Genome (VG) dataset. The results are shown in Table 3.
Leveraging the object context in the image, we achieve state-
of-the-art performance. The proposed method obtains a rela-
tive gain of 5.5% on VG V1.0 and a relative gain of 4.3% on
VG V1.2. The gains are smaller than the gain in VG-COCO.
The reasons are follows: First, the object detection model is

Table 3: The mAP performance on V1.0 and V 1.2 (%). ∗

indicates that the results are obtained by our implementation.
Method VG V1.0 VG V1.2

FCLN (Johnson et al. 2016) 5.39 -
FCLN ∗ (Johnson et al. 2016) 5.02 5.16

JIVC (Yang et al. 2017) 9.31 9.96
JIVC ∗ (Yang et al. 2017) 9.28 9.73

ImgG 9.25 9.68
COCD 9.36 9.75
COCG 9.82 10.39



horse grazing on grass

horse is eating grass
（IoU: 0.80, Meteor: 0.24）

 horse is white
（IoU: 0.79, Meteor: 0.13）

 white shoe on a foot

white shoe on the women
（IoU: 0.68, Meteor: 0.33）

shoe on the woman
（IoU: 0.63, Meteor: 0.18）

a baseball hat the guy is wearing

a man is wearing a white hat
（IoU: 0.75, Meteor: 0.19）

a man with hat
（IoU: 0.72, Meteor: 0.11）

thin clouds in the sky

a light blue sky
（IoU: 0.50, Meteor: 0.12）

the white sky
（IoU: 0.70, Meteor: 0.13）

Figure 7: Qualitative comparisons between baseline (JIVC) and our method (COCG). The green box, the red box and the blue
box are the grounding truth, the prediction of JIVC and the prediction of COCG respectively (Best viewed in color).
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a blue and white umbrella
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Figure 8: The visualization of the object context encod-
ing LSTM. The first column shows the images, where blue
boxes are the detected objects, the red box is the target cap-
tion region and the text is the generated description. The top
of the second column shows the mean input gate activations
for each object and the bottom shows the min-max normal-
ization of them. Because the hidden state size of the object
context encoding LSTM is 512, the gate activations are 512
dimensional vectors (Best viewed in color).

only trained on MS COCO thus it have no knowledge about
objects information in VG. Second, for each image, we only
detect 9 images. We have not experimented with the num-
ber of objects, it is possible that the improved recall from
additional objects may improve the performance.

Visualized Results
As the gates of the LSTM architecture (whose activations
range from 0 to 1) store read, write and reset information
for its memory cells, the power multiplicative interactions
enable the LSTM architecture to capture rich contextual in-
formation from its input sequence (Palangi et al. 2016). In
this section, we examine the temporal evolution of internal
gate states (i.e. input gate) and qualitatively reveal how the

object context encoding LSTM retains valuable context in-
formation and attenuates unimportant information. Figure 8
shows two examples from the test set of VG-COCO. For the
example in the first row of Figure 8, to obtain the comple-
mentary object context for the region which is described as
“a man wearing shorts”, the LSTM selects and propagates
the most relevant object which is labeled as 5 (an object in-
stance of person), as the mean input gate activations for this
object is bigger than others. While for the example in the
second row, the LSTM has big input gate activations for the
object which is labeled as 6. The visualization indicates that
meaningful patterns can be learned by the context encoding
LSTM. By automatically selecting and attenuating context
objects, the context encoding LSTM can generate rich com-
plementary object context for each caption region.

Conclusion
In this work, we have demonstrated the importance of learn-
ing object context for dense captioning, as caption regions
and objects not only have a high degree of overlap in their
spatial locations but also have a lot of commonalities in their
semantic concepts. To transfer knowledge from detected ob-
jects to caption regions, we introduce a framework with an
object context encoding LSTM module to explicitly learn
complementary object context for locating and describing
each caption region. The object context encoding LSTM
progressively receives features from context objects to cap-
ture and aggregate rich object context features. After getting
the learned complementary object context features, the con-
text features and the region features are effectively combined
to predict descriptions and locations. We explore the capa-
bilities of different architectures and achieve promising re-
sults on benchmark datasets. In future work, we will exploit
high-level semantic information from objects to obtain more
useful cues for locating and describing caption regions.
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