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Abstract

The goal of few-shot image recognition is to dis-
tinguish different categories with only one or a
few training samples. Previous works of few-shot
learning mainly work on general object images.
And current solutions usually learn a global image
representation from training tasks to adapt novel
tasks. However, fine-gained categories are distin-
guished by subtle and local parts, which could not
be captured by global representations effectively.
This may hinder existing few-shot learning ap-
proaches from dealing with fine-gained categories
well. In this work, we propose a multi-attention
meta-learning (MattML) method for few-shot fine-
grained image recognition (FSFGIR). Instead of us-
ing only base learner for general feature learning,
the proposed meta-learning method uses attention
mechanisms of the base learner and task learner to
capture discriminative parts of images. The base
learner is equipped with two convolutional block
attention modules (CBAM) and a classifier. The
two CBAM can learn diverse and informative parts.
And the initial weights of classifier are attended
by the task learner, which gives the classifier a
task-related sensitive initialization. For adaptation,
the gradient-based meta-learning approach is em-
ployed by updating the parameters of two CBAM
and the attended classifier, which facilitates the up-
dated base learner to adaptively focus on discrimi-
native parts. We experimentally analyze the differ-
ent components of our method, and experimental
results on four benchmark datasets demonstrate the
effectiveness and superiority of our method.

1 Introduction
Fine-grained image recognition aims to distinguish different
subordinate categories belong to the same entry-level cat-
egory (e.g., various bird species [Wah et al., 2011], dog
[Khosla et al., 2011] species). Different subordinate cat-
egories are distinguished by subtle and local differences,
which makes fine-grained image recognition more difficult
than general image recognition. Most existing fine-grained
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Figure 1: An example of general one-shot image recognition (top)
and one-shot fine-grained image recognition (bottom). As for young
children, it is easy to learn general concepts with only one image
of each category, while it is more difficult to distinguish fine-gained
categories with one sample of each category.

image recognition methods heavily rely on large-scale an-
notated training samples before learning a robust classifier
[Zhang et al., 2014; Xiao et al., 2015; Fu et al., 2017].
However, annotating the fine-grained sub-categories requires
strong expertise. For example, accurately identifying dif-
ferent bird species may need assistance from ornithologists,
which is significantly expensive compared with the generic
object annotation. Besides, it is hard to collect well-labeled
samples of some categories, e.g., endangered, rare species.
How to deal with the fine-grained image recognition with lim-
ited labeled samples is a desirable research problem in com-
puter vision and artificial intelligence community, which has
not been much explored before.

Two-year-old children can distinguish different generic
categories after seeing a few images of them [Smith and
Slone, 2017], while they may be confused about fine-grained
categories with limited samples, as illustrated in Figure 1. Re-
cently, few-shot image recognition has been widely studied
[Vinyals et al., 2016; Snell et al., 2017; Sung et al., 2018]
to identify novel category with only one or a few samples.
However, few-shot image recognition for fine-grained cate-
gories has not been well studied in depth. In this paper, we
focus on the problem of few-shot fine-grained image recog-
nition (FSFGIR).



Most existing few-shot image recognition approaches
[Vinyals et al., 2016; Snell et al., 2017; Finn et al., 2017;
Munkhdalai et al., 2018] mainly focus on general concepts
to learn generic knowledge with global representations of
images. But the global representation cannot capture sub-
tle local differences of images effectively, which may hinder
these few-shot image recognition approaches from dealing
with FSFRIR well.

On the other hand, most of fine-grained image recogni-
tion systems [Zhang et al., 2014; Xiao et al., 2015] follow
the pipeline of finding foreground object or object parts and
extracting their discriminative features. More recent work
merges the pipelines into an end-to-end learning framework
[Zheng et al., 2017; Fu et al., 2017; Luo et al., 2019]. How-
ever, these methods could be not employed directly for FS-
FGIR, since plenty of training images are unavailable in the
few-shot learning. Inspired by the studies of the fine-grained
image recognition, our idea is to learn discriminative parts
with a small amount of training images in an end-to-end fash-
ion, which has not been explored before.

In this work, we propose a multi-attention meta-learning
(MattML) method, which leverages attention mechanisms of
the base learner and task learner to capture discriminative
parts of images. To be more specific, the base learner consists
of a feature embedding network, two convolutional block at-
tention modules CBAM [Woo et al., 2018] and a classifier.
The two CBAM can focus on diverse and informative parts
by blending cross-channel and spatial information. In the
task learner, a recurrent encoder is used to learn task rep-
resentations with a recurrent decoder in the auto-encoding
framework, and the task representations are employed by
weight generator to attend the initialization of classifier of
base learner. In this way, the attended classifier obtains a
task-related sensitive initialization. For adaptation, we lever-
age the gradient-based meta-learning approach to adjust the
parameters of two CBAM and the attended classifier, such
that the updated base learner can be adaptive to focus on dis-
criminative parts according to the current few-shot task.

Our main contributions are summarized as follows:

• To our best knowledge, we first combine attention mech-
anisms and meta learning for FSFGIR.

• We propose a MattML method, which uses attention
mechanisms of the base learner and task learner to cap-
ture discriminative parts of images.

• We establish comprehensive benchmarks for FSFGIR,
and experimental results demonstrate state-of-the-art
performance under the 1-shot setting.

2 Related work
2.1 Fine-grained image recognition
In the early study of fine-grained image recognition, some
works [Chai et al., 2013; Xie et al., 2013] are proposed
with part-based annotations of object available at both train-
ing and inference phase. Benefiting from the the develop-
ment of deep neural networks, the research of fine-grained
image recognition is shifted from where part-based anno-
tations of object are known [Zhang et al., 2014] to where

they are unknown [Xiao et al., 2015]. When it comes to
the unknown part-based annotations, there are two main re-
search lines. The first line is to regularize feature learning
by exploiting structural relationships between fine-grained
labels such as intermediate concepts [Wang et al., 2015;
Xie et al., 2015] or shared attributes [Zhou and Lin, 2016].
Another line of research first localizes discriminative parts
and then extracts features from these parts in a multi-stage
learning framework [Xiao et al., 2015; Zhang et al., 2016].
Recently, this line of research combines part localization and
feature learning in an end-to-end framework [Fu et al., 2017;
Zheng et al., 2017; Luo et al., 2019]. In these end-to-end
frameworks, the discriminative parts are captured by the at-
tention mechanism, which has become a feasible approach
to fine-grained image classification. As only image-level la-
bels are available in our FSFGIR, we learn from those end-
to-end approachs and further propose a multi-attention meta-
learning method.

2.2 Few-shot image recognition

As an early attempt, Fei-Fei et al. propose a variational
Bayesian framework for one-shot image classification [Fei-
Fei et al., 2006], and Lake et al. [Lake et al., 2015] propose
Hierarchical Bayesian Program Learning on the few-shot al-
phabet recognition tasks. Recently, there are two main lines
of research to deal with the few-shot image recognition prob-
lem. The first line, named metric-based few-shot learning
method, learns a transferable embedding network or function
to transform images into the embedding space. And in this
space the images can be recognized with a nearest neighbor
[Vinyals et al., 2016; Snell et al., 2017] or a deep nonlin-
ear metric [Sung et al., 2018]. The second line uses meta-
learning methods, which consists of two main components –
a base learner (an initial model) and an adaptation approach
(updating strategies). The base learner can be implemented
with a standard network, and the adaptation approach may be
implemented with parameterized networks or non-parametric
strategies. The parameterized network is used to augment
additive weights [Munkhdalai and Yu, 2017] or modify ac-
tivation values [Munkhdalai et al., 2018] on the base learner.
The typical non-parametric strategy is fixed learning rules of
gradient descent [Finn et al., 2017], named gradient-based
meta learning. It has become an important meta-learning ap-
proach and has been widely studied [Lee and Choi, 2018;
Yoon et al., 2018].

However, these existing few-shot image recognition ap-
proaches mainly explore general object images under the few-
shot learning setting. They rarely consider intrinsic properties
of images, such as fine-grained categories, which are distin-
guished by some subtle and local differences. To this end,
Wei et al. [Wei et al., 2019] introduce the FSFGIR task and
propose piece-wise classifier mapping method with a bilin-
ear network. To more effectively capture nuanced features,
Huang et al. [Huang et al., 2019] present low-rank pairwise
alignment bilinear network. Different from these two works,
we focus on the subtle and local differences of images in
the FSFGIR task by using gradient-based meta-learning ap-
proach with multi-attention mechanisms.



3 Preliminaries
3.1 Problem formulation
In the few-shot learning scenario, each problem is defined
on tasks T ∼ p(T ). Each task is defined as Ti =
{DTi,S , DTi,T } , where DTi,S is a support set (training sam-
ples) and DTi,T is a target set (test samples). For few-shot
classification problem, the support set DTi,S = {(xi,j ,yi,j) |
j = 1, 2, ..., ns} and the target set DTi,T are sampled from
the same distribution sharing the same label space in each
task. Sampling from training, validation and test data, respec-
tively, the training, validation and test tasks have the same
forms but with disjoint label space. If the support set con-
tains K labeled examples for each of C unique classes in the
test task, it is called C-way K-shot classification problem.

3.2 Meta-learning paradigm
In practice, a meta-learning method usually learns a meta
learner, which consists of two main components – a base
learner (an initial model) BΘ and an adaptation approach (up-
dating strategies) Aφ. Then the goal of meta learning is to
learn an optimal meta learner across a variety of tasks to gen-
eralize to novel tasks. The training process of a meta-learning
algorithm contains three alternative operations, which are: i)
Task sampling: A mini-batch of tasks TB is sampled from
the task distribution p(T ). ii) Task-specific adaptation.
Given a task Ti ∈ TB , the initial model leverages a small set
of training samples (i.e., DTi,S) to obtain update information
(e.g., loss, gradient), which is further utilized by the adap-
tation approach to obtain the updated model BΘi . iii) Meta
training. This process aims to minimize the expected em-
pirical loss over the target set DTi,T using each task-specific
updated parameters Θi across all sampled tasks. Concretely,
this can be thought of learning over a collection of tasks,

min
φ,Θ

∑
Ti∈TB

L(DTi,T ;Θi, φ) (1)

where L() is a meta loss function such as the cross entropy
loss for classification problems. For the test of a meta-
learning algorithm, provided with a new task with a small
number of training samples, task-specific parameters are ob-
tained by process ii) and can be used in the test process.

3.3 Gradient-based meta learning
Here we give an overview of the representative algorithm,
model-agnostic meta learning (MAML) [Finn et al., 2017].
Analogously, MAML also contains the above mentioned two
components and has the similar training process. But the
adaptation approachAφ is fixed learning rules of gradient de-
scent (non-parametric strategies). In the task-specific adap-
tation, task-specific parametersΘi are obtained with one or a
few gradient steps computed with loss L(DTi,S ;Θ). For one-
step gradient descent, it is computed as Eq. 2, where α is a
fixed learning rate of adaptation, and ∇ΘL(DTi ,S ;Θ) is the
corresponding gradient with respect to Θ.

Θi = Θ − α∇ΘL(DTi,S ;Θ) (2)

In the meta training, parameters Θ are optimized on the
summation of sampled tasks, which is formalized as Eq. 3.
(one gradient step as exemplary)

min
Θ

∑
Ti∈TB

L(DTi,T ;Θi) (3)

4 The proposed method
We firstly present the architecture of base learner and task
learner. And then task-specific adaptation approach is intro-
duced in gradient-based meta-learning paradigm. Finally, we
provide the formulation of meta-training objectives.

4.1 Base learner
The architecture of the base learner is shown in Figure 2,
which consists of a feature embedding network, two CBAM
[Woo et al., 2018] and a classifier. Next, we review CBAM.

CBAM. Each CBAM contains a channel attention mod-
ule (CAM) and a spatial attention module (SAM), which are
connected in tandem. Given a feature map F ∈ RC×H×W of
an image, CAM produces a channel attention by exploiting
inter-channel relationship of features. CAM firstly aggregates
spatial information of F by using both average-pooling and
max-pooling operations, which generate two channel descrip-
tors Fc

avg ∈ RC×1×1 and Fc
max ∈ RC×1×1, respectively. As

each channel of a feature map is considered as a feature de-
tector [Zeiler and Fergus, 2014], CAM uses Fc

avg and Fc
max

to generate 1D channel attention map Mc ∈ RC×1×1, i.e.,

Mc = σ(P(Fc
avg;θc) + P(Fc

max; θc)) (4)

where θc are parameters of 2 layer perceptron (P) and σ()
denotes the sigmoid function. Then refined feature map
F

′ ∈ RC×H×W is F
′

= F �Mc, where � denotes element-
wise multiplication and values of Mc are copied on spatial
dimension. SAM generates a spatial attention by utilizing
inter-spatial relationship of features. SAM aggregates chan-
nel information of F

′
by using both average-pooling and

max-pooling operations, and then leverages pooled features
Fsavg ∈ R1×H×W and Fsmax ∈ R1×H×W to a 2D spatial at-
tention map Ms ∈ R1×H×W, i.e.,

Ms = σ(Conv(C(Fs
avg,F

s
max); θs)) (5)

where θs are parameters of a layer convolution (Conv), and
C(, ) denotes concatenation. Then the final refined feature
map F

′′ ∈ RC×H×W is F
′′

= F
′ �Ms, where values of Ms

are copied on channel dimension.
The original work [Woo et al., 2018] uses only a CBAM

with a residual operation, while we use two CBAM without
residual operations. And we experimentally verify our struc-
tures are better. The feature embedding network is a convo-
lutional neural network with parameters θf and the classifier
is a fully connected layer with parameters θcls. Thus the pa-
rameters of base learner BΘ contain θf , θcls, θc,k and θs,k
(k = 1, 2), i.e., Θ = {θf , θcls, θc,1, θs,1, θc,2, θs,2}.



Task
learner

Feature
Embedding 

Network
Classifier

CAM SAM

CBAM

SAM

CBAM

Task Embedding Network

Target set ( )TD

RNN

…

RNN

RNN

RNN

RNN

RNN

C
N

N

Weight generator

FC

Task embeddings

… …

Support set ( )SD

1 2 3

? ? ?

Base learner
CAM

Figure 2: The architecture of the proposed MattML. Red ellipses in base learner: the modules need to be updated for adaptation.

4.2 Task learner
We propose a task embedding to attend the initialization of
classifier of base learner. Specifically, we introduce a task
embedding network to learn task representations, which are
used by weight generator to attend the initialization of pa-
rameters of classifier. Next, we introduce the task embedding
network and weight generator.

Task embedding network. Task embedding learning is
important to meta-learning, especially for models trained on
a sequence of tasks sampled from different and disjoint dis-
tributions. It is meaningful to describe and learn relations be-
tween tasks since meta-learning models can generalize well
on new tasks if they have learned some related tasks. The
main characteristics of task representation learning are re-
flected in the following two aspects: i) huge representational
capacity. ii) permutation invariance of samples. These two
aspects lead to task representation learning more challenging
than representation learning of examples. Inspired by com-
mon practices in learning sentence embeddings [Conneau et
al., 2017], we tackle the challenge by aggregating represen-
tations of all examples, and use random order of samples to
make permutation insensitive.

Given a task Ti with the support set DTi ,S = {(xi,j ,yi,j) |
j = 1, 2, ..., ns}, each sample xi,j is fed into an embedding
network to obtain features E(xi,j). In this paper, this embed-
ding network shares parameters with the feature embedding
network and is added two extra convolutional layers. Then
features of all samples in the support set are sequentially fed
into the recurrent auto-encoder. The reconstruction loss is:

Lr (DTi,S) =
1

ns

ns∑
j

||RNNdec(gi,j)− E(xi,j)||22 (6)

where ∀j , gi,j = RNNenc(E(xi,j), gi,j−1) and
RNNdec(gi,j) represents the learned encoding representation
and the reconstruction of the j-th example, respectively.
Here RNNenc() and RNNdec() stand for a recurrent encoder
(e.g., LSTM, GRU) and a recurrent decoder, respectively.
The task embedding is aggregated over representations of all
examples, i.e.,

ei =
1

ns

ns∑
j

FC(gi,j) (7)

where FC() represents a fully-connected layer.
Weight generator. The task embedding ei is used to gen-

erate gates of classifier ocls, i.e.,

ocls = σ(FC(ei; θ
cls
t )) (8)

where θclst are parameters to predict ocls. The initial weights
of classifier are θcls := ocls � θcls.

4.3 Task-specific adaptation
For a specific task Ti, the task-specific parameters Θi are ob-
tained with one or a few gradient steps computed with the
loss L(DTi,S ;Θ). But the θf are fixed. For one-step gradient
descent, this process is computed as follows:{

θicls := θcls − αcls∇θclsL(DTi,S ;Θ)

θis|c,k := θs|c,k − αk∇θs|c,kL(DTi,S ;Θ)
(9)

Where αcls, αk are learning rates of adaptation. Since fine-
grained image has subtle differences in each category, the
span of updating CBAM should be smaller compared with
classifier. Thus αk should be set a smaller value. Since the
settings of αcls and αk may be not optimal, we set these learn-
ing rates to be learnable. The task-specific parameters are
Θi = {θf , θicls, θic,1, θis,1, θic,2, θis,2}.

4.4 Meta-training objectives
Recalling the objectives for a meta-learning algorithm, we
reach the optimization problem:

min
Φ

∑
Ti

L(DTi,T ;Θi) + ξLr (DTi,S) (10)

where Φ represents all learnable parameters including the pa-
rameters of BΘ, parameters of task learner, learning rates of
adaptation (i.e., αcls, αk), and ξ is used to balance the impor-
tance of two items. The ξ is set 0.01 in the experiment. The
Lr () measures the reconstruction error as defined in Eq. 6,
and L() is defined in Eq. 3.



#(categories) #(images)
Train Validation Test each category

FS-Birds 130 20 50 60
FS-Dogs 70 20 30 171.5∗
FS-Cars 130 17 49 82.6∗

FS-Aircrafts 60 15 25 100

Table 1: The splits of categories and the number of cate-
gories/images in each FSFGIR dataset. #(x): the number of x; ∗:
the average number.

5 Experiment
5.1 Datasets
Our experiments are conducted on four fine-grained bench-
mark datasets (i.e., CUB Birds [Wah et al., 2011], Stan-
ford Dogs [Khosla et al., 2011], Stanford Cars [Krause et
al., 2013], FGVC Aircraft [Maji et al., 2013]). Splitting
categories of these datasets forms corresponding FSFGIR
datasets. For CUB Birds, Stanford Dogs and Car, we fol-
low the splits of training, validation and test categories in [Li
et al., 2019b] (i.e., FS-Birds, FS-Dogs, FS-Cars). For FGVC
Aircraft, we randomly split categories to form correspond-
ing FSFGIR dataset (i.e., FS-Aircrafts). The detailed splits
of training, validation and test categories and the number of
categories/images in each dataset are presented in Table 1.

5.2 Comparison Methods
Meta-learning methods. As our method belongs to the
meta-learning branch, we mainly compare meta-learning
models, including MAML [Finn et al., 2017], adaCNN
[Munkhdalai et al., 2018].

Metric-learning based methods. Besides meta-learning
models, three well-known metric-learning based models (i.e.,
Matching Net [Vinyals et al., 2016], Prototypical Net [Snell
et al., 2017], and Relation Net [Sung et al., 2018]) are also
picked for reference. We reset the Prototypical Nets with
the same 5-way training setting instead of 20-way training
setting in the original work for a fair comparison. In addi-
tion, three recent state-of-the-art models (i.e., CovaMNet [Li
et al., 2019b], DN4 [Li et al., 2019a], LRPABN [Huang et
al., 2019]) are also compared. In these methods, Matching
Net and Prototypical Net describe images with global repre-
sentations, and Relation Net, CovaMNet, DN4 and LRPABN
learn local descriptors of images.

5.3 Implementation details
For a fair comparison with state-of-the-art methods, we use
a widely adopted CNN-4 [Vinyals et al., 2016; Snell et al.,
2017] as a feature embedding network, which consists of
four convolutional layers. Each convolutional layer is devised
with a 3× 3 convolution and 64 filters followed by batch nor-
malization, a ReLU non-linearity and a 2 × 2 max-pooling.
The input of this network is 84 × 84, and the final feature
of our method for classifying is 3200-dimensional. We ap-
ply standard data augmentation, which includes random crop,
left-right flip, and color jitter at the meta-training stage in all
implemented experiments.

Model 1-shot 5-shot
Matching Net 54.41±0.47 70.04±0.35
Prototypical Net 57.62±0.49 71.43±0.38
Relation Net 63.94±0.51 76.22±0.34
MAML 60.24±0.34 75.24±0.24
adaCNN 58.60±0.48 72.82±0.38
MattML (our) 75.69±0.54 86.23±0.31

Table 2: 5-way 1-shot and 5-shot MA (%) ± 95 Cls (%) on FS-
Aircrafts. The highest accuracy is highlighted in bold face.

The results are reported with mean accuracy (MA) + 95%
confidence intervals (CIs) over sampled 2000 tasks. And each
task contains C = 5 classes, each of which has K ∈ {1, 5}
examples in support set and 15 examples in target set. During
training, all of models are trained from scratch in an end-to-
end manner across on tasks. The batch size of task is set to
4, and each task has the same settings with the above test.
We use Adam optimizer [Kingma and Ba, 2015] with initial
learning rate 0.001. The total iterations are 80,000 and the
learning rate is changed to 1/2 after each 20,000 iterations.

5.4 Experimental results
Table 2 presents 5-way mean accuracy of different meth-
ods on FS-Aircrafts. We implement five compared methods
(i.e., Matching Net, Prototypical Net, Relation Net, MAML,
adaCNN) with the corresponding public code. It can be
observed that our method shows absolute advantages com-
pared with the five methods under both 5-way 1-shot and 5-
shot settings. Especially for the 5-way 1-shot task, the pro-
posed MattML gains 21.28%, 18.07%, 11.75%, 15.45% and
17.09% improvements over Matching Net, Prototypical Net,
Relation Net, MAML and adaCNN, respectively. For the
5-way 5-shot task, the MattML achieves 16.19%, 14.80%,
10.01%, 10.99% and 13.41% gains over Matching Net, Proto-
typical Net, Relation Net, MAML and adaCNN, respectively.
The proposed MattML defeats the five methods by average
16.73%, 13.08% gains under 1-shot and 5-shot settings, re-
spectively, which demonstrates the superiority of attention
based meta learning method. And this also reflects few-shot
learning methods of global representations do not deal with
FSFGIR well.

The 5-way mean accuracy of different methods on FS-
Dogs, FS-Cars and FS-Birds are shown in Table 3. We
also implement three compared methods (i.e., Relation Net,
MAML, adaCNN) with the corresponding public code on the
three datasets. Similarly, the proposed MattML obtains sig-
nificant improvements compared with Matching Net, Proto-
typical Net, Relation Net, MAML and adaCNN under both
1-shot and 5-shot settings. Compared with methods of learn-
ing local descriptors (i.e., CovaMNet, DN4 and LRPABN),
MattML shows obvious superiority. Especially for the 1-shot
task, MattML achieves 5.74%, 4.60% and 2.66% gains over
the best one of them on FS-Dogs, FS-Cars and FS-Birds, re-
spectively. For the 5-shot task, the proposed MattML also
obtains state-of-the-art performance on FS-Dogs, and a com-
parable performance on FS-Birds. This indicates that it is
a feasible way for FSFGIR to use attended local descriptors
rather than all local descriptors.



Method FS-Dogs FS-Cars FS-Birds
1-shot 5-shot 1-shot 5-shot 1-shot 5-shot

Matching Net † 35.80±0.99 47.50±1.03 34.80±0.98 44.70±1.03 45.30±1.03 59.50±1.01
Prototypical Net † 37.59±1.00 48.19±1.03 40.90±1.01 52.93±1.03 37.36±1.00 45.28±1.03
Relation Net 43.29±0.46 55.15±0.39 47.79±0.49 60.60±0.41 58.99±0.52 71.20±0.40
MAML 44.84±0.31 58.61±0.30 47.25±0.30 61.11±0.29 58.13±0.36 71.51±0.30
adaCNN 42.16±0.43 54.12±0.39 41.88±0.40 49.87±0.37 56.76±0.50 61.05±0.44
CovaMNet 49.10±0.76 63.04±0.65 56.65±0.86 71.33±0.62 52.42±0.76 63.76±0.64
DN4 45.73±0.76 66.33±0.66 61.51±0.85 89.60±0.44 53.15±0.84 81.90±0.60
LRPABN 45.72±0.75 60.94±0.66 60.28±0.76 73.29±0.58 63.63±0.77 76.06±0.58
MattML (our) 54.84±0.53 71.34±0.38 66.11±0.54 82.80±0.28 66.29±0.56 80.34±0.30

Table 3: 5-way 1-shot and 5-shot MA (%) ± 95 Cls (%) on FS-Dogs, FS-Cars and FS-Birds.
†: reported by [Li et al., 2019b; Li et al., 2019a]

Figure 3: An example of 5-way 1-shot task on FS-Dogs dataset. The
images of the same column come from the same category.

5.5 Further Analysis
Visualization. Figure 3 illustrates an example of 5-way 1-
shot task on FS-Dogs. In this task, 5 training samples (sup-
port set) are in the top, and test samples (target set) are in
the bottom. Test samples are presented with Grad-CAM vi-
sualizations [Selvaraju et al., 2017]. In these visualizations,
highlighted image regions are relevant to parts of dog (e.g.,
head, tail, leg, body). Specifically, salient part in the first col-
umn is head, and salient part in the fourth column is body.
Interestingly, these highlighted parts can be used to distin-
guish their categories. This can illuminate that the proposed
method can be adaptive to focus on discriminative parts with
a few of training images.

Ablation Studies. Table 4 shows ablation studies of the
5-way 1-shot setting on FS-Dogs. The baseline method does
not employ any attention modules (CBAM and task learner).
It can be observed that: i) Only using one CBAM, we gains

Model 5-way 1-shot
baseline 48.84±0.48
baseline+1 CBAM 52.67±0.46
baseline+1 CBAM (residual) 49.31±0.50
baseline+2 CBAM 54.15±0.48
baseline+2 CBAM+Task learner (our) 54.84±0.53

Table 4: Ablation analysis on FS-Dogs.

3.83% improvements, which illustrates the attention mecha-
nism (CBAM) is very useful for FSFGIR. But using resid-
ual CBAM achieves slight gains. The possible reason is the
importance of CBAM has been weakened with the residual
operation. ii) Compared with one CBAM, the method of us-
ing two CBAM obtains further improvements, which indi-
cates that the proposed technique can capture complementary
discriminative parts. iii) On this basis, our method achieves
about 0.7% improvements with a task learner, which explains
that the task learner learns a better initialization of classifier
according to the current task.

6 Conclusion
In this paper, we comprehensively investigate the problem of
FSFGIR. By analyzing the characteristics of fine-grained im-
ages, we propose a MattML method, which uses attention
mechanisms of the base learner and task learner to capture
discriminative parts of images according to the current task.
Experimental results of FSFGIR on four benchmarks (i.e, FS-
Birds, FS-Dogs, FS-Cars, FS-Aircrafts) show the effective-
ness and the superiority of the proposed method.
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