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ABSTRACT
Recognizing visual categories from semantic descriptions is a promis-
ing way to extend the capability of a visual classifier beyond the
concepts represented in the training data (i.e. seen categories). This
problem is addressed by (generalized) zero-shot learning methods
(GZSL), which leverage semantic descriptions that connect them
to seen categories (e.g. label embedding, attributes). Conventional
GZSL are designed mostly for object recognition. In this paper we
focus on zero-shot scene recognition, a more challenging setting
with hundreds of categories where their differences can be sub-
tle and often localized in certain objects or regions. Conventional
GZSL representations are not rich enough to capture these local dis-
criminative differences. Addressing these limitations, we propose
a feature generation framework with two novel components: 1)
multiple sources of semantic information (i.e. attributes, word em-
beddings and descriptions), 2) region descriptions that can enhance
scene discrimination. To generate synthetic visual features we pro-
pose a two-step generative approach, where local descriptions are
sampled and used as conditions to generate visual features. The
generated features are then aggregated and used together with real
features to train a joint classifier. In order to evaluate the proposed
method, we introduce a new dataset for zero-shot scene recognition
with multi-semantic annotations. Experimental results on the pro-
posed dataset and SUN Attribute dataset illustrate the effectiveness
of the proposed method.
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1 INTRODUCTION
Visual recognition has experienced a remarkable progress thanks to
deep learning, achieving comparable or even surpassing humans in
certain benchmarks, such as object classification [11] and scene clas-
sification [12, 44]. The major factor in this success is the availability
of large scale annotated image datasets [33, 44]. However, these
conventional image classfiers are also constrained by the training
data, which limits the number of categories that can be recognized,
and their effectivity also relies on having enough images per cate-
gory. In contrast, the real world contains a much larger number of
categories and its distribution has long tail where just few or no
images are available for some of them. In addition collecting and
annotating such amount of categories is also impractical.

Zero-shot learning (ZSL) methods can predict categories from
semantic descriptions, without requiring explicit visual data. This
enables visual recognition to be extended beyond the categories
with training images (i.e. from seen to unseen categories). The se-
mantic descriptions connects seen and unseen categories at a shared
semantic level. Such descriptions can be represented in terms of
attributes [26, 32], word embeddings [25, 35] or even collected from
texts [6, 45]. The most common approach consists of aligning the
visual representation of the image with the semantic representa-
tion of the category, typically through an intermediate mapping
between the visual and semantic spaces [19, 42] or in a common in-
termediate space. The predicted class is then predicted as the closest
neighbor in this shared space. Originally, ZSL focused on making
predictions over unseen categories only. A more challenging setting
is generalized zero-shot learning (GZSL) where the prediction is
over all categories (seen and unseen). This more challenging setting
requires addressing the inherent bias towards seen categories in
the prediction due to the lack of visual data in unseen categories. A
promising approach to address this problem is feature generation
[13, 38, 45], where synthetic features of unseen categories are gen-
erated from the semantic descriptions and then combined with real
data from seen categories to train a joint classifier on all categories.

Scene recognition is a fundamental problem in computer vision.
Scenes are generally more complex and abstract than scenes, be-
cause they are composed of objects themselves as well as other
stuff (e.g. sea, sky), not arranged in certain spatial layouts (but
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Figure 1: Overview of multi-source semantic embedding ag-
gregation in visual space. 1) semantic representations such
as scene attributes, labels and descriptions are first obtained
to generated features; 2) different global features are aggre-
gated as training data in visual feature space.

which can vary greatly within the same category). The particular
characteristics of scenes have not been explicitly studied in the con-
text of zero-shot learning. In particular, current scene recognition
benchmarks contain hundreds of categories where the difference
between many categories is subtle and often localized in some par-
ticular discriminative object (e.g. hotel room vs bedroom). Thus,
attributes, captions and other global semantic descriptions fall short
in describing the complexity of scenes and often do not capture
the discriminative aspects that allow effective classification of very
similar categories. In this paper we focus on this particular case, and
propose a framework that captures richer and more discriminative
semantic representations for zero-shot recognition by including
two novel components: (1) multiple sources of semantic informa-
tion about categories, and (2) region-level descriptions and a novel
feature generation framework to generate synthetic visual features
from them.

Our framework is based on feature generation via generative
adversarial networks (GANs) [9, 30, 38], where the semantic de-
scription is an input condition (together with random noise) to the
generator, whose output is a synthetic visual feature. In GANs, the
generator improves over time by competing with another network
(the discriminator). We consider three types of semantic descrip-
tions: attributes, word embeddings and (category\region) textual
descriptions. Depending on the source, the category is embedded
in the attribute space, word vector space or in a language space,
respectively (we refer to the embeddings as attribute embedding,

label embedding and description embedding, respectively). By inte-
grating them we can achieve a richer representation, since different
sources may capture only part of the potentially discriminative
information. We train specific generators (and discriminators) for
each of this semantic sources and then merge them as training
data for the joint classifier (see Fig. 1 about the overview of feature
merging).

We also leverage local information in the form of region descrip-
tions of the objects in the scene (as in dense captioning). In order
to generate global synthetic visual features (also regarded as scene
prototypes) from region descriptions, we propose a novel approach
consisting of two generation steps. In the first step a number of
region descriptions are sampled given the unseen category. Each
of them is fed to the generator which outputs a visual feature for
that particular. Finally the local visual features are pooled into a
global visual feature which is used to train the classifier. While the
generator of the second step is implemented as a neural network
(i.e. the generator of a GAN), for the first step we implement it
as a memory where we save embeddings extracted from images
from a set of categories (not from unseen categories), and then
generate embeddings by simply randomly selecting them (given
the category).

In order to evaluate the proposed approach, we introduce a new
benchmark for zero-shot scene recognition (ZSSR) with multiple
types of semantic embeddings, such as scene attributes, scene label
embedding, scene (category) descriptions and region descriptions.
The proposed ZSSR dataset contains 100 seen categories and 100
unseen categories. Experimental results on ZSSR illustrate the ef-
fectiveness of the proposed methods. In addition, we also adapt
the propose model to the SUN Attribute dataset [29], showing its
effectiveness.

2 RELATEDWORKS
Scene recognition has achieved impressive performance with the
combination of deep networks and scene-centric large datasets
(Places [44] in particular). While SUN attributes [29] is a commonly
used dataset to evaluate ZSL, there has been little effort in studying
the interplay between scene recognition and ZSL, and there are no
approaches specific to zero-shot scene recognition.

Early approaches to ZSL model the relations between seen and
unseen categories via attributes [1, 19] or word embeddings [7, 28,
35]. Text collected from websites such as Wikipedia have also been
used [6, 45]. Lampert et al. [20] address attribute-based ZSL by using
an intermediate layer of attribute classifiers from which the cate-
gory is then inferred. Since the attributes are shared between seen
and unseen categories, it is possible to infer unseen classes from
the estimated attributes. However, the most common approach to
ZSL is visual-semantic alignment. Images are embedded in a visual
space (with a CNN) while categories are embedded in a continuous
vector space, using word embeddings[7] or as attribute vectors [1].
These two different spaces are aligned using a mapping, typically a
linear mapping, but could also be a non-linear one [35]. which are
typically optimized using ranking [1, 7], Euclidean [35] or cross-
entropy [22] losses. A key choice is the space where the alignment
and subsequent nearest neighbor search takes place. Early methods
use the lower dimensional semantic space, but it was argued that
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it can lead to the so-called hubness problem [4, 31]. Motivated by
this problem, Zhang et al. [42] propose instead mapping seman-
tic embeddings to the visual space, where the hubness problem is
less apparent. Instead of explicitly alignment visual and semantic
representations, ConSE [28] uses the semantic embedding of seen
categories, weighted by the probability of the visual classifier to
estimate the semantic embedding of an image of an unseen cate-
gory. Changpingyo et al. [2] proposes synthesizing classifiers of
unseen categories as a combination of phantom classifiers learned
from seen data. Observing that many attributes are localized in
certain regions of the image, some recent approaches explore local
representations by using part detectors [6] or integrating attention
mechanisms [15, 40, 47].

The more challenging GZSL setting adds an additional problem:
combining predictions over seen and unseen classes in an unbiased
way. Thus, calibrating seen and unseen scores is critical to achieve
good GZSL performance [3]. However this requires either observ-
ing unseen images or a validation set with disjoint classes. Cosine
similarity has been shown to achieve less biased similarities, im-
proving performance in GZSL [22]. However, most state-of-the-art
GZSL methods are based on the feature generation framework [37–
39], which addresses the lack of visual data from unseen categories
by generating synthetic data, used together with the available real
data to directly train a classifier for all seen and unseen categories
in a balanced way. The feature generators are typically variational
autoencoders (VAEs) [37], GANs [38] or a combination of both [39].

Our approach also builds upon the GAN feature generation
framework, but focuses both in the specific challenges of zero-shot
scene recognition and proposes a framework to generate synthetic
scene features in a bottom-up fashion starting from local semantic
embeddings.

3 GZSL WITH MULTI-SEMANTIC
EMBEDDING

3.1 Notation and problem setting

We assume we have a dataset D𝑡𝑟𝑎𝑖𝑛 =

{(
𝑣𝑡𝑟𝑎𝑖𝑛
𝑖

, 𝑦𝑡𝑟𝑎𝑖𝑛
𝑖

)}𝑁𝑡𝑟𝑎𝑖𝑛

𝑖=1
with 𝑁𝑡𝑟𝑎𝑖𝑛 images where each image feature 𝑣𝑆

𝑖
∈ 𝑉 is annotated

with the corresponding label 𝑦𝑡𝑟𝑎𝑖𝑛
𝑖

∈ S = {1, . . . 𝐾}out of 𝐾 (seen)
categories. Image features are extracted the corresponding image
𝑥𝑆
𝑖
using a fixed pretrained feature extractor (a CNN). The objective

in zero-shot learning is to learn a classifier 𝑓𝑍𝑆𝐿 : 𝑉 ↦→ U that
makes predictions over a test set withD𝑡𝑒𝑠𝑡 =

{(
𝑣𝑡𝑒𝑠𝑡
𝑖

, 𝑦𝑡𝑒𝑠𝑡
𝑖

)}𝑁𝑡𝑒𝑠𝑡

𝑖=1
with𝑀 unseen categories, that is 𝑦𝑡𝑒𝑠𝑡

𝑖
∈ U = {𝐾 + 1, . . . ,𝐾 +𝑀}.

For the generalized zero-shot learning (GZSL) setting the classifier
𝑓𝐺𝑍𝑆𝐿 : 𝑉 ↦→ T makes predictions over the combined set of seen
and unseen categories, i.e. 𝑦𝑡𝑒𝑠𝑡

𝑖
∈ T = S⋃U = {1, . . . ,𝐾 +𝑀}.

In order to perform zero-shot inference, both seen and unseen
categories are represented in a common semantic space, obtained
through an embedding function. In our case, the input image can be
associated with an attribute embedding 𝑎𝑖 = 𝑎 (𝑦𝑖 ), a label embed-
ding 𝑙𝑖 = 𝑙 (𝑦𝑖 ) or a description embedding 𝑑𝑖 = 𝑑 (𝑦𝑖 ), depending
on the particular source of semantic information: category-attribute
matrices, word embeddings and language models, respectively.

In the next subsections, we first describe the feature generation
framework for a single source, and then describe the case with
multiple sources.

3.2 Image-level feature generation
We follow previous works using conditional generative adversar-
ial networks (cGANs) as feature generators. A GAN consists of
two neural networks, i.e. generator and discriminator, in an ad-
versarial setting. The generator takes a semantic embedding 𝑎 as
input and generates a synthetic visual feature 𝑣 = 𝐺 (𝑧, 𝑎), where
𝑧 ∼ N (0, I)is a random latent vector that allows diversity in the
generated features. The task of the discriminator 𝐷 (𝑣, 𝑎) is to pre-
dict whether a visual feature 𝑣 (than can be real or generated) and
the semantic embedding 𝑎 (we use attributes for simplicity) are sam-
pled from the real training dataset, while the task of the generator
is to generate realistic features that can fool the discriminator. The
adversarial problem is formulated as optimizing min𝐺 max𝐷 𝐿GAN
where:

𝐿GAN = E(𝑣,𝑦) ∈D𝑡𝑟𝑎𝑖𝑛 [log𝐷 (𝑣, 𝑎 (𝑦))]
+ E𝑧,𝑦∈𝑆 [log (1 − 𝐷 (𝐺 (𝑧, 𝑎 (𝑦)) , 𝑎 (𝑦)))]

+ 𝛼𝐿GP + 𝛽E𝑧,𝑦∈𝑆CE (𝑓AUX (𝐺 (𝑧, 𝑎 (𝑦)) , 𝑦)) (1)

and trained with the training data D𝑡𝑟𝑎𝑖𝑛 and the gradient penalty
loss 𝐿GP from [10] that provides more stable training. The last term
is an auxiliary classifier loss that corresponds to the classification
loss (CEdenotes cross-entropy) of an auxiliary scene classifier loss
that enforces that generated features are classified by the auxiliary
classifier 𝑓AUX consistently with the scene category used as input
condition. The auxiliary classifier is learned jointly with the GAN.

3.3 Training the classifier on all categories
Once the generator is trained with seen data, it can generate syn-
thetic features of unseen categories by conditioning on the cor-
responding semantic embedding. In this way, a synthetic dataset
D𝑠𝑦𝑛𝑡ℎ = {(𝑣𝑖 , 𝑦𝑖 )}

𝑁𝑠𝑦𝑛𝑡ℎ

𝑖=1 can be obtained for unseen categories,
where 𝑦𝑖 ∈ U and 𝑣𝑖 = 𝐺 (𝑧𝑖 , 𝑎 (𝑦𝑖 )) with random 𝑧𝑖 ∼ N (0, I).
Then the classifier 𝑓GZSL on all categories can be trained with the
combined dataset D𝑡𝑟𝑎𝑖𝑛 ⋃D𝑠𝑦𝑛𝑡ℎ .

.

3.4 GZSL with Region-based Descriptions
Capturing the diversity in the visual feature distribution is critical
to generate synthetic features capturing discriminative aspects that
the classifier will in turn learn. This is particularly important in
scene recognition since scenes are abstract concepts that are com-
posed of intermediate ones such as objects distributed in diverse
category-specific arrangements, and therefore the visual appear-
ance of the scene can be very diverse and heterogeneous ways
within the same category. While a GAN can capture some diversity
in the distribution via the latent vector 𝑧, it is often limited to rela-
tively global aspects of the scene while more subtle local aspects
are more difficult to be captured. This is partly related with the fact
that the semantic embeddings we have considered so far are global
representations. In order to enrich the semantic representation of
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Figure 2: Framework of GZSL with region-based descriptions: 1) training generator with seen categories (bottom line); 2) gen-
erating synthetic features for unseen categories; 3) training GZSL joint classifier of seen and unseen categories.

the scene with more diversity and local information, we propose
using local intermediate representations of the scene, in the form of
captions of detected objects [14, 17]. Intermediate representations
such as object banks [23], discriminative parts [16] and local CNN
features [5, 8, 24] have been widely used in scene recognition. In
our representation we generate instances of features at this local
intermediate level, and then aggregate them into a global feature.

We first consider that a particular image 𝑥 has associated a num-
ber of regions (could be annotated or extracted using an object
detector). From each region we extract a visual feature 𝑣𝑘 and also
the corresponding description embedding 𝑟𝑘 (obtained with a text
encoder). Similarly, we aim at generating synthetic visual features
in bottom-up fashion, first generating local description embeddings,
then generating their corresponding local visual features, and fi-
nally aggregating them in a image-level visual feature. Compared
to global semantic embedding, region semantic embedding can
increase the diversity in the resulting synthetic scenes.

3.4.1 Region feature generation. The region feature generator is
implemented as a GAN, where the region feature generator obtains
local synthetic features as 𝑣 = 𝐺𝑟 (𝑧, 𝑟 ) given a region description
embedding 𝑟 and a random latent vector 𝑧. Similar to (1), the loss
to optimize in this case is

𝐿𝑟GAN = E(𝑣,𝑟 ) ∈D𝑡𝑟𝑎𝑖𝑛

[
log𝐷𝑟 (𝑣, 𝑟 )

]
+ E𝑧,𝑟 ∈D𝑡𝑟𝑎𝑖𝑛

[
log

(
1 − 𝐷𝑟 (𝐺𝑟 (𝑧, 𝑟 ) , 𝑟

) ) ]
+ 𝛼𝐿GP + 𝛽E𝑧,(𝑦,𝑟 ) ∈D𝑡𝑟𝑎𝑖𝑛CE

(
𝑓WS

(
𝐺𝑟 (𝑧, 𝑟 ) , 𝑦

) )
(2)

where the auxiliary classifier loss is now a form of weak supervision,
since scene labels are used to supervise region predictions (which
are at the object level rather than the scene level).

Prior to generating region features, region descriptors embed-
dings must be generated in the first place given the category. In this
case we do not learn a parametric model but instead store region
description embeddings in a memory, where we collect a basket
region descriptions for each category from a disjoint set, which
are then encoded with language model to construct the region em-
bedding memory. The sampler is performed by randomly sampling
among the embeddings stored of a particular category.

3.4.2 Global visual feature. After training the region feature gen-
erator, it is used to generate synthetic features of unseen categories
to train the classifier. In contrast to previous works that gener-
ate different pseudo instance features with one category-level se-
mantic embedding, our method generates global visual features
with various semantic embeddings sampled from the embedding
memory. We first randomly sample 𝑃 embeddings from the re-
gion embedding memory, i.e. {𝑟1, . . . 𝑟𝑃 }, which can be regarded
as the region-based semantic embeddings of a pseudo instances.
Then we generate the corresponding set of synthetic visual features
{𝑣1, . . . ˆ𝑣𝑃 }. Note that region embeddings are sampled within the
same category. Finally, the visual features are pooled in a scene
prototype𝑤 = 1

𝑃

∑𝑃
𝑘=1 𝑣𝑘 ,which is used as global synthetic visual

feature for training the classifier.

3.5 Multi-source Aggregation
Due to the abstract and diverse nature of scenes, one type of seman-
tic embeddings is often not sufficient to generate comprehensive
visual features to represent scenes. Addressing this problem, we
consider four different types of semantic embeddings, three global
(i.e. attributes, label and scene descriptions) and the region descrip-
tors described previously. We train separate GANs for each of these
types. Since visual features are generated independently they are
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unlikely to represent the same instance, so merging them at the
instance level (e.g. via concatenation) is not possible. Instead, we
consider generated features by different generators as separated
training instances and we aggregate them in a larger dataset which
is used for training the joint classifier.

4 A NEW DATASET FOR ZERO-SHOT SCENE
RECOGNITION

In this section, we introduce our dataset for zero-shot scene recog-
nition, denoted as ZSSR. Our goal is to recognize unseen categories
by generating features with multiple types of semantic embedding,
including scene attributes, scene categories, scene descriptions, and
region descriptions. However, there is no current dataset with such
characteristics. We collect our datatset based on Visual Genome[18],
which provides region-level description annotations for images,
Since scene-level annotations require much less labor cost. Particu-
larly, we organize the annotations of scene-level semantics, such as
labels, attributes and descriptions. We invite more than 20 workers
to take part in annotating all the 108077 images of Visual Genome,
which costs more than 600 man-hours.

• Scene labels: annotated by the volunteers, labels are an-
notated within the vocabulary of 365 types of scenes in
Places365.

• Scene attributes: with the obtained scene labels, attribute
representation of each scene category is obtained from SUN
Attribute [29], note that attributes are collected for each
scene category instead of image.

• Scene descriptions: they are collected from Cambridge dic-
tionary and Wikipedia entries of the scene labels.

• Region descriptions: for seen categories, region descriptions
are obtained for each image; for unseen categories, a set of
descriptions are collected without overlap to the test set of
unseen categories.

We collect more than 44K images of 100 seen categories and more
than 5K image of 100 unseen categories. Each seen image consists
of all the above annotations, and the data distribution of seen cate-
gories is illustrated in 3. It can be observed that training data is in
long-tailed distribution, where 60 images are randomly selected as
training data for each category, and 15 images are selected as test.
The rest images and their regions descriptions are used to train
language models for region descriptions embedding, which is not
sensitive to category distribution.

5 EXPERIMENTS
5.1 Setting
5.1.1 Feature extraction. For images,2048-dimensional visual fea-
tures are extractedwith a ResNet-101model pretrained on Places365
[43]. For regions, all the training images of seen categories are used
to train dense captioning models with the architecture described in
[41]. During the training of the dense captioning model, all the im-
ages in seen categories (more than 44K images) are used as training
and test. For the seen categories, region features are extracted from
the annotated regions. For the unseen categories, region features
are extracted inside the regions generated by a region proposal
network (RPN) during test, and region-level features (combined

with global features) are generated during training of the classi-
fiers. Following the setting of [41], image-level features are also
concatenated as contextual information.

5.1.2 Semantic embeddings. We consider the following types of
semantic embeddings:

• Scene attribute embedding (SAE): obtained from the SUN
Attribute, each category is represented with the distribution
of 102 attributes.

• Scene label embedding (SLE): each category label is embed-
ded with word2vec [27] in 300 dimension vectors.

• Scene description embedding (SDE): a text encoder com-
bining word2vec and LSTM are is used to embed the scene
descriptions, resulting in 300-dimensional vectors.

• Region description embedding (RDE): uses the same text
encoder, resulting also in 300-dimensional vectors.

Particularly for RDE, scene labels are also used to supervise the
training of LSTM models, inspired by joint model in [36].

• Multi-source Aggregated (MSA): features generated with
different semantic embeddings are aggregated into a larger
set.

5.1.3 Evaluation protocol. In conventional ZSL setting, the goal
is to recognize unseen categories, i.e, U. In GZSL setting, both
seen and unseen categories can be involved in the evaluations,
i.e., T = S⋃U. Following the widely used evaluation protocol in
[38], we compute the average per-class accuracy on seen (denoted
as S) and unseen classes (denoted as U), and then compute their
harmonic mean, i.e. 𝐻 = 2 × 𝑎𝑐𝑐S×𝑎𝑐𝑐U

𝑎𝑐𝑐S+𝑎𝑐𝑐U .

5.2 GZSL with Global Semantic Embedding
5.2.1 Number of generated synthetic features. We first evaluate
the proposed method with global embeddings. One key factor of
GZSL is the number of generated features. In this evaluation, we
use 60 real images per category to train the GAN model, which is
used to generate a number of synthetic features (denoted as #Syn).
Table 1 compares the performance of the proposed method for
different types of semantic embeddings and different amount of
synthetic features. It can be observed that, with the increase of
synthetic features, the accuracy on unseen categories improves
significantly, meanwhile the accuracy of seen categories drops. The
best performances are obtained with #Syn=1000, which is almost
17x times of the training images in each seen categories.

5.2.2 Multi-source aggregation. When comparing with different
types of semantic embeddings, Table 1 shows that attribute embed-
ding works better than label embedding, and better than scene-level
description embedding. When merging all the generated features
to train the classifier, the accuracy improves by a large margin (see
Fig. 4). For fairness, all the comparisons generate the same number
of synthetic features. For a single type of semantic embedding, we
generate 300 synthetic features (this setting only used in this eval-
uation). For multi-source aggregation, each semantic embedding
generates 100 synthetic features, with 300 in total. With the same
number of synthetic features in classifier training, the proposed
multi-semantic aggregation achieves a significant gain (over 11%)
in unseen category, and a gain about 8% in H-mean.
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Figure 3: Data distribution of seen categories. The annotated images are in long-tailed category distribution.

Table 1: Accuracy (%) with different amount of generated features of unseen categories on ZSSR

#Unseen SAE SLE SDE
U S H U S H U S H

100 4.53 61.6 0 8.45 3.80 62.0 7.16 2.07 60.73 4.00
300 14.4 0 48.07 22.16 12.27 51.13 19.79 6.00 51.67 10.75
500 19.01 38.44 25.44 15.64 40.39 22.55 8.98 40.40 14.70
1000 22.58 31.32 26.24 19.03 31.66 23.77 10.90 22.05 14.59
2000 17.64 24.93 20.66 15.79 27.60 20.08 9.80 21.42 13.45
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Figure 4: Comparison between different semantic embed-
dings and their aggregation on ZSSR.

Without considering the same number of synthetic features, the
direct gain of multi-source aggregation (over independent semantic
embeddings) is 20% in unseen and H-mean, which can be observed
between the results in Fig. 4 and Table 1 (first row), since the ag-
gregated model is merged with #syn=100 (corresponded to the first
row in Table 1) per category. Another possible comparison is the
gain of multi-semantic over the best single semantic embedding
(i.e., attribute with #syn=1000 in Table 1), the gains of unseen and
H-mean are still over 3%.

5.2.3 Number of Seen features . We also analyze the effects of the
amount of seen features (see Table 2). ZSSR has at least 60 training
images for each seen category, which are all used in the training of
the GAN model. For this evaluation we use the best single semantic
embedding, i.e., attribute. We also consider to use different amounts
of seen features to train the classifier, which are combined with a
fixed number of synthetic features (1000), which obtained the best
results in Table 1).

When the number of training features of each seen category is
less than 60, we randomly select a subset. Although the best results
are still obtained with 60 samples, we found that 30 achieve close
performance (drops 2.4%).

Another interesting application of feature generation is to re-
balance the imbalanced datasets. This is clearly the case in ZSSR
(see Fig. 3) when the number of training features is higher than 60
per category. We evaluate the performance with larger amounts
of training features, ranging from 80 to 600 (see Table 2, column
#MaxSeen). We consider two cases: imbalanced, where some cat-
egories have more training features than others, and re-balanced,
where categories with insufficient number of training features are
complemented with additional synthetic features. The best H-mean
is achieved for 100 training features, with re-balancing achieving
slightly better results. We can observe that re-balancing is very
effective in improving the accuracy on seen categories, while penal-
izing the accuracy on unseen categories, and the overall H-mean
drops as the number of maximum is larger. The larger #MaxSeen
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Table 2: Seen feature analysis on ZSSR.

#Seen Accuracy (%)
U S H

10 12.33 30.40 17.55
20 14.13 44.40 21.44
30 22.40 25.40 23.81
40 20.27 35.87 25.90
50 20.53 34.93 25.86
60 22.58 31.32 26.24

Synthetic Features for Seen

#MaxSeen U S H
Reb Imb Reb Imb Reb Imb

80 19.53 20.53 37.73 33.73 25.74 25.53
100 20.13 20.80 39.40 36.40 26.65 26.47
200 17.93 20.27 41.20 29.53 24.99 24.04
400 15.20 19.67 44.33 27.47 22.64 22.92
600 11.80 16.53 46.73 51.40 18.84 20.83
800 10.40 16.07 46.33 28.13 16.99 20.45
1000 9.40 15.13 46.53 28.73 15.64 19.83

Imb: imbalanced, Reb: re-balanced with synthetic features

requires more synthetic images to re-balance the training data dis-
tribution, and more synthetic images also may result in bias for real
features.

5.3 GZSL with Region-based Semantic
Embedding

We analyze the performance of region-based semantic embeddings
for two key factors: the number of visual features of seen categories
(i.e., #seen) and the number of synthetic of unseen categories (i.e.,
#unseen). We first evaluated different combinations of these two
values, setting the number of parameters, with. The number of re-
gion descriptions sampled for every synthetic feature is empirically
set to 𝑃 = 5. As in previous dense captioning works [36, 41], image-
level CNN features are concatenated to the region-level CNN[36]
we also integrate scenes labels into region-based descriptions to
train dense captioning models.

Table 1, when training with a small number of synthetic features
generating synthetic features from local embeddings is significantly
better than using category-embedding (for instance, see Table 3,
when #syn=100, the best H is 26.58%, with a gain over 18%). Even
with #syn=40 synthetic features generated from local embeddings,
it can achieve H=25.8%, which is better than the results using any
of the global semantic embeddings when less than 500 synthetic
features (see Table 1).

The comparison to global semantic embeddings suggests that the
proposed local embedding works typically better when generating
a small number of synthetic features. The effect of the proposed
region-level GZSL mainly benefits from the diversity of region-level
descriptions. Conventional methods use a single global embedding
and one random noise as the condition to generate unseen fea-
tures, where the diversity of generated features is very limited
and uncertain. In contrast, generating region-level features from
local embeddings leads to a better representation of the diversity

found in real scenes, which may be the main reason to the gain in
performance.

5.4 Comparison on ZSSR
We also compare with other related works on the proposed ZSSR
dataset, particularly, LisGAN [21], CAVA [46] and ABP [34], which
we re-implemented ourselves. The results are shown in Table 4.
Compared with baseline methods that generate features with global
embedding, our method RDE obtains the best H-mean (26.60%)
when using a single semantic embedding.

The aggregation of synthetic features generated from global
semantic embeddings (MSA (SAE+SLE+SDE) in Table 4), obtains
and accuracy of 25.64% on unseen categories and and an H-mean
of 30.01% , which outperforms the best results of single semantic
embedding by a large margin of over 3%. This important gain sug-
gests that synthetic features generating from different sources of
semantic information are indeed complementary.

We also replace SDE by RDE for aggregation, in order to include
both global and local semantic information (i.e., MSA (SAE+SLE+RDE)
in Table 4). This variant achieves the highest H-mean(i.e., 30.92%),
which is over 4% better than the best single global semantic em-
bedding (i.e., SAE). Compared to MSA (SSS), the gain in H-mean
is around 1%. The gain mainly benefits from RDE (over SDE), sug-
gesting that there may be certain discriminative features that are
not captured in global descriptions, and therefore combining both
global and local semantic descriptions can generate more complete
and discriminative visual representation of unseen scenes.

MSA (SAE+SLE+RDE) also outperforms the related works by
over 3% in both unseen accuracy (U) and H-mean, which is mainly
due to the aggregation of features generated with both global and
local semantic embeddings. Note that in CAVA and ABP the feature
generators are implemented as a variational autoencoder (VAE).
LisGAN also generates features with GAN, but the result H-mean
is 5.48% lower than our MSA (SAE+SLE+RDE) variant.

5.5 Comparison on SUN Attribute
In addition to the proposed dataset ZSSR, we evaluate the proposed
method on the SUN Attribute dataset [29], which consists of 14340
images annotated with 102 scene attributes, and categorized with
717 scenes. The 200 categories in ZSSR are also categories in SUN
Attribute. For these experiments, we adapt the model pretrained on
ZSSR to SUNAttribute. In particular, we propose a new seen\unseen
split for SUN Attribute that follows the split in ZSSR, i.e. in this eval-
uation, unseen categories are as same as ZSSR, while the remaining
617 categories of SUN Attribute are regarded as the seen categories.
Compared to SUN Attribute, which consists of 20 images in each
category (16 of them are used for training in seen categories), ZSSR
contains 60 training images in each category. Test data is the same
as in SUN Attribute (each unseen category contains 20 images, and
each seen category contains 4 images), while we have a different
setting for training data.

SDE can be regarded as a particular case of RDE (i.e., considering
the whole image as a single large region). However, the results
of RDE are much better than those of SDE, we mainly report the
results of RDE in this comparison, and MSA (all) means the aggre-
gation of SAE+SLE+RDE. Comparison results on SUN Attribute
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Table 3: Region feature analysis on ZSSR

#Seen
Unseen #syn

S U H
20 40 60 80 100 200 20 40 60 80 100 200 20 40 60 80 100 200

10 47.87 31.13 28.67 26.87 26.40 26.67 12.13 22.07 23.40 22.20 20.13 16.00 19.36 25.83 25.77 24.31 22.84 20.00
20 59.07 37.80 36.33 36.40 34.00 28.07 4.60 19.47 20.07 20.93 20.73 20.93 8.54 25.70 25.85 26.58 25.76 23.98
30 61.46 44.00 38.47 39.07 39.27 32.13 3.67 16.73 19.73 19.87 20.06 21.93 6.92 24.25 26.09 26.34 26.56 26.07
40 61.20 52.00 38.27 37.00 38.27 36.27 2.60 14.40 19.00 18.87 19.60 20.80 4.99 22.55 25.39 24.99 25.92 26.44
50 64.13 51.73 39.80 39.27 42.80 37.47 2.07 13.73 18.13 19.27 18.27 20.53 4.00 21.70 24.92 25.85 25.61 26.53
60 63.93 52.67 43.87 39.33 38.33 39.73 1.47 11.93 17.00 18.73 19.33 19.60 2.87 19.46 24.50 25.38 25.70 26.25

Table 4: Comparison on ZSSR in accuracy (%)

Semantic U S H

Baseline
SAE 22.58 31.32 26.24
SLE 19.03 31.66 23.77
SDE 8.98 40.40 14.70

Ours
RDE 20.90 36.40 26.60

MSA (SSS) 25.64 36.19 30.01
MSA (SSR) 25.20 40.00 30.92

Related works
LisGAN [21] 18.67 39.87 25.44
CAVA [46] 18.07 45.93 25.93
ABP [34] 23.33 34.27 27.76

MSA(SSS): MSA(SAE+SLE+SDE)
MSA(SSR): MSA(SAE+SLE+RDE)

Table 5: Comparison to SUN Attribute

Seen Unseen Accuracy (%)
U S H

SAE
SUN SUN 46.70 39.75 42.94
ZSSR SUN 60.00 35.25 44.10

SUN+ZSSR SUN 61.25 50.75 55.51

SLE
SUN SUN 27.50 39.75 32.51
ZSSR SUN 38.00 32.75 35.18

SUN+ZSSR SUN 36.25 49.50 41.85

RDE (ours) ZSSR SUN 33.65 40.50 36.76
SUN+ZSSR SUN 36.55 47.00 41.12

MSA (SSR) (ours) ZSSR SUN 61.75 45.75 52.56
SUN+ZSSR SUN 60.75 59.50 60.12

Related Works
LisGAN [21] SUN SUN 49.20 44.33 46.64
CAVA [46] SUN SUN 49.65 49.47 49.56
ABP [34] SUN SUN 49.45 43.11 46.06

MSA(SAE+SLE+RDE)

are illustrated in Table 4. Compared to SUN data, training with
our ZSSR obtains significant gains on SAE, and SLE, since ZSSR
contains more data in training, suggesting that larger number of
training is also more effective even for GZSL model. Since SUN
Attribute does not contain region descriptions, RDE is not reported
with training data of SUN. In addition, we also try to merge of SUN
Attribute and ZSSR (denoted as SUN+ZSSR) for training, where the
common 100 seen categories are merged with both dataset, thus,

these 100 categories contains 60+16 images for training. SUN+ZSSR
obtains the best result on H-mean, with a gain more than 7% over
ZSSR, and outperforms the best related work CAVA [46] with a
gain over 10%, outperforms the most related work LisGAN (also
use GAN) over 13%.

6 CONCLUSION
Previous GZSL methods mainly generate synthetic features from
global semantic representations obtained by embedding seen or
unseen categories. Generative models such as VAE and GAN can
capture the visual diversity in such categories by learning the class-
conditional distribution (encouraged and controlled during via a
random latent vector). In our experiments we show that global
descriptions fall short in describing the subtle and discriminative
characteristics of the different scene categories, which are largely
localized in regions, limiting the ability of the generator to capture
and subsequently reproduce their diversity with scene categories.
We demonstrate that combining multiple sources of semantic de-
scriptions can significantly alleviate this problem, since different
semantic embeddings can be complementary. However, global de-
scriptions still do not cover many important local object-related
information. This limitations motivates us to propose a two-step
generative framework to generate synthetic scene prototypes from
a number of region description embeddings in turn sampled from
a embedding memory given the category. Our experiments demon-
strate the potential of region-based semantic descriptions for zero-
shot scene recognition. By further aggregating the proposed scene
prototypes with the other synthetic features generated by global em-
beddings, we obtain significant improvements on both the proposed
ZSSR and SUNAttribute datasets. To the best of our knowledge, this
is the first GZSL work to generate features with both region-based
and global semantic embeddings.
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