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Abstract—Few-shot image recognition has become an essential
problem in the field of machine learning and image recognition,
and has attracted more and more research attention. Typically,
most few-shot image recognition methods are trained across
tasks. However, these methods are apt to learn an embedding
network for discriminative representations of training categories,
and thus could not distinguish well for novel categories. To es-
tablish connections between training and novel categories, we use
attribute-related representations for few-shot image recognition
and propose an attribute-guided two-layer learning framework,
which is capable of learning general feature representations.
Specifically, few-shot image recognition trained over tasks and
attribute learning trained over images share the same network
in a multi-task learning framework. In this way, few-shot image
recognition learns feature representations guided by attributes,
and is thus less sensitive to novel categories compared with
feature representations only using category supervision. Mean-
while, the multi-layer features associated with attributes are
aligned with category learning on multiple levels respectively.
Therefore we establish a two-layer learning mechanism guided
by attributes to capture more discriminative representations,
which are complementary compared with a single-layer learning
mechanism. Experimental results on CUB-200, AWA and Mini-
ImageNet datasets demonstrate our method effectively improves
the performance.

Index Terms—Few-Shot Learning, Image Recognition, At-
tribute Learning.

I. INTRODUCTION

OVER the past years, with the assistance of deep learning
techniques [1] and large scale training datasets [2], [3],

significant progress has been made in image recognition [4],
[5], [6]. Despite these successes, there still exists a huge gap
between machine intelligence and human beings. As one re-
markable example, humans can rapidly recognize novel objects
from a few examples or learn new skills after just minutes
of experience by leveraging knowledge learned before [7].
However, most of machine learning algorithms, especially for
deep learning, are inherently data-hungry and time-consuming
[8]. It remains a challenging fundamental problem to expand
the capability of machine to learn novel concepts from only
one or a few examples of each category, which is known as
few-shot learning. If this can be realized, the application of
machine intelligence will be greatly expanded.
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Fig. 1: Training and test images have disjoint categories, but different
categories may be represented in some same attributes. (e.g., The
horse has some same attributes as the zebra) Then these same
attributes effectively connect different categories. Moreover, attributes
can be used to distinguish different categories. (e.g., It is easy to
distinguish the zebra and the hamster by their attributes)

Image recognition is a fundamental problem, which involves
a lot of research (e.g. general representation learning [9], cross-
domain feature learning [10]) in multimedia community. Each
class corresponds to an abstract concept, whose instances are
subject to a number of variations in pose, translation, scale,
occlusion, illumination, distortion, background, etc. Thus the
instance space is highly complicated since samples in the
same class might be drastically different in appearance. This
makes image recognition need to learn class-discriminative
representations. However, a few examples are insufficient to
describe high-level information such as categories or concepts,
and only one or very few examples are not enough to conduct
the standard learning practice in deep learning.

Recently, meta-learning, pioneered by [11], [12], has been
shown to outperform conventional learning on various few-
shot learning problems such as few-shot image recognition
[13], [14], [15], [16] and few-shot reinforcement learning [15],
[17], [18]. The goal of meta-learning is to train a meta-learner
on various tasks by acquiring generic knowledge, so that the
meta-learner can generalize well on novel tasks with a small
amount of samples. Most few-shot image recognition methods
also train models across tasks, but these methods are not
good enough to learn discriminative representations of novel
categories. For example, on MiniImageNet [19], the state-of-
the-art accuracy under 5-way 1-shot setting is inferior to 60%
[20], while the accuracy of standard image recognition is up to
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83.5% on ImageNet [4] whose number of categories is up to
1,000. A possible reason is that the few-shot image recognition
model is apt to learn discriminative representations of training
categories but could not distinguish novel categories well.
Because training categories are disjoint with novel categories,
which is different from the standard image recognition. A
feasible approach is to establish a connection between training
and novel categories. This connection facilitates the few-
shot image recognition model to learn general representations,
which can be used to distinguish novel categories.

In this paper, we introduce attribute learning for few-
shot image recognition. Our key insight is that attributes can
effectively establish connections between training categories
and novel categories, and can be used to distinguish different
categories (see Fig. 1). This gives a solution to learn image
attributes at the training stage of few-shot image recognition.
Trained with image attributes, few-shot image recognition can
learn attribute-related representations to describe images in
a compact way compared with only the category concept.
In this way, constrained by category concepts and attributes,
feature representations are less sensitive to the novel categories
compared with traditional features learned from category
supervision, since novel categories probably contain learned
attributes. Thus we propose an attribute-guided two-layer
learning framework, which is capable of obtaining general
feature representations. Particularly, attribute learning is used
as another learning target for few-shot image recognition in
a multi-task framework, where few-shot image recognition
trained over tasks and attribute learning trained over im-
ages share the same network. Besides, guided by attribute
learning, features from different layers are representations of
attributes at different levels like multi-scale representations
[21], which are aligned for few-shot image recognition on
multiple aspects. Thus a two-layer learning mechanism guided
by attributes is established to capture more discriminative
representations, which are complementary compared with a
single-layer learning mechanism. Furthermore, the proposed
framework might be independent of specific models, and
two kinds of typical methods: metric-based few-shot meth-
ods (i.e., Matching Net [19] and Prototypical Net [22]) and
meta-learning methods (i.e., Model-Agnostic Meta-Learning
(MAML) [15]) are plugged into the proposed framework.
We conduct experiments on CUB-200 [23], AWA [24] and
MiniImageNet [19] dataset, and comprehensive experimental
evaluations demonstrate the proposed framework effectively
improves the performance of few-shot image recognition.

Our main contributions are summarized as follows:
• To the best of our knowledge, we firstly use attribute

learning to connect training and novel categories for few-
shot image recognition.

• We propose an attribute-guided two-layer learning frame-
work that learns general feature representations under the
multi-task learning framework in an end-to-end fashion,
and further extend metric-based few-shot methods and
meta-learning methods into the proposed framework.

• We verify the proposed framework on CUB-200, AWA
and MiniImageNet datasets, and experimental results
demonstrate the effectiveness of the proposed framework.

II. RELATED WORK

A. Few-shot learning

As an early attempt, Li et al. propose a variational Bayesian
framework for one-shot image classification [25], and a no-
table method called Hierarchical Bayesian Program Learning
[7] is later proposed to reach human level error on the few-shot
alphabet recognition tasks. More recently, a variety of methods
are proposed to handle the few-shot learning problem. In this
paper, we group these works into two types.

The first type is based on metric learning. This kind of
methods aims to learn an embedding function that transforms
data into an embedding space, such that these transformed
data can be recognized with a fixed nearest neighbor [26], a
linear classifier [22], [19] or a deep non-linear metric [27].
Victor et al. [28] use a graph neural network as a metric, that
goes beyond the traditional metric such as L2 metric. These
approaches effectively settle the few-shot learning problem,
but ignore connections between training and novel categories.
In this paper, we establish connections between training and
novel categories with attribute learning, and extend two repre-
sentative works in these methods (i.e., Matching Net [19] and
Prototypical Net [22]) into the proposed framework.

The second type leverages meta-learning solutions. This
kind of methods usually contains two parts – an initial
model and an adaptation strategy, which are all trained across
a variety of tasks. The initial model can be implemented
with a standard network, and the adaptation strategy can
be implemented with non-parametric rules or parameterized
networks. The typical non-parametric rule is fixed gradient-
based adaptation rule such as [15], [17], [16], [29]. A branch
of the parameterized network is to directly generate weights
[30] or classifiers [31], augment additive weights [13] or
modify activation values [14] on the initial model. The sec-
ond branch is to use a recurrent neural network (RNN) as
a meta-learner [32], [33]. And this meta-learner is usually
augmented with memory networks [33] which uses gradients
as meta information [32], [14], [13] and shows high capacities
for meta-learning. In addition, a probabilistic meta-learning
approach [34] have shown the advantages of learning Gaussian
posteriors over model parameters. In this paper, attribute
learning can be considered to learn meta information of image
representations for few-shot recognition, and the classic work
in this kind of methods (i.e., MAML [15]) is extended into
the proposed framework.

B. Attribute learning

As a mid-level semantic cue, attributes can bridge the gap
between low-level features and high-level categories. Recent
research has shown that visual attributes can benefit many
traditional learning problems such as image search [35],
[36], image recognition [37], [38], and image caption [39],
[40], [41]. For one-shot object recognition, some works use
attributes [42], [43] (e.g., depth and pose) or semantic concepts
[44] to generate or augment features, which are utilized to
learn robust classifiers in a two-stage training strategy. Differ-
ent from the above two works [43], [44], our work employs
attribute learning to regularize feature representations, and is
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trained in an end-to-end fashion. Moreover, attribute-based
classification offers a solution to the problem of learning with
disjoint training and test categories (zero-shot classification)
[24], [45], [46], [47] by transferring from seen categories to
unseen categories, and few-shot image recognition also has
the problem of disjoint training and novel categories. In this
paper, learning image attributes is used to connect training and
novel categories for few-shot image recognition.

C. Few-shot representation learning

Few-shot representation learning focuses on learning trans-
ferable or adaptive representations for different tasks, e.g.,
few-shot image recognition needs to learn task-agnostic meta-
level concepts. To learn adaptive representations, Oreshkin
et al. [48] use a task encoding network to extract the task
representation, which is used to influence the behavior of
the sample representation extractor with FILM [49]. To learn
general or transferable representations, Zhou et al. [50] use a
deep neural network as a concept generator, which is further
enhanced by equipping with a concept discriminator. In the
joint learning of both the concept generator and few-shot
learning model, the concept generator extracts task-agnostic
meta-level concepts, and provides effective representations for
few-shot learning. From this point, our work has the same
target with the work [50]. Different from this work, which
resorts to external data, we exploit image attributes to learn
general feature representations.

III. PRELIMINARY

We first provide formal descriptions of few-shot image
recognition, and then introduce some basic methods of at-
tribute learning.

A. Problem formulation

For few-shot image recognition, each task contains a support
set and a target set, where they share the same label space.
The training tasks and test tasks have the same form, but
they have disjoint label space. If the support set contains K
labeled examples for each of C classes in the test task, the
few-shot problem is called C-way K-shot, and the support set
is available for the prediction of target images.

The support set contains image-label pairs S = {(xkc ,yc) |
c = 1, 2, ..., C; k = 1, 2, ...,K} from C classes, where each
class contains K labeled images. For example, under the
standard setting of one-shot learning, our ultimate goal is
to recognize a class with only one labeled image. Given an
unlabeled image x in the target set, the goal is to predict its
class y with the learned prior knowledge and the support set
S. The learning target is

y = argmax
yi∈{y1,y2...yC}

P (yi|x, S) (1)

where P (yi|x, S) is the probability of classifying x to the class
label yi conditioned on S, and {y1, y2...yC} is the set of class
labels.

B. Basic methods of attribute learning

In the field of visual attribute learning, there are many
methods, such as direct attribute prediction [24], indirect
attribute prediction [51] and unified multiplicative attribute
prediction [52]. Moreover, visual attribute learning provides a
proper way to address zero-shot classification [53], [45], which
has disjoint training and test categories. Therefore, we refer
to zero-shot classification and apply visual attribute learning
to the few-shot image recognition. For zero-shot classification,
there exists two basic methods of visual attribute learning [53].
The first one, called recognition using independent semantics
(RIS), is to learn an independent classifier per semantic
attribute via independent semantics, while the second method,
called recognition using semantic embeddings (RULE), is to
learn all semantics simultaneously using semantic embeddings.
Learning an independent classifier for each attribute causes
weak correlations between attributes, which leads attribute-
related representations to lack of class discriminability since
a category may have some related attributes. RULE is able to
leverage dependencies between attributes, thus addressing the
problem of independent attribute learning in RIS.

For RIS, the model learns independent attribute predictors.
If RIS is implemented with deep neural networks, each at-
tribute predictor parameter ak relies on a common feature
extractor E(x;θ) and shares the neural network parameters
θ. Thus, each attribute predictor ak of RIS takes the form:

ak(x;wk, θ) = σ(wkE(x; θ)) (2)

where σ() is the sigmoid function and wk is the parameter vec-
tor of ak. Given a training set D = {(xi, ybi ) | i = 1, 2, ..., n},
where ybi = (yb1

i , · · · , y
bp
i ) (ybji ∈ {0, 1},j = 1, 2, ..., p) are p

dimensional attribute labels, the loss function is

Lbatt(D) =

n∑
i=1

p∑
j=1

Lb(aj(xi;wj , θ), y
bj
i ) (3)

where Lb is a binary cross-entropy loss, wj and θ are learned
parameters.

For RULE, attribute scores are calculated simultaneously.
The p dimensional attributes are

a(x; θ) =MT ∗ E(x; θ) (4)

where M is 2D matrix (In the neural network, M can be
implemented by a fully-connected layer of p units). Given a
training set D = {(xi, yli) | i = 1, 2, ..., n}, where yli is the
class label of image xi, the loss function is

Llatt(D) =

n∑
i=1

Lsoftmax(G(xi;M, θ), yli) (5)

where G(xi;M, θ) = ΦT ∗ a(xi; θ), Φ = [ϕ(1), · · · , ϕ(c)] ∈
Rp×c and ϕ(i) is p dimensional attribute vector of the class i,
c is the number of classes, M and θ are learned parameters,
and Lsoftmax() is a cross-entropy loss with softmax outputs.
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Fig. 2: The proposed attribute-guided two-layer learning framework for few-shot image recognition. The brown, blue line represent training
and test process respectively. The training process contains attribute learning and few-shot image recognition while only few-shot image
recognition is active in the test process. RULE is the attribute learning loss.

IV. THE PROPOSED FRAMEWORK

Fig. 2 illustrates the proposed attribute-guided two-layer
learning framework, which contains two branches: attribute
learning and few-shot image recognition. At the training stage,
the two branches are used. At the test stage, only the few-shot
image recognition branch is executed for inference, since the
embedding network has learned attribute-related representa-
tions of each image.

At the training stage, attribute learning and few-shot image
recognition are implemented in multi-task learning framework.
Besides, two-layer features of the embedding network are
utilized for few-shot image recognition respectively, which
form two few-shot image recognition learning goals. Then the
final optimization goal is as follows:

L(Γ ) =
∑

(Si,Sa
i ,xi,yi,y

a
i )∈Γ

{
∑2
j=1αjLj(Si, xi, yi)

+ βLatt(S
a
i

⋃
{(xi, yai )})} (6)

where Lj() is the jth few-shot image recognition loss, Latt()
is the attribute learning loss and (Si, S

a
i ,xi, yi, y

a
i ) is a task in

Γ . Specifically, yi is the class label of the target xi, yai is the
attribute of the target xi, Si and Sai belong to the support set
with same samples, the difference is Si contains class labels
of samples while Sai contains attributes of samples, αj and β
are hyper-parameters to balance these losses.

The proposed framework is to learn general representations
for few-shot image recognition. It might be independent of
specific models, and most of few-shot methods including
metric-based few-shot methods and meta-learning methods
can be plugged into the proposed framework. And they form
attribute-guided metric-based few-shot methods and attribute-
guided meta-learning methods respectively.

A. Attribute-guided metric-based few-shot method

In this section, classical metric-based few-shot methods
Matching Net [19] and Prototypical Net [22] are employed.
These two learners use single representation for few-shot
image recognition without attribute guidance, which will be
considered as baselines in the section of experiments. In the
Matching Net [19], the few-shot image recognition loss is
Lj(Si, xi, yi) = −logPj(yi|xi, Si) denoted as MC, and the
Pj(yi|xi, Si) is

Pj(yi|xi, Si) =

∑
(xi,yi)∈Si

I{yi = yi}eCos(fj(xi),fj(xi))∑
(xi,yi)∈Si

eCos(fj(xi),fj(xi))
(7)

where fj() denotes an embedding network to obtain features
for Pj(), I{c}is an indicator function, and Cos(, ) is the
Cosine distance. And I{c}= 1 if c is true and 0 otherwise.
In the Prototypical Net [22], the few-shot image recognition
loss is Lj(Si, xi, yi) = −logPj(yi|xi, Si) denoted as PE, but
the Pj(yi|xi, Si) is

Pj(yi|xi, Si) =
e
−Euc(fj(xi),

∑
(xi,yi)∈Si

I{yi=yi}fj(xi)

K )

∑a=C
a=1 e

−Euc(fj(xi),
∑

(xi,yi)∈Si

I{yi=ya}fj(xi)

K )

(8)
where Euc(, ) is the Euclidean distance.

B. Attribute-guided meta-learning method

In this section, a typical meta-learner MAML [15] is
plugged into the proposed framework. Inspired by fine-tuning,
MAML uses gradient-based optimization without requiring
additional parameters or model modification, and can be
generally applied to any model as long as the gradient of
the objective function is available. It learns initial parameters
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of the model such that in each task the performance of test
data is maximized after only one or a few gradient steps. To
be more specific, given a task, MAML obtains parameters
by transforming the original parameters with only one or a
few steps of gradient descent on the support set S , and these
updated parameters are suitable for the target set. This method
is also considered as one baseline in the comparative methods.

Inspired by the work [50], we also use multi-layer percep-
tron (MLP) as a meta-learner Mj (fj ();wj ), where inputting
features are obtained by fj(), wj are parameters of meta-leaner
and it’s outputs are C-way probabilities. Given a task, only
the parameters wj are updated. For one-step gradient descent,
this would be computed as Eq. 9, where α is a fixed adaptive
learning rate,

∑
(xi ,yi )εSi L(fj (xi), yi ;wj ) is the loss on the

Si and ∇wj

∑
(xi ,yi )εSi L(fj (xi), yi ;wj ) is the corresponding

gradient with respect to wj . The L(fj (xi), yi ;wj ) is a cross
entropy loss of the output of Mj (fj (xi);wj ). The few-shot
image recognition loss is Lj(Si, xi, yi) = −logPj(yi|xi, Si)
and the Pj(yi|xi, Si) is computed via Eq. 10. More generally,
a function G() represents multiple steps gradient descent
or update rule: w

′

j,i := G(Si ;wj ). Note that during meta-
optimization, the gradient is computed with respect to initial
parameters wj , but the test loss is computed with respect
to task-specific parameters w

′

j,i. An important point is that
optimization parameters are wj . More details can be found in
[15].

w
′

j,i := wj − α∇wj

∑
(xi ,yi )εSi

L(fj (xi), yi ;wj ) (9)

Pj(yi|xi, Si) = Softmax(Mj (fj (x i);w
′

j ,i),yi) (10)

C. Implementation

We use Resnet-50 as the embedding network, and the
above two attribute learning methods. And which one is
better for few-shot image recognition will be explored in the
experimental section. In attribute learning branch, the final
conv5 x features of ResNet-50 are averagely pooled to a 2048-
d vector for attribute learning, where the parameter wk in
the RIS or M in the RULE needs to be learned. In few-
shot image recognition branch, conv5 x, conv4 x features of
ResNet-50 are averagely pooled to a 2048-d, 1024-d vector
to form a two-layer learning, where different layers can have
different forms. While this architecture is simple, adding more-
layer comparisons does not obtain better experimental results.
Training these parameters would not take much time, since
the number of parameters of few-shot image recognition (fj()
or {fj(), wj} ) is much larger than that of wk, M . In the
inference stage, the proposed method has the similar time
consumption with methods [19], [22], [15], since only few-
shot image recognition branch is executed. And different layers
Pj(yi|xi, Si) are calculated respectively, sum of which is used
for the final decision.

V. EXPERIMENTS

We will validate the effectiveness of the proposed frame-
work by considering the following questions. Q1: Is the

proposed framework effective for few-shot image recognition?
Q2: If similarities between training categories and test cate-
gories are enhanced, does the performance of few-shot image
recognition improve? Q3: By learning attributes in few-shot
image recognition, are feature representations of test categories
more discriminative?

A. Datasets

The proposed method is validated on datasets of annotated
attributes CUB-200 and AwA datasets. In addition, we also
conduct experiments on MiniImageNet dataset by introducing
high-level labels as attributes.

CUB-200. It contains 11,788 images of 200 different bird
species, with 312-dim attributes at class level. Based on CUB-
200, we construct two datasets: CUB-200-S and CUB-200-R.
CUB-200-S contains 140 classes (Class numbers are 1 ∼ 140)
for training, 20 classes (Class numbers are 141 ∼ 160) for
validation, and the remaining 40 classes as novel classes for
testing. CUB-200-R contains the same number of classes with
CUB-200-S for training, validation and test respectively, but
these classes are selected randomly from CUB-200. CUB-
200-S is split by a sequence number of category, where
categories with serial numbers may fall into a senior category.
For example, the 1th , 2th and 3th class in CUB-200 are
black-footed albatross, laysan albatross and sooty albatross,
respectively, so the senior category is albatross. Categories in
the same senior category are more similar than categories in
different senior categories. Thus, in CUB-200-R, for a test
category there exits a higher probability to find a category
belonging to the same senior category from training categories.
As a result, similarities between training categories and test
categories are higher in CUB-200-R.

AwA. It includes 30,475 images from 50 common animals
categories, with 85-dim class-level attributes. We use 30
categories (Category numbers are 1 ∼ 30) for training, 10
categories (Category numbers are 31 ∼ 40) for validation, and
the remaining 10 categories as novel categories for testing.

MiniImageNet. The MiniImageNet dataset [19] consists of
100 classes, each of which contains 600 images with size of
84 × 84 pixels. We follow the split introduced by [32] with
64, 16, and 20 classes for training, validation and testing,
respectively. As there exits a tree graph in the ImageNet
dataset, where each leaf node represents a category and each
leaf node has the only path to root node. We use the path as
their attributes. And attributes of each category are all non-
leaf nodes of the tree in MiniImageNet, and attribute value of
each category is 1 if the corresponding node appears in path
of this category and 0 otherwise.

B. Experimental settings

Architectures of embedding network. A CNNs [19], [22]
is widely used as the embedding network f() denoted as
CNN-4, which consists of four convolutional layers. And each
convolutional layer is devised with a 3×3 convolution and 64
filters followed by batch normalization, a ReLU non-linearity
and a 2× 2 max-pooling. The input of the image is 84× 84,
and the final output embedding space dimension is 1,600 for
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few-shot image recognition. In order to meet attribute-guided
few-shot image recognition, CNN-4 adds two full-connected
layers with 1024 neurons for attribute learning. In addition,
we use ResNet [54] as the embedding function f(), whose
inputting size is 224 × 224. The two networks are trained
from scratch in all experiments.

Training details. Similar to [19], the few-shot model is
trained on tasks (episodes). And each task is formed by
randomly selecting C classes with K labeled samples per class
to act as the support set S = {(xkc ,yc) | c = 1, 2, ..., C; k =
1, 2, ...,K}, as well as the same C classes with N samples
per class to serve as the target set T = {(xnc ,yc) | c =
1, 2, ..., C;n = 1, 2, ..., N}. Specifically, when only using the
MC loss, each task contains C = 5 classes, each of which has
K ∈ {1, 5} examples in the support set and N = 5 examples
in the target set. And each batch contains 4 and 2 tasks under
1-shot setting and 5-shot setting, respectively. When using the
PE loss, we follow the settings [22], where each task contains
C = 30 and C = 20 classes under 1-shot setting and 5-
shot setting, respectively, N = 5 and each batch contains 1
task. When MAML is extended into the proposed method, the
settings of batch size, C, K, and N are the same as the setting
of MC loss. And the meta-learner is implemented by an one-
layer perceptron. At the training stage, the number of updating
gradient step is 3. But the number of updating gradient step is
5 at the test stage. The weight decay is 0.005 on MiniImageNet
and AWA, and 0.01 on CUB- 200. The weights of optimizing
loss αj and β are all set to 1, and we use Adam [55] as the
optimizer.

In RULE, a p dimensional attribute vector of class i, denoted
as ϕ(i), is not a binary vector. For example, there are p
binary attributes of class i, then ϕk(i) = 1 when class
i contains attribute k, otherwise ϕk(i) = −1. To support
different degrees of certainty on class/attribute associations,
continuous attributes can be easily implemented by making
ϕk(i) ∈ [−1, 1].

Evaluation. For performance evaluation, we randomly sam-
ple 600 times test from corresponding datasets. Each test
contains 3 tasks. And each task contains C = 5 classes, each
of which includes K ∈ {1, 5} examples in the support set and
N = 5 examples in the target set. The results averaged over
the sampled 600 times test are reported with mean accuracy
(MA) and 95% confidence intervals (Cls), which statistically
describe the inherent uncertainty in performance estimation
like standard deviation. The smaller the Cls, the more precise
the MA performance.

C. Ablation study

To verify the effectiveness of different components in the
proposed framework, we consider the following variants.
• OAL (Only Attribute Learning). In this baseline, only

attribute learning is utilized for training, and the trained
model is leveraged to extract image features for few-shot
image recognition testing.

• OFL (Only Few-shot Learning). In this baseline, the
standard few-shot image recognition is conducted for
training and testing.

• AGFL (Attribute-Guided Few-shot Learning). This is
the proposed method. Compared with OFL, a difference
is that attribute learning is utilized for few-shot image
recognition.

• CGFL (Class-Guided Few-shot Learning). This method
[50] is similar to AGFL, but a difference is that image
category is used as guided information.

In addition, single-layer and two-layer features are set
for few-shot image recognition respectively. Another setting
is data augmentation. Specifically, each image resized to
240 × 240 is randomly cropped to a 224 × 224 region for
training. In the test stage, we use two schemes: i) †1: Each
image is cropped to the central 224× 224 region. ii) †2: Each
image is cropped to five representative 224×224 regions, then
it becomes a C-way 5K-shot learning problem. Since a target
image also contains five samples, the final decision depends
on the sum of the five predicted probabilities.

D. Results and Analysis

AGFL vs (OAL, OFL). Comparative results of OFL, OAL
and AGFL on CUB-200 and AWA are shown in Table I. The
results clearly indicate that AGFL outperforms both OFL and
OAL by a wide margin when using the embedding network
ResNet-50. This illuminates that the proposed method AGFL
is effective for few-shot image recognition. But when CNN-4
is used as the embedding network, AGFL is inferior to OFL.
The possible reasons are: i) It may be difficult to excavate
attribute information from a small-scale image such as 84×84.
ii) A shallow network like CNN-4 is not capable of both few-
shot learning and attribute learning. Besides, AGFL with the
RULE loss outperforms that with the RIS loss. For this reason,
we mainly compare experimental results when using a deep
embedding network such as ResNet and the RULE attribute
learning loss.

OAL vs OFL. It is worthy to note that the performance of
OAL is comparable with or better than OFL. This explains that
general representations of images may be obtained with only
attribute learning. Thus it is a good choice to use attribute-
related representations for few-shot image recognition.

AGFL vs CGFL. The performance of CGFL is defeated
by AGFL with a large margin. It can be obviously obtained
that the image attribute is more suitable for few-shot image
recognition than the image class, which also explains that
the attribute-related representations are less sensitive to the
novel categories compared with traditional features learned
from category supervision.

Deep network vs shallow network. On AWA and CUB-
200, the performance of ResNet-50 is inferior to CNN-4 when
using OFL, as illustrated in Table I, while OFL with ResNet-50
obtains better performance than that with CNN-4 on MiniIm-
ageNet, as illustrated in Table II. Note that ResNet-50(5) of
OFL has more parameters than ResNet-50(4) of OFL, which
are not the same in terms of capacity. The main reasons are:
i) On CUB-200 and AWA, the seriously insufficient training
images can not feed to a deep neural network like ResNet-
50, which more likely leads to overfitting compared with a
shallow network like CNN-4. ii) Compared with CUB-200 and
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TABLE I: 5-way MA (%) + Cls (%) on CUB-200 and AWA with the MC loss. The lower case number in ResNet-50 means the number of
convolutional features are averagely pooled for few-shot image recognition. The ’RIS’ means using the RIS loss, otherwise the RULE loss.

Method f()
CUB-200-S AwA CUB-200-R

1-shot 5-shot 1-shot 5-shot 1-shot 5-shot

OFL CNN-4 43.18±0.56 57.98±0.62 41.42±0.54 53.82±0.51 54.84±0.57 67.91±0.53
AGFL CNN-4 40.46±0.53 54.18±0.61 41.38±0.53 52.59±0.52 48.50±0.55 63.23±0.54

OAL ResNet-50(5) 40.67±0.57 49.77±0.54 39.74±0.51 53.68±0.51 47.50±0.60 60.13±0.54
OFL ResNet-50(4) 36.65±0.53 49.63±0.58 36.61±0.54 44.22±0.50 43.16±0.62 53.36±0.58
OFL ResNet-50(5) 35.99±0.50 44.34±0.52 37.94±0.56 46.90±0.52 41.53±0.59 53.99±0.59
CGFL ResNet-50(5) 36.21±0.52 44.52±0.53 42.09±0.57 49.74±0.54 45.52±0.59 53.22±0.56

AGFL(RIS) ResNet-50(5) 40.54±0.58 53.05±0.61 40.00±0.55 52.22±0.53 42.30±0.61 54.27±0.59
AGFL ResNet-50(4) 45.18±0.60 58.17±0.60 44.24±0.58 54.34±0.53 57.16±0.59 64.69±0.53
AGFL ResNet-50(5) 42.74±0.55 61.61±0.58 43.10±0.58 54.46±0.53 52.89±0.60 65.05±0.55
AGFL ResNet-50(4,5) 46.11±0.60 59.08±0.60 46.76±0.59 55.61±0.51 56.19±0.64 65.53±0.56

TABLE II: 5-way MA (%) + Cls (%) on MiniImageNet using the
MC loss.

Method f() 1-shot 5-shot

OFL CNN-4 46.77±0.58 59.69±0.53
OFL ResNet-50(4) 48.90±0.58 60.34±0.58
OFL ResNet-50(5) 46.05±0.54 59.13±0.54
OFL ResNet-50(4,5) 46.63±0.58 58.87±0.57
OFL†1 ResNet-50(4,5) 50.01±0.62 61.25±0.56
OFL†2 ResNet-50(4,5) 50.50±0.61 61.68±0.57

AGFL ResNet-50(4) 50.43±0.61 62.48±0.53
AGFL ResNet-50(5) 50.78±0.59 64.16±0.53
AGFL ResNet-50(4,5) 52.47±0.60 64.71±0.54
AGFL ResNet-50(3,4,5) 50.60±0.60 64.54±0.54
AGFL†1 ResNet-50(4,5) 52.80±0.58 65.85±0.53
AGFL†2 ResNet-50(4,5) 53.51±0.59 66.19±0.55

AWA, MiniImageNet contains enough training images, which
can feed ResNet-50 without overfitting. Although there exists
the overfitting issue when ResNet-50 is used as the embedding
network on AWA and CUB-200, AGFL still outperforms OFL
with the embedding network CNN-4 on the most datasets. The
probable interpretation is that multi-task learning (i.e., attribute
learning, few-shot learning) adds more supervision, which can
relieve the overfitting issue and learns more regularized feature
space.

Similarities of categories for few-shot image recog-
nition. As shown in Table I, the performance of CUB-
200-R obviously exceeds that of CUB-200-S with the same
methods. Besides, similarities between training categories and
test categories in CUB-200-R are greater than similarities of
CUB-200-S (see Section V-A). Therefore, similarities between
training categories and test categories are enhanced, then the
performance improves.

Analysis of AGFL. Fig. 3 shows visual representations
of features of the total training and test categories in CUB-
200. The distributions of representations of total training and
test categories in CUB-200-R are more similar than that in
CUB-200-S. The possible reason is that for each test category

there may exits a similar training category in CUB-200-R. By
learning attributes, the feature representations of test categories
are more discriminative, since the pentagrams of AGFL are
more separated than that of OFL in Fig. 3 and Fig. 4.

Besides, since few-shot representations are guided by at-
tribute learning in the training stage, distributions of represen-
tations of training categories and test categories all have non-
smooth edges (see red boxes in Fig. 3), which are attribute-
related since the edge is smooth without attribute learning.
In the non-smooth edges, some clusters in distributions of
representations of test categories probably are found in that
of training categories at the same location. From what has
been discussed above, it can be obtained that attribute learning
establishes a good connection between training categories
and test categories and attribute-related representations are
discriminative.

Two-layer learning mechanism. As shown in Table II,
a two-layer learning mechanism AGFL is more beneficial
to few-shot image recognition than single learning mecha-
nism AGFL. It is worthy to note that the two-layer learning
mechanism improves the performance while this does not
improve the performance without attribute learning since OFL
with ResNet-50(4) outperforms OFL with ResNet-50(4,5). A
possible explanation is that features of different layers are
more likely to learn different concepts in AGFL compared
with OFL, and different concepts are complementary to benefit
for few-shot image recognition. Moreover, AGFL obtains tiny
gains with data augmentation, especially for the †1, which
illustrates that AGFL may not be data-hungry. However, the
effectiveness of two-layer learning mechanism is not promi-
nent especially on CUB (see Table I). A possible explanation is
that it is difficult to feed ResNet-50(5) with deficient training
data on CUB since ResNet-50(4) of AGFL defeats ResNet-
50(5) of AGFL with above 3% gains under 1-shot setting.

Table III lists experimental results of using PE loss, which
again verifies the effectiveness of attribute guidance and
two-layer learning mechanism. Compared with low-resolution
images on MiniImageNet, we obtain about 2% gains with
high-resolution images under both 1-shot setting and 5-shot
setting at the same methods, since the input of ResNet-50
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Fig. 3: The visualization of image representations of all training and
test categories on CUB-200-S and CUB-200-R using t-SNE [56].
Each image is visualized as one point. The scatter plots in blue and
red boxes come from OFL and AGFL, respectively. In test categories,
the centers of some categories are represented by pentagrams of
different colors, and the pentagram of same color represents the same
category across different datasets or methods.

is bigger than 84 × 84. This suggests that few-shot image
recognition also needs high-resolution images. Table IV lists
experimental results based on MAML. Since MAML needs
more computational resources than metric-based few-shot
methods with the same embedding network, we use a smaller
embedding network ResNet-34 to match the same training/test
settings with metric-based few-shot methods. Experimental re-
sults demonstrate the proposed method (both attribute-guided
learning and two-layer learning mechanism) is also suitable
for MAML.

Besides, we obtain the best performance with two-layer
comparisons combined high-layer features (i.e., ResNet-
50(4,5) in Table II and III). And too many comparisons such
as three-layer comparisons combined low-layer features (see
ResNet-50(3,4,5) in Table II and III) may not benefit to few-
shot image recognition. The possible reason is that image
recognition needs to use abstract concepts such as high-level
features while low-layer features are not abstract enough.

Extra training categories. To further explore our proposed
framework, extra categories, similar but different from test
(novel) categories, are added for training. The extra categories
have the same parent nodes with test categories in the tree-

(a) OFL (b) AGFL

Fig. 4: The visualization of image representations of some test
categories with OFL and AGFL on AWA. Different colors denote
different categories, whose centers are represented by pentagrams of
corresponding colors. It is obvious that the categories with green and
red color of AGFL are more separated than that of OFL.

TABLE III: 5-way MA (%) + Cls (%) on MiniImageNet. We use
the PE loss at single-layer learning, while the PE and the MC loss
are used on averagely pooled conv4 x and conv5 x at two-layer
learning mechanism, respectively.(∗: the higher resolution images
from ImageNet, w/o 20c: without extra 20 categories for training,
w 20c: with extra categories for training.)

Method f() 1-shot 5-shot

w/o 20c
OFL†2 ResNet-50(4) 49.52±0.58 68.30±0.50
AGFL†2 ResNet-50(4) 52.46±0.59 70.10±0.54
AGFL†2 ResNet-50(4,5) 54.52±0.61 71.67±0.48
AGFL†2 ResNet-50(3,4,5) 54.42±0.61 69.90±0.49

OFL∗†2 ResNet-50(4) 52.16±0.61 70.11±0.50
AGFL∗†2 ResNet-50(4,5) 56.59±0.64 73.58±0.48

w 20c
OFL∗†2 ResNet-50(4) 53.78±0.60 73.29±0.51
AGFL∗†2 ResNet-50(4,5) 60.76±0.58 77.57±0.47

structure graph of the ImageNet, where we randomly sample
600 images per category and the total number of extra cat-
egories is 20. Both two kinds of original few-shot learning
and our corresponding two-layer AGFL benefit from the extra
training data. Note that, as these extra categories are used,
the performance of image recognition has improved slightly
with metric-based OFL (see Table III), while corresponding

TABLE IV: 5-way MA (%) + Cls (%) on MiniImageNet with
MAML and attribute-guided MAML.

Method f() 1-shot 5-shot

w/o 20c
OFL∗†2 ResNet-34(4) 49.72±0.56 65.26±0.49
AGFL∗†2 ResNet-34(4) 51.65±0.56 68.89±0.49
AGFL∗†2 ResNet-34(5) 52.36±0.55 67.94±0.47
AGFL∗†2 ResNet-34(4,5) 56.49±0.59 71.34±0.49

w 20c
OFL∗†2 ResNet-34(4) 56.48±0.58 71.89±0.50
AGFL∗†2 ResNet-34(4,5) 61.40±0.58 76.87±0.47



IEEE TRANSACTIONS ON MULTIMEDIA, VOL. X, NO. XX, MONTH YEAR 9

0 1 2 3 4 5 6
Number (#) of training iterations (*20k)

30

35

40

45

50

55

60

65

A
c
c
u
ra
c
y
 (
%
)

5-way 1-shot

OFL-4

AGFL-4

AGFL-4,5

Fig. 5: The curve of 5-way 1-shot accuracy in validation set with
metric-based few-shot learning method.

TABLE V: 5-way MA (%) + Cls (%) of our proposed method and
other state-of-the-art methods on MiniImageNet dataset.

Method 1-shot 5-shot

Matching Net [19] 43.56±0.84 55.31±0.73
Prototypical Net [22] 49.42±0.78 68.20±0.66
Meta-LSTM [32] 43.44±0.77 60.60±0.71
MAML [15] 48.70±1.84 63.11±0.92
MetaNet [13] 49.21±0.96 -
Meta-SGD [17] 50.47±1.87 64.03±0.94
MM [57] 53.37±0.48 66.97±0.35
SNAIL [18] 55.71±0.99 68.88±0.92
MEPS [58] 51.03±0.78 67.96±0.71
Relation Net (navie) [27] 51.38±0.82 67.07±0.69
Relation Net (deeper) [27] 57.02±0.92 71.07±0.69
adaCNN[14] 56.88±0.62 71.94±0.57
Our (AGFL+Prototypical Net) 56.59±0.64 73.58±0.48
Our (AGFL+MAML) 56.49±0.59 71.34±0.49

PPA� [20] 59.60±0.41 73.74±0.19
DEML+Meta-SGD� [50] 58.49±0.91 71.28±0.69
Our (AGFL+Prototypical Net)� 60.76±0.58 77.57±0.47
Our (AGFL+MAML)� 61.40±0.58 76.87±0.47
�the number of training categories is more than 64

two-layer AGFL obtains about 4% gains under both 1-shot
and 5-shot settings. It can be obtained that AGFL learns more
general image representations compared with OFL.

Convergence. The curve of 5-way 1-shot accuracy in vali-
dation set is shown in Fig. 5. It can be observed that: i) The
two-layer learning AGFL have better convergence than single
learning AGFL and OFL. ii) The single learning AGFL have
slight better convergence than OFL. Thus we obtain that both
attribute-guided learning and two-layer learning mechanism
facilitate convergence of model.

Comparison with state-of-the-art methods. With the stan-
dard training data (64 categories), our AGFL+Prototypical Net
obtains a comparable performance under 1-shot setting and
1.5% gains under 5-shot setting, compared with the Relation

Net [27]. However, our method has better convergence because
our method converges after 40k iterations (see Fig. 5) while
Relation Net requires more than 200k iterations. Moreover,
with extra categories, our two methods outperform the state-
of-the-art performance over 1% and 3% improvements under
1-shot setting and 5-shot setting, respectively. The PPA [20]
needs a pre-trained model. In contrast, our work is more flex-
ible since it does not use a pre-trained model and trains from
scratch. The DEML+Meta-SGD [50] uses external images of
200 categories while our work leverages less data (extra 20
categories).

VI. CONCLUSIONS

In this paper, we introduce attribute learning to connect
training categories and novel categories for few-shot image
recognition, and propose an attribute-guided two-layer learn-
ing framework. In this framework, few-shot image recognition
and attribute learning leverage the same network in the multi-
task learning framework, and the two-layer features associated
with attributes are utilized for few-shot image recognition
respectively. Two typical few-shot methods including metric-
based methods (i.e., Matching Net and Prototypical Net) and
meta-learning methods (i.e., MAML) are plugged into the
proposed framework. Experimental results on CUB-200, AWA
and MiniImageNet dataset demonstrate the effectiveness of
our proposed framework. In addition, we find the proposed
framework has a good convergence and achieves performance
improvement.
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