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Abstract—Before the big data era, scene recognition was often
approached with two-step inference using localized intermediate
representations (objects, topics, etc). One of such approaches
is the semantic manifold (SM), in which patches and images
are modeled as points in a semantic probability simplex. Patch
models are learned resorting to weak supervision via image labels,
which leads to the problem of scene categories co-occurring in
this semantic space. Fortunately, each category has its own co-
occurrence patterns that are consistent across the images in that
category. Thus, discovering and modeling these patterns is critical
to improve the recognition performance in this representation.
Since the emergence of large datasets, such as ImageNet and
Places, these approaches have been relegated in favor of the much
more powerful convolutional neural networks (CNNs), which can
automatically learn multi-layered representations from the data.
In this paper we address many limitations of the original SM
approach and related works. We propose discriminative patch
representations using neural networks and further propose a
hybrid architecture in which the semantic manifold is built on
top of multiscale CNNs. Both representations can be computed
significantly faster than the Gaussian mixture models of the
original SM. To combine multiple scales, spatial relations and
multiple features we formulate rich context models using Markov
random fields. To solve the optimization problem we analyze
global and local approaches, where a top-down hierarchical
algorithm has the best performance. Experimental results show
that exploiting different types of contextual relations jointly
consistently improves the recognition accuracy.

Index Terms—scene recognition, semantic manifold, semantic
multinomial, multi-scale, context model, Markov random field,
convolutional neural networks

I. INTRODUCTION

SCENES (e.g. coast, mountain, office) are abstract semantic
entities composed of many less abstract and localized

ones (e.g. sky, rock, table, car). Accurate scene recognition
is challenging because it implies reasoning from low-level
visual features to high-level scene categories. While scene
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categories can be modeled directly using descriptors specific
for scenes (e.g. GIST [1], CENTRIST [2]), this large semantic
gap makes difficult to discriminate between a large number of
scene categories.

(a) (b) (c)
Fig. 1. Scene category co-occurrences in scene recognition: (a) images
from the highway (top row) and tallbuilding (bottom row) categories of
the 15 scenes dataset, (b) regions labeled with a mid-level vocabulary, (c)
patches labeled and their corresponding semantic multinomial resulting from
weakly-supervised learning with scene labels. Note how the isolated patches
have similar content (e.g., road, walls, cars), which introduces ambiguity
and uncertainty in the estimated scene category (shown in the semantic
multinomial descriptor).

A more common approach is to split the reasoning in two
(or more) steps with smaller semantic gaps (e.g., features to
objects, objects to scenes) [3], [4]. Thus, a local intermedi-
ate representation is defined over a vocabulary of mid-level
concepts or themes. Figure 1a-b shows an example of two
images and their regions with the corresponding mid-level
concepts. To avoid explicitly annotating regions with mid-
level labels, some approaches use latent representations, such
as topic models [5], [6], [7] and discriminative parts [8], [9],
[10], but the challenge is now to discover them while learning
both models jointly.

The semantic manifold (SM) [11] uses an intermediate
representation based on the semantic multinomial (SMN) [12],
in which patches are also represented in terms of scene
categories (i.e., patches are no longer represented with mid-
level concepts, such as sky, road, trees, but scenes, such as
coast, street, see Figure 1c). Patch models are learned in
a weakly-supervised way using only image labels (i.e., the
scene category), and thus bypassing the problems of mid-level
annotations and discovering latent representations. However,
this weak supervision creates a specific problem of ambiguity
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which we will refer to as (scene) category co-occurrences1

[13]. Fortunately, these category co-occurrences appear in pat-
terns that are consistent across the images in the same category,
so they can be modeled and separated from accidental co-
occurrences (i.e., noise in the semantic representation) with
an additional classifier. The way of aggregating patch SMNs
into image SMNs is also tricky, since it should emphasize
consistent category co-occurrence patterns so they can be
modeled robustly [13], [11].

However, the SM framework still has several limitations.
In particular, previous works [11], [13] only model global
co-occurrences in image SMNs, while category co-occurrence
patterns also appear locally (see Figure 1c). In this paper we
focus on local co-occurrence patterns in patch SMNs. Our
motivation is to exploit (in an unsupervised way) contextual
relations to reinforce consistent co-occurrence patterns and
remove accidental ones (i.e., noise). In this way, the classifier
can learn a more robust model from cleaner SMN descriptors.

A second limitation of current SM frameworks is the SMN
representation itself, based on GMMs. Patch SMN models are
learned independently for each category, which makes them
not very discriminative. At the same time, they do not scale
well to datasets with many categories. Here we propose using
discriminative SMN representations based on neural networks,
which are learned for all categories jointly, and since they
share intermediate layers they can scale much more easily to
large number of categories.

In particular the contributions of this paper are:

• Analysis of the limitations of the original semantic ma-
nifold framework and its variants (Section III).

• Neural network-based discriminative SMNs, to address
the problem of efficiency and lack of discriminative
capability of the original GMM-SMNs (Section IV).

• Context models to exploit spatial, multi-feature and multi-
scale relations between SMNs, with the objective of
emphasizing consistent scene co-occurrence patterns and
removing accidental ones. We formulate it in a Markov
random field (MRF) framework, analyzing different con-
text models and ways to solve the optimization problem
(Section V).

The research in this paper is an extension of our previous
work [14], which focuses on exploiting spatial and multi-
feature context on GMM-SMNs. However, in this paper we
significantly extend that framework including discriminative
SMNs, (both shallow and deep architectures), multi-scale con-
text and a hierarchical message passing algorithm to solve the
optimization problem. We also include more detailed analysis
of the limitations of previous works and extended experiments
that achieve state-of-the-art scene recognition performance.

1In [13], the authors use the term contextual co-occurrences to refer to
consistent and thus desirable co-occurrence patterns. Here, we refer to them
as (scene) category co-occurrences to emphasize that they are high-level
categories rather than low or mid-level co-occurrences. We also want to avoid
confusion with other type of context, such as the spatial neighborhood, multi-
scale or inter-feature relations.

II. RELATED WORK

For convenience we include Table I with several abbrevia-
tions used across the paper and the related references.

TABLE I
ABBREVIATIONS USED IN THE PAPER.

SMN Semantic multinomial[12] GMM Gaussian mixture model
SM Semantic manifold[11] SFV Semantic fisher vector[15]
ICM Iterated conditional modes[16] MP Message passing
IM ImageNet dataset[17] PL Places dataset[18]
MF Multi-feature context[14] EMFS Extended MFS[14]

MFS Multi-feature spatial context[14] NN Neural network
KCNF Kernel contextual noise filter[19] LDA Latent Dirichlet allocation
SPM Spatial pyramid matching[20] CMN Contextual multinomial[13]
DMM Dirichlet mixture model[13] KDE kernel descriptor [21]

A. Intermediate representations for scene recognition

A number of methods include mid-level representations
using explicit classifiers. Vogel and Schiele [3] proposed a
vocabulary with nine local concepts to model natural scenes.
Object bank [4], [22] is a semantic representation that encodes
the response at different spatial locations of a number of
pretrained object classifiers. Classemes [23] are intermediate
semantic representations based on a set of 2659 basis classes.
These methods require training these intermediate classifiers
explicitly (with the corresponding mid-level annotations) and
often exploit large amounts of external training data (e.g.,
ImageNet, web images) to learn these mid-level classifiers.

Latent topic models are also a popular approach in which
mid-level concepts are unknown and need to be discovered.
They are often modeled using variants of latent Dirichlet
allocation (LDA) [24], [25]. However, most LDA have been
shown to capture irrelevant general regularities rather than
the semantic regularities of interest, due to poor supervision
[25]. Spatial context can be included to model the global
layout and enforce local coherence in the topics [26], [7].
Recently, Li and Guo [27] proposed a patch-based latent
framework which jointly learns the contextual representation
and the classification model. Most latent topic models are
generative, and usually do not scale well to large scale datasets.
More recent variants exploit discriminative parts, which are
unknown and discovered during learning [8], [9], [10], [28].
Alternatively, some variants [29], [30] learn the mid-level
representations using dictionary learning.

B. Semantic multinomial

The contextual multinomial (CMN) [31], [13] uses the se-
mantic multinomial (SMN) as intermediate representation for
patches. Patch SMNs are learned via weak supervision using
scene labels, common for all patches in each given image.
To address the ambiguity (i.e., scene category co-occurrences)
caused by this weak supervision, a second classifier (i.e.,
contextual model in [31], [13]) models the scene from SMNs
and obtains the final classification. Note that this process has
three advantages compared with other intermediate represen-
tations: a) no explicit mid-level vocabulary is required (not
even a latent one), b) consequently, no expensive mid-level
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Fig. 2. Scene recognition framework, in test, we resize the input images to different L sizes of V kinds of visual feature.

TABLE II
COMPARISON OF SMN-BASED APPROACHES TO SCENE RECOGNITION. PROPOSED METHODS ARE EMPHASIZED IN BOLD.

Method Patch features Aggregation Co-occurrence modeling
SMN MF S/D Pre-train WS DSC Speed MS Modeling tools Classif

CMN[13] GMM No S - Yes No Slow Geometric No Global DMM
(SPM)SM[11] GMM No S - Yes No Slow Voting No Global SVM

CNF, KCNF, co-codes[19] GMM Yes S - Yes No Slow Average No Local+global SVM
SFV[15] IM-CNN1 - D IM No Yes Fast FV Yes - SVM

Multi-feature spatial
GMM Yes2 S - Yes No Slow Average No MRF+local+global SVM

NN Yes2 S - Yes Yes Medium Average No MRF+local+global SVM
CNN Yes3 D IM/PL Yes4 Yes Fast Average No MRF+local+global SVM

Multi-scale multi-feature spatial CNN Yes3 D IM/PL Yes4 Yes Fast Average Yes MRF+local+global SVM

S: shallow, D: deep, MF: multi-feature MS: multi-scale, IM: ImageNet, PL: Places, WS: weakly supervised, DSC: discriminative.
CMN: contextual multinomial, (SPM)SM: (spatial pyramid matching) semantic manifold, MF: multi-feature (K)CNF: (kernel) contextual noise filter, SFV:
semantic Fisher vector.

1 Patch-SMNs and image-SMNs do not lie on the same simplex, so there is no weak supervision nor scene category co-occurrences.
2 Visual features: kernel descriptors (gradient, shape and color).
3 Visual features: ImageNet-CNN and Places-CNN.
4 Supervised pre-training on ImageNet or Places, and weakly supervised on the target data.

annotations are necessary, and c) still requires training models
for the two stages, but in contrast to latent representations,
these two stages can be trained independently (instead of
jointly, which is more complex), making training much more
scalable to large datasets.

The original CMN approach uses generative models, combi-
ning Gaussian mixture models (GMMs) and Dirichlet mixture
models (DMMs). The semantic manifold (SM) [11] is a variant
using the negative geodesic distance (NGD) kernel which is
suitable for the geometry of the semantic manifold (i.e., a sim-
plex), enabling discriminative classification with kernel SVMs
instead of DMMs. Additionally, the SM can be extended with
spatial pyramid matching (SPM) [20] for better classification
(i.e., SPMSM). However, DMMs and kernel SVMs are still li-
mited to relatively small datasets. For large scale classification,
the (SPM)SM framework uses an approximate embedding of
the NGD kernel [11], avoiding computing the kernel matrix,
but at the cost of some accuracy. Recent extensions include
unsupervised modeling[14] and better embeddings, such as the
kernelized contextual noise filter (KCNF) [19]. However, these
models still have limitations, which we address in this paper
and describe in more detail in Section III-B.

C. Deep features

Deep convolutional neural networks (CNNs) [32] trained
with large datasets [33], [18] are the current state-of-the-
art feature representations, achieving impressive recognition
performance in many visual recognition tasks, including object
and scene classification [34], [18].

Recently, several weakly supervised frameworks [35], [36],
[37], [38] have been proposed to detect and recognize objects.
Oquab et al. [36] propose to fine tune pretrained CNNs with
multiple regions, where a global max-pooling layer is used to
select the regions for fine tuning. Durand et al. [35] extend
this idea by selecting both “useless” (negative) and useful
(positive) regions with a mixed (maximum and minimum)
pooling layer. These weakly-supervised works focus on ob-
jects, requiring a pooling layer to select the most salient
regions for object detection, while in this paper we focus on
scene recognition, using all the patches for CNN fine tuning,
and motivated from previous works using weak supervision
on shallow features (e.g., GMM-SMNs) [13], [11].

Combining CNN features extracted at multiple scales can
further improve the accuracy of scene classification [39], [15],
[40], due to the wide range of objects appearing in scenes.
Our framework also combines multiple scales and deep CNN
features. Earlier, Gong et al. [39] extract CNN activations
from patches, and encode them into multi-scale feature vectors
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using VLAD. Wu et al. [40] extract deep features from a set
of region proposals, which are then pooled into the scene
representation. The semantic Fisher vector (SFV) approach
[15], [41] uses Fisher vectors [42] to encode the output of the
CNN. Note that the output of the softmax layer is a probability
distribution, so it can be regarded as a SMN lying on the 1000-
dimensional semantic space of the training categories (i.e.,
objects categories from ImageNet ILSVRC12). However, this
intermediate semantic space is different from the final scene
semantic space. In contrast, the semantic space in our case
is common for both intermediate and scene representations,
leading to scene category co-occurrences (see Table II).

III. THE SEMANTIC MANIFOLD

A. Scene category co-occurrences

The semantic multinomial (SMN) descriptor s =
(s1, ..., sM )

T [12] represents the probability sw = P (w|x)
that a patch (or image) with visual feature x (e.g., SIFT
[43], color histogram, kernel descriptors [21]) belongs to each
scene category w, consisting of M scene categories in total.
The term semantic space refers to the probability simplex
where SMNs lie on. Since only image labels are available,
patch models are learned using weak-supervision via image
labels (see Fig. 3a). In particular, patches are modeled with
GMMs PGMM (x|w) trained independently for each category
w (i.e., only with patches from images in category w). Using
the Bayes rule, each component of the SMN descriptor is
obtained as the posterior probability sw = PGMM (w|x) =
PGMM (x|w)P (w) /P (x). We will refer to SMNs obtained
in this way as GMM-SMNs.

Patch SMNs in a given image are then aggregated into a
single image SMN using their geometric average [13] or voting
[11]. Weak-supervision during training creates a problem of
ambiguity in the resulting image SMNs. For instance, patches
containing pieces of sky can be found in images from many
categories (e.g., coast, mountain, highway, open country).
Since the visual content is very similar, all those patches may
have visual features with similar distribution, but depending
on the particular training image, the label will be different.
Thus for an unknown test patch, the SMN descriptor will
estimate certain probability in all those related categories.
This can be seen as scene categories co-occurring in the
SMN descriptor. Rasiwasia et al. [13] observed that some
co-occurrence patterns are consistent across image SMNs in
the same scene category, referring to them as contextual
co-occurrences, masked by other undesirable co-occurrence
patterns regarded as contextual noise. Thus, scenes can be
modeled from these patterns, and hence the need for a second
classifier (referred in [13] as contextual classifier).

B. Limitations

The original contextual multinomial and semantic manifold
have several limitations that make them not competitive with
the state-of-the-art in scene recognition:
(a) Category-specific patch GMMs are redundant and not

discriminative. The reason is that they are trained inde-
pendently per category, so each GMM ignores the other

(a) GMM-SMN

(b) NN-SMN

(c) CNN-SMN
Fig. 3. Weakly-supervised learning of patch SMN models.

GMMs. Moreover, since all GMMs from all categories
need to be evaluated to obtain patch representations,
this also makes them inefficient for a large number of
categories (i.e., the time to compute an image SMN
grows as O (NM)).

(b) Image SMNs obtained with GMMs are very noisy, at
both patch and image level, which leads to limited re-
cognition performance since the image classifier cannot
learn a suitable model from noisy data. While aggrega-
ting them into image SMNs can reduce the contextual
noise, there is no specific method to filter contextual
co-occurrences out from co-occurrence noise.

(c) Previous works CMN and (SPM)SM only exploit global
contextual co-occurrences, i.e., those available in image
SMNs, ignoring local ones at patch level. However,
contextual co-occurrences are essentially local, and local
modeling can significantly improve the recognition per-
formance. While Song et al. [19] exploit co-occurrences
in patches, still ignore the contextual relations between
patches, which are key to remove co-occurrence noise.

Addressing these limitations we include the following modi-
fications (see framework in Fig. 2) in the semantic manifold
framework:
• Neural network-based patch SMNs. Addressing limita-

tion (a), we replace category-specific GMMs by a suitable
multi-layer neural network model for patch SMNs. In
contrast to GMMs, a single model is learned jointly
for all categories in a discriminative way. Furthermore,
representations in intermediate layers are shared, so they
can scale much better to a larger number of categories.
We study both shallow and deep architectures, the latter
requiring pre-training with external data.
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• Multi-scale multi-feature contextual model. We address
limitations (b) and (c) with a hierarchical contextual
model that exploits spatial, multi-feature and hierarchical
relations between patches at different scales. In contrast
to [14], we include explicit hierarchical relations between
scales, and propose a message passing algorithm to better
optimize the model.

IV. DISCRIMINATIVE SEMANTIC MULTINOMIALS

A. Neural network based representations

A GMM can be considered as a multi-layer model with
two levels of trainable parameters, i.e., the parameters of
each Gaussian, and then the weights to combine them. As
shown earlier, each model is learned independently for each
category so they are not trained to discriminate between them.
Besides, PGMM (x|w) is trained to fit the feature distribution of
x for category w, which also includes those parts that are not
discriminative. Thus, GMMs tend to require more parameters
than a discriminative approach.

In order to obtain more discriminative SMN descriptors, we
replace GMMs with a multi-layer neural network (NN) with
the same depth (two layers). The neural network consists of
two fully connected layer and one softmax layer (see Fig. 3b),
where the output PNN (w|x) can be used directly as SMN
(we refer to them as NN-SMNs). The network is still weakly-
supervised via image labels. However, instead of having M
independent GMMs, we have a single NN that jointly models
all categories, thus being able to minimize a discriminative
loss. By sharing intermediate layers, we can also learn more
expressive models with comparable number of parameters.
Table III shows a significant increase in the accuracy with
NN-GMMs.

In addition to discriminability, NN-GMMs are more ef-
ficient and scalable to datasets with many categories, since
only the last fully connected layer depends on the number of
categories. The rest of the architecture can remain unchanged.
In contrast, GMM-SMNs require training a new GMM for
each additional category (i.e., the cost grows linearly with M ,
while NN-SMNs grow sublinearly). This results in significant
speed-ups (e.g., around ten times faster for 67 categories, see
Table III).

B. CNN based representations

We can further integrate the visual feature extraction stage
as an additional layer(s) in a deeper model. In GMM-SMNs
and NN-SMNs, the visual feature extraction stage is handcraf-
ted (i.e., engineered, not trainable) while GMMs and the NN
are trainable. Deep CNNs replace this first stage by several
trainable convolutional layers. Similarly to NN-SMNs, we
can use the output of a CNN architecture as PCNN (w|x),
where now x are directly RGB pixels. The downsize is that
these CNN models are significantly deeper with many more
parameters. Since the training data is often limited, we train
the SMN model in two steps. First, the CNN is pre-trained
with a large dataset (e.g. ImageNet ILSRVC2012, Places). In
practice we just reuse pretrained models. In order to adapt to
the number of target scene categories, we replace the classifier

implemented as the last fully connected layer by another
fully connected one conveniently resized. We train this new
layer (i.e. new classifier) and also fine tune the previous fully
connected one (e.g. fc7 in VGGNet). As input we use the
patches extracted at the corresponding scale, and as label we
use the scene category of the corresponding image (i.e. weakly
supervised training, as in GMM-SMNs and NN-SMNs). We
refer to SMNs obtained with this method as CNN-SMNs (see
Figure 3c).

Table III shows a significant gain compared with previous
methods. The main reasons are the deeper model, a larger
patch size and being trained end-to-end (at patch level). Note
however that the CNN heavily relies on external large datasets
used for pre-training. In addition, CNN-SMNs are significantly
faster. Although the CNN model is more complex, it processes
much fewer patches. Besides we implement patch extraction
as convolutions (i.e., as a fully convolutional network), which
is very efficient by reusing intermediate results in overlapping
patches. Finally, visual feature extraction of kernel descriptors
(KDES) is considerably slow since it is performed in the CPU
while the other operations are performed in the GPU.

V. CONTEXT MODEL

A. Local category co-occurrences and contextual relations

A critical part in the SM framework is the contextual
modeling of category co-occurrences to obtain robust classi-
fication. The original CMN and (SPM)SM approaches model
category co-occurrences after aggregating patch SMNs into
image SMNs. Thus they are limited to global co-occurrence
patterns in image SMNs. While it can indeed address the
ambiguity resulting from weak-supervision, image SMNs are
still very noisy representations due to the fact that significant
information is lost in this aggregation process. However, these
methods ignore that category co-occurrences are essentially
local and sparse [19], as shown in Figure 1c.

Furthermore, there are several types of contextual relations
in both patch SMNs and image SMNs that we can exploit
to further reduce the co-occurrence noise and emphasize
consistent co-occurrences:

a) Class-specific patterns: Category co-occurrences ap-
pear with similar patterns in images from the same class.
This is essentially the motivation of the contextual modeling
in CMN [13] and (SPM)SM [11] approaches, which model
scenes from these patterns in image SMNs. Song et al.
[19] further exploit local co-occurrences and sparsity in an
unsupervised way to filter co-occurrence noise in patch SMNs.
They use dictionary coding in a bag-of-words fashion, which
ignores explicit spatial relations between neighbors.

b) Local spatial relations: Neighboring patches are li-
kely to depict parts of similar concepts (e.g., sky). Similarly,
their patch SMNs are likely to have similar co-occurrence
patterns.

c) Inter-feature relations: Since SMNs are semantic re-
presentations lying on the same semantic simplex (regardless
of the input visual feature), different visual features generate
complementary co-occurrence patterns after learning SMN
models.
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TABLE III
COMPARISON BETWEEN PATCH SMN MODELS FOR MIT INDOOR (67 SCENE CATEGORIES).

Method Model Image size Patch size Visual feature #param Total patches Test time (s/image) Acc. (%)Visual SMN Total
GMM-SMN 67×GMM (512 components) 256×256 16×16 KDES (grad) 67K 30x30 0.51 1.12 1.63 34.7

NN-SMN NN (67×512 hidden units) 256×256 16×16 KDES (grad) 34K 30x30 0.51 0.11 0.62 43.4

CNN-SMN CNN (VGG, ImageNet) 448×448 224×224 Pixels 138M 8x8 0.07 0.07 71.0
CNN (VGG, ImageNet) 640×640 224×224 Pixels 138M 14x14 0.15 0.15 73.4

Using our own implementation, NVidia TitanX GPU and Pentium i5 CPU. CNN pretrained on ImageNet ILSVRC2012. GMMs, NNs and CNNs are
computed in the GPU.

d) Multi-scale relations: In a multi-scale setting, where
images are resized to different scales, patches extracted from
similar regions but different scales will still have certain
similarity, so the corresponding SMNs and co-occurrence
patterns will have too. We exploit them for the case of CNN-
SMNs.

By properly exploiting jointly all these contextual relations
between patch SMNs, consistent patterns can be emphasized
while noisy accidental ones can be removed. In this paper we
propose a context model that jointly addresses the four types
of contextual relations.

In a first approach, we assume a single scale and a set
V of complementary features (in our experiments V =
{gradient, shape, color} for GMM-SMN and NN-SMN, and
V = {IM, PL} for CNN-SMN, corresponding to the SMNs
obtained with ImageNet-CNN and Places-CNN, respectively,
adapted to the target scene categories as explained earlier).
Each feature v ∈ V generates a set of local visual des-
criptors I(v) = {x(v)

1 , . . . ,x
(v)
N }, x

(v)
n ∈ X(v), and I =

{I(1), . . . , I(|V |)} represents all the features in the image.
Now we assume that Pv

(
x

(v)
n |w

)
is the feature-specific patch

model for feature v , learned independently in the same
way as in the single feature case. Thus, we can define the
feature-specific patch SMN of the patch n and the feature
v as s

(v)
n = (s

(v)
n1 , ..., s

(v)
nM )T . Figure 4 shows an example

with three feature-dependent patch SMNs. In this figure we
can observe how certain regions are noisier than others in
some features. We can also observe certain patterns across
categories (category co-occurrences), across features (inter-
feature relations) and between neighboring patches (spatial
relations).

B. Global models

1) Single scale model: Since our objective is to keep con-
sistent co-occurrences and remove accidental noise from patch
SMNs, we formulate our contextual model as a denoising
problem using a Markov Random Field (MRF).

Considering first a single feature and a 4-connectivity grid,
the resulting model is shown in Figure 5b. The objective is to
maximize the joint probability over the set of observed SMNs
and denoised SMNs defined as P (s̄1, . . . s̄N , s1, . . . sN ) =
1
Z exp (−E (s̄1, . . . s̄N , s1, . . . sN )), where Z is the partition
function to normalize the probability. Thus, the problem is
equivalent to minimizing the global energy of the network
modeled as

E (s̄1, . . . s̄N , s1, . . . sN )

=
∑
n

g(s̄n, sn) + α
∑
{n,n′}

g(s̄n, s̄n′) + λH (s̄n) (1)

where s̄n is the unknown denoised SMN of patch n (in contrast
to the original sn) and {n, n′} represents pairs of connected
patches. We model the energy as distance between SMNs. A
suitable choice for the distance between points in simplices
is the geodesic distance (GD) g (s, s′)[44]. We chose it over
the KL divergence used in [13] because KL divergence is
asymmetric, and in the semantic manifold framework GD has
been proved effective [11]. Finally, we include a regularization
term H (s) = −∑M

w=1 sw log (sw), which is the entropy of s.
This term is included to penalize too flat SMNs, which would
lead to uninformative patches without co-occurrence patterns
to model.

Considering now a multi-feature setting, all feature-
dependent SMNs and the corresponding denoised SMNs lie
on the same semantic space. Multi-feature combination can be
easily achieved using some kind of pooling (e.g., (weighted)
average) as in Figure 5a, but it would ignore spatial relations.
In contrast, the previous MRF model can be easily extended to
jointly consider multiple features using the model in Figure 5c.
The corresponding energy is

E
(
s̄1, . . . s̄N , s

(1)
1 , . . . s

(1)
N , s

(|V |)
1 , . . . s

(|V |)
N

)
= ρ

∑
n

∑
v∈V

g
(
s̄n, s

(v)
n

)
+ α

∑
{n,n′}

g (s̄n, s̄n′) + λH (s̄n)

(2)

2) Hierarchical model: Considering now a multiscale set-
ting with L scales, we can further extend the MRF model
to connect the patches at scale l − 1 with the patches at
scale l = 1, . . . , L in a hierarchical fashion. The size of
patches increases from scale l = 1 to scale l = L. A
global hierarchical model using 4-connectivity is illustrated
in Fig. 6a. The resulting joint energy for an architecture with
L scales is
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(b) GMM-SMN
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(a) (c) NN-SMN
Fig. 4. Feature-specific patch SMNs as probability maps: (a) input image from the 15 scenes dataset (category: tallbuilding), (b) GMM-SMNs, (c) NN-SMNs.
Each row represents SMNs obtained from three different visual descriptors.

n = 1, · · · , N

s(g)
n s(c)

ns(s)
n

s̄n

s̄n

sn s(c)
n

s̄n

s(s)
ns(g)

n

(a) (b) (c)
Fig. 5. Contextual models: (a) multi-feature combination, (b) 4-connected
spatial grid model, and (c) multi-feature spatial grid model.

E(s̄1
(1), . . . ¯sN1

(1), s̄1
(L), . . . ¯sNL

(L),

s
(1,1)
1 , . . . s

(1,1)
N1

, s
(L,|V |)
1 , . . . s

(L,|V |)
NL

) =

ρ
L∑
l=1

Nl∑
n=1

∑
v∈V

g
(
s̄n

(l), s(l,v)
n

)
+ α

∑
l∈L

∑
{n,n′}

g
(
s̄n

(l), s̄n′
(l)
)

+ γ

L∑
l=2

∑
(n,np)

g
(
s̄n

(l), ¯snp
(l−1)

)
+ λH (s̄n) (3)

where Nl is the number of patches in scale l, and np in (n, np)
represents the neighbor in previous scale.

To solve the minimization problem we can consider diffe-
rent alternatives commonly used in computer vision problems,
such as image segmentation. However, we must emphasize
the differences of our problem with image segmentation. In
our case we are not interested in estimating the label of each
patch, but in the probabilities in SMNs as scene features.
Thus, algorithms designed to find the MAP labeling (e.g.,
graph cuts) are not easy to adapt to our problem. In the
following subsections we describe different ways to address
the optimization problem using different simplifications.

(a) (b) (c)
Fig. 6. Contextual models: (a) global, (b) local, and (c) extended local.

C. Local models

1) Hierarchical iterated conditional modes: The global
hierarchical model can become very complex and difficult to
optimize, particularly for the multi-scale scenario. In order to
reduce the optimization complexity, we use a local approx-
imation, inspired by the Iterated Conditional Modes (ICM)
algorithm [16]. In this approximation, for a given patch s̄n

(l)

the rest of the ¯sn′ 6=n
(l) are considered observed and fixed.

Thus, the contextual model becomes local to s̄n
(l) and it is

only necessary to consider a few connections. For example,
the complex model of Fig. 6a is simplified to Fig. 6b. We
use a hierarchical ICM algorithm that minimizes the global
energy by scanning the patches and minimizing each local
model one by one, updating the value of the corresponding
s̄n

(l). For multiple scales, the scanning order is extended to
include the multiple scales, following the top-down direction
(see Algorithm 1). This algorithm can be seen as coordinate-
wise gradient descent, and converges to a local optimum. The
local energy for s̄n

(l) is computed as
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E
(
s̄n

(l);φ(l)
n

)
= ρ

∑
v∈V

g(s̄n
(l), s(l,v)

n )

+ α
∑

(n,h),h∈B(l)
n

g(s̄n
(l), s̄h

(l))

+ γ
∑

(n,q),q∈Q(l−1)
n

g
(
s̄n

(l), s̄q
(l−1)

)
+ λH (s̄n) (4)

φ(l)
n =

{
s(l,v)
n |∀v ∈ V

}⋃{
s

(l,v)
h |∀h ∈ B(l)

n ,∀v ∈ V
}⋃

{
s̄q

(l−1)|∀q ∈ Q(l−1)
n

}
where B

(l)
n contains the neighbors in scale l, and Q

(l−1)
n

contains the related patches from the previous scale l − 1.
This local problem can be solved using gradient descent. The
gradient corresponding to patch n at scale l is

∂E′
(
s̄n

(l);φ
(l)
n

)
∂sn

= ρ
∑
v∈V

δ
(
s̄n

(l), s(l,v)
n

)
+ α

∑
(n,h),h∈B(l)

n

δ
(
s̄n

(l), s̄h
(l)
)

+ γ
∑

(n,q),q∈Q(l−1)
n

δ
(
s̄n

(l), s̄q
(l−1)

)
+ λH (s̄n) (5)

where

δ (x, y) =
∂g (x, y)

∂x
= −

√
y

2
√
x
√

1− (
√
x
√
y)2

An advantage of this local model is that the complexity and
computational cost are greatly reduced. We can easily extend
this model to include relations with other neighboring SMNs
(both observed and latent) without increasing significantly the
complexity (see Fig. 6c). Note that these new neighboring
relations are not part of the original global model of Fig. 6a.
Including these extended relations in the global model and
solving the optimization problem would be very difficult,
since the extended connections destroy the factorization into
pairwise factors, requiring higher order factors, and the corre-
sponding energy terms in the formulation.

2) Scale-wise message passing algorithm: A different view
of the hierarchical ICM is as neighboring patches sending
update messages to the current patch, and then moving to the
next one (see Fig. 7a). A message passing algorithm consists of
update messages and a schedule for the updates. Algorithm 1
has the problem that each update may depend on both updated
and not updated values. Here we study different message
passing strategies as an alternative.

First we consider sending update messages directly in the
global model. All nodes receive and send messages simulta-

Algorithm 1 Hierarchical ICM

Input: Patch CNN-SMNs s
(v,l)
n , n = 1, . . . , Nl, l = 1, . . . , L,

v = 1, . . . , |V |
Output: Filtered patch CNN-SMNs s̄n

(l)n = 1, . . . , Nl, l =
1, . . . , L

1: Initialize all s̄n
(l) ←∑

v∈V s
(v,l)
n /|V |

2: for l = 1 to L do
3: for n = 1 to Nl do
4: Calculate E

(
s̄n

(l)
)

with Eq. 4
// Local optimization for s̄n

(l)

5: for i = 1 to max_iter do
6: energy_prev =E

(
s̄n

(l)
)

7: smn_prev = s̄
(l)
n

8: Update s̄
(l)
n using Eq. 5

9: Calculate E
(
s̄n

(l)
)

with Eq. 4
10: if E

(
s̄n

(l)
)
≥ energy_prev then

11: s̄
(l)
n = smn_prev

12: break
13: end if
14: end for
15: end for
16: end for
17: return s̄n

(l),n = 1, . . . , Nl, l = 1, . . . , L

sn

(IM,l)

sn

(l)

sn

(l-1)

sn

(PL,l)

(a) (b) (c)
Fig. 7. Optimization using message passing: (a) one step of hierarchical
ICM, (b-c) two steps of the top-down scale-wise message passing algorithm
for scale l and l + 1.

neously in parallel, which are then updated at the same time
as s̄n

(l) ← s̄n
(l) +4s̄n

(l). The update is computed as

4s̄n
(l) = ρ

∑
v∈V

msg
(
n(l,v), n(l)

)
+ α

∑
(n,h),h∈B(l)

n

msg
(
h(l), n(l)

)
+ γ

∑
(n,q),q∈Q(l−1)

n

msg
(
q(l−1), n(l)

)
+ λH (s̄n) (6)

with msg
(
h(l), n(l)

)
=

∂E′(s̄n(l);φ(l)
n )

∂sn
. Note that each message

solves a local optimization problem as in previous section.
Since the information from top scales of CNNs is usu-

ally more reliable we devise a scale-wise message passing
algorithm (Algorithm 2) that propagates the information from
previous scales in a hierarchical fashion, rather than optimizing
jointly the global model. The experiments will show that this
strategy has better performance. The algorithm sends update
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messages within the nodes of a given single layer (including
messages from the previous scale). In the next step, all the
nodes in that scale are considered observed, and the next scale
is processed in the same way. Fig. 7b and c represent two steps
of this algorithm.

D. Embedding and pooling

After processing patch SMNs with the hierarchical context
model, we aggregate them into image SMNs using average
pooling, and the decision is simply the category with the
maximum probability in the image SMN. Note that in this
case the ambiguity due to weak supervision still remains.
Alternatively, patch SMNs can be encoded and pooled prior
to the contextual classifier [11], [19] (see Fig. 2). In particular
we use the KCNF embedding [19] which exploits better local
category co-occurrences.

Algorithm 2 Top-down message passing algorithm

Input: Patch CNN-SMNs s
(v,l)
n , n = 1, . . . , Nl, l = 1, . . . , L,

v = 1, . . . , |V |
Output: Filtered patch CNN-SMNs s̄n

(l)n = 1, . . . , Nl, l =
1, . . . , L

1: Initialize all s̄
(l)
n ←

∑
v∈V s

(v,l)
n /|V |

2: for l = 1 to L do
3: Get the set D of all the edges connecting nodes in scale

l and connecting nodes between l and l − 1
4: for i = 1 to max_iter do
5: for all (n′, n) ∈ D do
6: Calculate msg(n′(l), n(l))
7: end for
8: for n = 1 to Nl do
9: Update all s̄

(l)
n using Eq. 6

10: end for
11: end for
12: end for
13: return s̄n

(l),n = 1, . . . , Nl, l = 1, . . . , L

VI. EXPERIMENTS

A. Experimental setup

1) Datasets: The proposed methods are evaluated on three
small datasets. 15 scenes [24], [20] contains 4485 images
across 15 scene categories. LabelMe[1] consists of 8 outdoor
scene categories, with a total of 2600 images. UIUC-Sports [5]
consists of 1585 images labeled into 8 complex sport scene
categories. Following the settings in previous works, we use
100, 100 and 70 images for training, respectively. We also
evaluate the proposed methods on larger datasets, including
MIT67 [8] and SUN397 [45]. MIT67 contains 15620 images
of 67 indoor scene classes. SUN397 consists of 397 categories,
with 108762 images in total. In the case of MIT67 Indoor and
SUN397, the training/testing configurations are provided by
the original authors. Finally, we also include an evaluation on
the very large Places365-standard dataset [46] consisting of
365 scene categories, and 1,803,460 training images with the

number of images per class varying from 3,068 to 5,000. We
follow the public training/validation split for evaluation.

2) Shallow patch SMNs: We evaluate GMM-SMNs and
NN-SMNs in the multi-feature setting with one scale and
the proposed context models. As local visual descriptor we
use three variants of kernel descriptors[21]: gradient, shape
and color KDES. All local visual descriptors are extracted
on a regular dense grid of 16 × 16 pixels (stride 8 pixels),
resulting in 30×30 patch level local descriptors on a 256x256
image. For GMM-SMNs we train GMMs with 512 mixtures
for each scene category. For NN-SMNs we use a network with
two fully connected layers, including one hidden layer with
512 nodes. Note that this network has comparable amount of
parameters to the model with 512 GMMs.

3) Deep patch SMNs: We use the VGG CNN architecture
pre-trained either with ImageNet [17] or Places [18], replacing
the size of the last fully convolutional layer fc8 to meet the
number of categories. Then we fine tune the previous fully
convolutional layer fc7 and train fc8 with the target datasets.
Since the size of the patches is fixed in this architecture
(224×224 pixels) , we extract features in four scales, obtained
by resizing the input image to 224×224, 320×320, 448×448
and 640×640 pixels (scales 1, 2, 3 and 4, respectively). With
these sizes we obtain 1× 1, 4× 4, 8× 8 and 14× 14 patches
per scale, respectively.

B. Context models with shallow SMNs

a) Baseline and proposed methods: We evaluate the
proposed context models within the SM framework [11], but
integrating KCNF encoding [19]. For GMM-SMNs and NN-
SMNs we also include spatial pyramid matching [20] with
four levels (1× 1, 2× 2, 3× 3, 4× 4).

Using the previous method as baseline, we consider four
variations of the proposed context model:
• Multi-feature context (MF): multiple features are combi-

ned in the semantic space with average pooling, corre-
sponding to the model in Figure 5a.

• Spatial context: single feature exploiting neighboring
spatial relations (see Figure 5b). Obtained by minimizing
Eq. 1, when only one feature is used.

• Multi-feature spatial context (MFS): combines multiple-
features of the target patch and neighboring spatial rela-
tions (i.e., see Figure 5c). Obtained by minimizing Eq. 2
in the multi-feature case.

• Extended multi-feature spatial context (EMFS): also in-
cludes multiple-features from additional patches in the
neighborhood (Figure 6c with single scale).

1) Neighborhood size and entropy regularization: We eva-
luate the impact of the size of the spatial neighborhood which
is critical in our context model. We use the 15 scenes dataset
and the EMFS model, fixing ρ = 1/|V | and α = 1/|B(l)

n |.
The results are illustrated in Figure 8.

We evaluate different neighborhoods, including the 4-
connectivity spatial neighborhood, and other dense neighbor-
hoods of size L×L patches (3x3 corresponds to 8 neighbors).
We can observe that larger neighborhoods can effectively rein-
force consistent patterns and filter accidental ones. However,
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(a)

(b)
Fig. 8. Region size and sparse parameter evaluation

too large neighborhoods cannot capture properly local co-
occurrence patterns. From our experiments, a good trade-off
is 7×7 patches.

Entropy regularization is also important to capture category
co-occurrence patterns properly. We evaluate λ in a range from
0 to 0.2, with a step of 0.05. Figure 9 shows that without
entropy regularization (λ = 0) the performance is lower. Note
that NN-SMNs require lower penalty than GMM-SMNs. We
obtained the best performance for L = 7 and λ = 0.1/0.05
for GMM-SMN and NN-SMN, respectively, so for the rest of
the experiments we use this configuration.

Figure 9 illustrates how the proposed method is able to
effectively combine the three feature-specific patch SMNs
from Figure 4 into smoother multi-feature patch SMNs. The
regularization term prevents from excessive smoothing that can
wash out the true class-specific co-occurrence patterns that we
want to preserve.

2) Context models: We compare the different variations
of the proposed method on the three small datasets to show
how different types of context models improve the accuracy.
Table IV shows that the classification accuracy increases
consistently when we include additional contextual relations in
the context model. Combining multiple features helps with a
gain around 1.1-2.5%/1.3-1.4% (GMM-SMN/NN-SMN) over
the best single feature. Using spatial relations varies from no
gain to modest gains around 1%/3.3%. However, combining
both can increase an additional 0.5-1%/0.7-0.8% over only
multi-feature context. The extended multi-feature spatial con-
text contributes with an additional 0.4-2.2%/1.1-2.6% gain by
incorporating multiple features from the neighboring patches.
The total gain with the extended context model over the base-

TABLE IV
ACCURACY (%) OF GMM-SMN/NN-SMN FOR DIFFERENT CONTEXT
MODELS. * INDICATES IMPLEMENTED BY US INSTEAD OF REPORTED.

Method (feature) 15 scenes LabelMe Sports
No context model (Baseline)

Gradient) 78.9/82.1 86.5/86.5 83.9/84.3
Shape) 80.0/82.5 85.0/85.4 84.3/85.1
Color 75.4/72.3 72.4/70.0 72.8/71.9

Spatial context (7×7 patches)
Gradient 81.0/82.6 86.7/86.9 83.7/84.6

Shape 81.4/82.7 84.9/85.7 83.9/85.5
Color 76.6/75.5 72.9/74.2 73.1/75.2

Multiple feature context
Multi-feature 82.5/83.8 88.3/87.9 85.4/86.5

Joint multi-feature spatial context (7×7 patches, λ = 0.1/0.05)
MFS 83.5/84.5 88.9/88.8 85.9/87.3

Extended MFS 85.7/87.1 89.3/89.9 86.9/88.5
Related works

CMN[13] 77.2 - -
LDA[25] 76.6 - -

SPMSM[11] 82.5 87.5 83.0
Kernel descriptor* 82.2 87.3 85.2
Object-Bank[27] 85.7 89.8 83.9

KCNF [19] 85.2 89.8 87.8
Object-to-Class kernels[22] 88.8 - 86.0

line is around 2.6-5.7%/3.0-4.5%. Note also that NN-SMNs
typically obtain slightly better performance compared with
GMM-SMNs, and both consistently benefit from contextual
modeling.

3) Comparison with related works: We compare our met-
hod with other works using mid-level semantic representations,
such as latent topics [25] object bank [4], [27], [22] and
classemes [47], [23]. Most of these approaches cannot be used
in large scale datasets, so we separate comparisons for small
datasets and larger datasets.

a) Small datasets: Table IV compares the results repor-
ted by the authors in their corresponding references. Although
a completely fair comparison with reported results is not
possible, due to different implementations, features and other
parameters, our framework at least seems to be competitive in
the three evaluated datasets. Comparing with previous methods
based on SMNs and co-occurrence modeling, such as CMN,
SPMSM and KCNF, is of particular interest. The proposed
method, which also exploits multiple features and richer
contextual relations, achieves better performance than those
methods. We also compare with non-semantic representations
by directly modeling categories from the same low-level kernel
descriptors (concatenated to combine them), with and a SVM
and spatial pyramid. We observe that our method also achieves
better results.

b) Large datasets: We evaluate the proposed methods
on the larger MIT67 and SUN397 datasets. The results are
shown in Tables V and VI, respectively. NN-SMNs achieve
better performance than GMM-SMNs, especially for MIT67.
The gains due to richer context models are much higher
than in smaller datasets, with significant gains of 11%/9.5%
and 15%/9.1% (GMM-SMNs/NN-SMNs) over the best single
feature baseline, respectively. This suggests that contextual
relations become much more important important as the num-
ber of scene categories increases, resulting in much noisier
and sparser co-occurrence patterns. Exploiting the context to
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λ = 0.00

λ = 0.10

λ = 0.20
(a) GMM-SMN

λ = 0.00

λ = 0.05

λ = 0.20
(b) NN-SMN

Fig. 9. Output patch SMNs of the image in Fig 1a (category: tallbuilding) after the context model and the effect of entropy regularization: (a) GMM-SMNs,
and (b) NN-SMNs. The spatial neighborhood is 7×7 patches.

TABLE V
COMPARISON ON MIT67 DATASET.

MIT67 Method Accuracy (%)
GMM-
SMNs

NN-SMNs

Proposed

Baseline (gradient) 34.7 43.8
Baseline (shape) 36.9 44.7
Baseline (color) 26.8 29.4
Proposed (MF) 42.4 47.2

Proposed (MFS) 44.7 50.5
Proposed (EMFS) 48.2 54.3

Other
semantic
representations

ObjectBank[27] 37.6
Object-to-Class kernels[22] 39.6

Deformable Part Models[48] 43.1
SPMSM[11] 44.0
KCNF [19] 48.1

Discriminative parts[9] 64.0

Bag-of-words
representations

Sparse Spatial Coding[49] 44.4
Geometric Phrase Pooling[50] 46.4
Linear Distance Coding[51] 46.7

IFV[52] 60.8

emphasize representative category co-occurrence patterns can
greatly help to improve the recognition performance. Other
mid-level semantic representations, such as object bank and
meta-classes exploit larger amounts of external data (e.g.,.
ImageNet, web images) to model the mid-level classifiers.
The proposed method outperforms them without resorting to
external data, but still falls short compared with discriminative
parts [9], which is particularly effective for indoor scenes
where certain objects can be very discriminative. However,
this method cannot scale to larger datasets such as SUN397.

We also include other approaches based on lower level
representations, such as bag-of-words coding [51], [49], [50]
and the Fisher vector [52]. The latter achieves better accuracy,
but at the cost of a much higher dimensional feature resulting
from a much denser grid for sampling local features [52].

TABLE VI
COMPARISON ON SUN397 DATASET.

SUN397 Method Accuracy (%)
GMM-SMNs NN-SMNs

Proposed

Baseline (gradient) 25.4 30.9
Baseline (shape) 23.2 32.6
Baseline (color) 18.2 21.4
Proposed (MF) 30.4 37.5

Proposed (MFS) 34.9 39.7
Proposed (EMFS) 40.7 41.7

Other semantic
representations

SPMSM[11] 28.2
Meta-classes[23] 36.8

KCNF [19] 40.8

Others
SUN (HOG)[45] 27.2
SUN(MKL)[45] 38.0

IFV[52] 47.2

C. Context models with deep SMNs and multiple scales

1) Patches vs full images : We use the CNN-SMNs as des-
cribed in Section IV-B, extracting two complementary features
that depend on the pre-training dataset (i.e., either ImageNet-
CNN or Places-CNN). In addition we consider multiple scales,
which are determined by the size the input image is resized
(for a fixed patch size of 224×224 pixels).

When adapting the CNN to a particular target scene dataset,
this adaptation can be performed using full size images (resi-
zed to the patch size, i.e., 224×224 pixels) or using patches
extracted at the particular scale. As Table VII shows, the latter
is a better approach, since patches used for adaptation and
during test have similar scale distributions.

2) Single scale: We first compare the hierarchical ICM and
the message passing (MP) algorithms in a single scale setting.
We compare the accuracy and the total energy for different
spatial neighborhoods. Since the total energy depends on the
number of edges, and they depend on the size of the neighbor-
hood, it is difficult to compare neighborhoods with different
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a b c
Fig. 10. Comparison between ICM and MP on MIT Indoor 67 on scale 3 (448x448), (a)accuracy, (b) normalized pairwise energy,(c) time cost

TABLE VII
ACCURACY (%) OF DIFFERENT ADAPTATIONS ON MIT INDOOR 67

scale Images (fixed) Patches
IM PL IM PL

1 69.9 80.5 69.9 80.5
2 69.8 72.1 70.8 79.0
3 68.6 71.0 71.0 72.1
4 64.6 51.0 73.4 65.7

size. For better comparison, we normalized the energy and set
ρ = 1/ (3|V |), α = 1/

(
3|B(l)

n |
)

, γ = 1/
(

3|Q(l−1)
n |

)
and

λ = 0 in Eq. 4 and 5, which we found work well in practice.
Fig. 10b shows how the energy of ICM decreases quickly to
the minimum value in around 16 iterations. However, it incre-
ases with more iterations probably due to the asynchronous
updating scheme, also causing the accuracy to decrease. In
contrast, MP passes messages synchronously and then updates
the values of each node simultaneously. As a result, the energy
decreases more slowly but consistently (although the absolute
value of the of the energy is slightly higher) and the accuracy
increases slightly. However, a drawback is that is slower than
ICM.

3) Multiple scales and message passing: In the next ex-
periment we evaluate three variants of the proposed multi-
scale MP algorithm on MIT Indoor 67 with just one CNN
or combining two (both ImageNet-CNN and Places-CNN).
The integrated variant optimizes all the nodes at the same
time, and then combines the scales. The top-down and bottom-
up variants are scale-wise, and progressively update a given
scale based on the previous scale. In general, the top-down
strategy performs better than the others, since the top scale
(more global) obtains the best single-scale performance, so
using it as initial step leads to a better solution.

The results of the same experiment for SUN397 are shown
in Table IX. The proposed architecture combining ImageNet-
CNN, Places-CNN at three scales achieves a remarkable
69.3% of accuracy, comparable to human performance, as
reported in [53]. In this case including scale 4 decreases the
performance, so we do not include it in the next experiment.

4) Encoding methods and other works: In the previous
experiments there is no supervised contextual classifier (e.g.,
SVM) nor any particular encoding. The scene prediction is

obtained basically pooling patch CNN-SMNs. Now we also
consider the full SM framework, which includes encoding and
SVM classification (see Figure 2). We selected the architectu-
res with best performance from previous experiments (3 scales
for MIT67 and 4 scales for SUN397, both with ImageNet-
CNN and Places-CNN) and encode the CNN-SMNs using
various encodings (SM [11], FV [15], EMK [54], LLC [55]).
For EMK and LLC we use dictionaries of 1000 words, and for
FV we use 50 GMMs and then reduce the dimensions to 4096
using PCA, following [15]. The results are shown in Table X.
The gain using encoding+SVM is more significant for MIT67
than for SUN397, and for single scale than for multiple scales.
In particular for SUN397, a marginal 0.1% gain is achieved
over the best performance.

We also compare with other works in Table X, some
using AlexNet and some using VGG architectures. In the
next section we evaluate our approach on the recent dataset
Places365[46]. Thus, we can also use CNNs pretrained on this
dataset in our framework, and we report some results using an
extended framework with in addition to ImageNet-CNNs and
Places-CNNs includes Places365-CNNs. This setting obtains
state-of-the-art performance 72.6% for SUN397.

D. Evaluation on Places365

Evaluation on Places365 is difficult due to the size of the
dataset. In this case, we use the original crops for adaptation
instead of patches and 3 scales (the amount of data resulting
for smaller patches is too large for training). However, even
with these settings the results of our framework with multi-
scale multi-CNN context modeling obtains 57.1% top 1 accu-
racy, outperforming the best in baseline by 2.2%. We can
also compare with a simple average pooling across scales and
CNNs. and where our model still has a gain of 1.6%.

In general, evaluation on Places or Places365 is not reported
in the vast majority of papers about scene recognition, and
even most recent works typically use off-the-shelf CNNs
trained on Places or Places365 but do not evaluate on those
datasets. For Places365 we are only aware of the result of
Zhou et al[46], which we improve by 1.9%. Note that their
setting would be closer to our scale 1* (256×256 pixels),
but with some differences: [46] averages 10 crops (4 cor-
ners+central+mirror), while we use only four (2×2 patches).
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TABLE VIII
COMPARISON BETWEEN INTEGRATED AND SCALE-WISE MP MODELS ON MIT67 IN ACCURACY (%)

#scales Scale Integrated Top-down Scale Bottom-up
IM PL IM+PL IM PL IM+PL IM PL IM+PL

1 1 69.9 80.5 82.6 69.9 80.5 82.6 4 73.4 65.7 76.4
2 1,2 73.1 82.6 83.2 73.6 82.1 83.7 4,3 73.8 74.4 78.4
3 1,2,3 75.7 82.3 83.3 77.5 82.1 84.1 4,3,2 73.8 80.4 81.9
4 1,2,3,4 75.8 82.1 83.6 78.7 81.6 84.2 4,3,2,1 74.6 81.3 82.9

TABLE IX
ACCURACY (%) OF MODELING JOINT CONTEXTS ON SUN397

Scale
Adaptation

Scale
Contextual modeling

With images With patches Spatial IM+PLIM PL IM PL IM PL
1 55.9 65.8 55.9 65.8 1 55.9 65.8 67.1
2 55.8 62.3 55.8 62.5 1,2 57.9 66.0 68.4
3 49.9 46.5 55.2 56.2 1,2,3 60.8 66.8 69.3
4 36.5 20.3 54.5 44.0 12,3,4 60.1 66.8 68.6

VII. CONCLUSIONS

Although recently relegated in favor of deep learning met-
hods, intermediate representations have played an important
role in automatic scene recognition. The semantic manifold
framework addresses the problem of modeling scene catego-
ries from visual features with a combination of weak super-
vision and pooling, that avoids mid-level annotations while
inference can be easily modeled in two independent steps (in
contrast to most methods that learn latent representations).
This framework suffers from the specific problem of scene
category co-occurrences, thus requiring specific solutions.

In this paper we revisit the semantic manifold approach
and tackle several of the limitations not addressed in previous
works [13], [11], [19]. We identify the original patch SMN
models based on GMMs (i.e., GMM-SMNs) as an important
bottleneck in terms efficiency and accuracy, resulting from the
training stage that learns patch SMN models independently
for each category. We show that replacing them by NN-
SMNs, based on neural networks and learned jointly for all
the categories, produce much faster and more discriminative
SMNs.

Modeling category co-occurrences properly is the other cri-
tical stage. Previous methods ignore local contextual relations,
which are very helpful for this purpose. SMN representations
in the semantic manifold have the unique characteristic that
patches and images are represented in the same semantic
space, independently of the visual feature used as input.
Exploiting this property, we combine multiple features and
scales, and integrate spatial, multi-feature and even multi-scale
relations between neighboring patch SMNs into a joint context
model, showing that in this way we can discover consistent
co-occurrence patterns and filter out noisy ones, making things
easier for the classifier, which can focus on modeling scenes
in terms of these cleaner patterns. In particular we use a multi-
feature multi-scale Markov random field formulation, with a
specific entropy regularizer. Although still far from CNNs and
some methods, using the proposed NN-SMNs and an extended
context model, our framework can significantly improve the

recognition performance of the previous semantic manifold
approach and its variants.

We further recast convolutional networks as sophisticated
SMNs, implemented as weakly supervised adaptation of a pre-
trained network, and integrate them as semantic features in the
proposed framework. This hybrid approach achieves state-of-
the-art scene recognition accuracy (even without the contextual
classifier).
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