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Abstract—Scene recognition is challenging due to the intra-
class diversity and inter-class similarity. Previous works recognize
scenes either with global representations or with the intermediate
representations of objects. In contrast, we investigate more
discriminative image representations of object-to-object relations
for scene recognition, which are based on the triplets of <object,
relation, object> obtained with detection techniques. Particularly,
two types of representations, including co-occurring frequency
of object-to-object relation (denoted as COOR) and sequential
representation of object-to-object relation (denoted as SOOR),
are proposed to describe objects and their relative relations
in different forms. COOR is represented as the intermediate
representation of co-occurring frequency of objects and their
relations, with a three order tensor that can be fed to scene
classifier without further embedding. SOOR is represented in a
more explicit and freer form that sequentially describe image
contents with local captions. And a sequence encoding model
(e.g., recurrent neural network (RNN)) is implemented to encode
SOOR to the features for feeding the classifiers. In order to
better capture the spatial information, the proposed COOR and
SOOR are adapted to RGB-D data, where a RGB-D proposal
fusion method is proposed for RGB-D object detection. With the
proposed approaches COOR and SOOR, we obtain the state-of-
the-art results of RGB-D scene recognition on SUN RGB-D and
NYUD2 datasets.

Index Terms—Scene recognition, object-to-object relation, se-
quential representations, RGB-D, object detection

I. INTRODUCTION

HE goal of scene recognition is to annotate images with
T scene categories. Humans have innate talent to recognize
those abstract scenes without hard training, while it is typically
challenging for computer. For humans, some scenes (e.g.,
coast, mountain, and forest) can be directly distinguished by
taking a glance [1], while some other scenes (e.g., bedroom,
living room, dining room and classroom) may require to be
distinguished from some local points of view such as objects
and their relations. For computers, former scenes may be
recognized by directly training the deep learning models with
massive data (e.g., Places [2], [3]) under the supervision of
global scene labels. While recognizing latter scenes usually
requires more complete understanding of image contents (from
the local point of view). The main components of scenes are
objects, such as tree, rock, car, bed etc. [4]. Recognizing scenes
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by extracting object based representations is an intuitive way.
However, the diversity of spatial layouts (of objects) and the
object co-occurrences (between scenes) may lead to the intra-
class difference and inter-class similarity of scenes, which
limit the accuracy of scene recognition.

Previous works integrate object information for scene recog-
nition from various aspects. Some works [5], [6], [7], [8] di-
rectly use object presence as the intermediate representations,
which are fed to scene classifiers after feature quantification.
Wang et al. [9] implement object detection to locate the
positions (bounding boxes) of objects, where the local features
are extracted inside the bounding boxes of objects. George et
al. [10] propose to detect objects for active learning of fine-
grained scene recognition. Some other works [11], [12], [4]
separately train convolutional neural network (CNN) models
on object-centric database (ImageNet [13]) with the supervi-
sion of object labels and on scene-centric database (Places [2])
with the supervision of scene labels, then features extracted
from different types (object and scene) of CNN models are
combined for scene recognition. These works mainly focus
on the explicit object presence or hidden features (e.g., CNN
activation trained in supervision of object labels) of objects.
However, only representing images with object based features
(as in those previous works) still cannot tackle the ambiguity
caused by the object co-occurrences between scenes.

An alternative way is to integrate more discriminative
components, such as object relations, into the representations
of scenes. Also obtaining spatial relations between objects can
somehow represent the spatial layout of the scenes, which is
helpful to distinguish some particular scenes that are confused
by object based representations. For instance in Fig. 1, differ-
ent scenes such as dining room and classroom may contain
similar objects such as table and chair. When only using the
object presence to represent images, the object based features
of those two categories are difficult to be distinguished.
However, when considering the intermediate representations
with spatial layout, those scenes can be distinguished, i.e., in
dining room, the table is usually surrounded by the chairs,
while in classroom the chairs are mostly behind the table.

One intuitive way to integrate spatial relations in intermedi-
ate representations is to implement object detection techniques
[14], [15], [16] to simultaneously obtain object labels and the
positions of their bounding boxes. Some previous works [17],
[18], [9] have implemented object detection techniques for
scene recognition. However, these works either only use the
object labels without spatial information (in [17], [18]), or
only locate the position of bounding boxes to extract local
features (in [9]). None of these works have attempted to detect
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table is surrounded by chairs

(a) dining room

chairs are behind tables

(b) classroom

Fig. 1. Scenes dining room and classroom with similar object presence of
tables and chairs, but different spatial layout. Intermediate representations
such as object presence may not be powerful enough to distinguish these two
scenes, more discriminative information such as spatial relations are desired.

spatial relations between objects with both object labels and
the bounding boxes, which are more discriminative to abstract
scenes.

Moreover, RGB-D data is helpful to locate the objects. The
low cost depth sensors, such as Microsoft Kinect, can capture
RGB-D data, which extends traditional RGB recognition by
including depth information. Depth camera can provide spatial
information to detect object boundaries and understand the
spatial layout of objects in scenes. Combining RGB with depth
images to recognize scenes usually achieves better perfor-
mance than only using RGB or depth images. In previous
works, depth information is modeled using handcrafted fea-
tures. Although automatic feature learning from the data with
CNN can provide more discriminative representations, the lack
of large enough RGB-D databases limits the complex CNN
models to be suitably trained with RGB-D data. Recently,
Song et al. [19] proposed SUN RGB-D, a larger scene RGB-
D dataset that can be used to train more complex models for
scene recognition [9], [20].

In this paper, we propose to detect object and their rela-
tions on RGB-D data for scene recognition. Particularly, the
framework of two types object-to-object relation based repre-
sentations are illustrated in Fig. 2. First, an intermediate rep-
resentation of the co-occurrences of objects and their relations
is proposed to exploit the spatial layouts of scenes, which is
shown in the top row of Fig. 2. Particularly, the proposed inter-
mediate representation is based on the co-occurring frequency
of object-to-object relations (denoted as COOR), which is rep-

resented as a three order tensor ((object, relation, object))!.
Compared to previous intermediate representations of object
presence, COOR is more discriminative to those scenes with
similar object distributions (see Fig. 1). And we show that
COOR extracted from multimodal RGB-D data is helpful
to obtaining powerful representations and complementing the
global features.

Second, in contrast to previous intermediate representations
(e.g., object presence and co-occurrences), a more discrimina-
tive and explicit type of representation, in a freer form of sen-
tences of local captions, is proposed to describe images with
richer semantic information, such as objects and their relations.
Object-to-object relations are sequentially represented in our
proposed explicit representations, denoted as SOOR. Without
the limitation of fixed data structure in COOR?, richer types
of object-to-object relations are proposed for SOOR . The
framework of scene recognition with SOOR is illustrated in the
bottom row of Fig. 2. First, sentences of local captions (SOOR)
are generated by a template which is typically designed for
scene recognition. Then SOORs are encoded with sequential
model, i.e., recurrent neural network (RNN). Finally, the
encoded features are pooled into global features to feed the
scene classifier (implemented as multi-layer perceptron, MLP).
In order to obtain more accurate object labels and bounding
boxes, object detection is implemented on the RGB-D data,
where a multi-modal proposal fusion method is proposed for
RGB-D object detection.

Compared to the preliminary conference paper of this work
[21], the contributions of this paper can be summarized as:
1) we propose SOOR to represent objects and relations in
a freer form of representations (sentences of local captions)
to avoid the limitation of fixed data structure; 2) we propose
richer types of relations, such as extended directional relations,
distance and area, to provide more discriminative information
; 3) we propose a multimodal Faster-RCNN-RNN framework
to detect and sequentially encode object-to-object relation for
RGB-D scene recognition; 4) the proposed method obtains
gains of performance on widely used RGB-D datasets, such
as SUN RGB-D and NYUD?2, outperforming the state-of-the-
art.

II. RELATED WORK
A. Intermediate representation

Previous works mainly extract intermediate representations
of semantic concepts, such as objects, attributes, or some types
of hidden patterns, to describe images. Vogel and Schiele [22]
proposed to represent natural scenes with regional interme-
diate representation of local concepts such as water, rocks
or foliage. Similarly, Object bank [7] trains classifiers with
multi-scale images from ImageNet to obtain a more descriptive
representation. The classemes representation [8] is based on

IRepresenting images with COOR is first proposed in our preliminary
conference paper [21] (referred to OOR in that work).

2For instance, obtaining COOR with 19 categories of objects and 16 types
of relations results in the three order tensors in size of 19 X 16 x 19
(5776 dimension after flattening), while only a few elements are nonzero
(meaningful). Also the data structure (three order tensors) of COOR only
supports the fixed types of relations, which limits the flexibility of COOR.
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Fig. 2. Framework of scene recognition with COOR and SOOR. N objects are detected to generate M = (%\,) triplets and sentences. The triplets are
converted into COOR, and then fed to classifiers. All the sentences of (SOOR) are first encoded with RNN, and then pooled to the global vectors, which are
finally fed to the scene classifier. Different types of relations, such as V, D, A, are introduced in subsection IV-A.

a set of fixed basis classes. Attributes [23], [24] follow a
similar idea, where classifiers are trained to detect whether
certain attributes are present or not. Attributes can be modeled
at both local and global levels, and defined for both objects
[23] and scenes [25]. Different types of CNN models are
used to extract features, where different types of features
are combined with different strategies, including scale-specific
networks [4] or Fisher Vector (FV) encoding [11], [12]. Those
types of intermediate representations are either extracted from
local patches in dense grid or from global images. However,
without precisely locating the object regions (e.g., with object
detection), the extracted features may not be reliable enough
for scene recognition.

B. Scene recognition with object detection

Some works [17], [18], [9] have implemented object detec-
tion technique for scene recognition. George et al. [10] pro-
pose to represent scene images by object distributions based
on object detection, which is then optimized to distinguish
fine-grained scenes by semantic clustering. Bappy et al. [17]
combine object detection with manual annotation for active
learning of scene recognition. Only representing images with
object distributions lacks of spatial information. Wang et al.
[9] extract local features located by the object detection, and
local features are embedded with Fisher Vector.

In this paper, we adapt Faster R-CNN to RGB-D data by
proposing multi-modal proposal fusion methods, where the
accuracy of locating objects is obviously improved than only
using RGB data. In addition to object detection, we further
detect spatial relations to represent images for scene recog-
nition. If the object presence (obtained by object detection
technique) is regarded as first order representations of image
content (e.g., objects), the proposed object-to-object relation
based representations can be regarded as a mixture of first and
second order representations, which are more discriminative
than the scenes with object co-occurrences.

C. RGB-D recognition

Besides widely used CNN models, earlier works design
handcrafted features for depth data, which captures depth-
specific properties and avoids the requirements of large scale
data. Gupta et al. [26] propose to detect contours for seg-
mentation of depth images then the outputs of segmentation
are quantified (as local features) into global features for scene
classification. Banica et al. [27] first quantify local features
with a second order pooling method, which are used for
segmentation and scene classification. More recently, some
architectures of multi-layered networks can be trained directly
from large amounts of unlabeled data. Socher et al.[28] use
a single layer CNN trained unsupervisedly on patches, and
combined with a recurrent neural network (RNN).

More recent works rely on transferring and fine tuning
the pretrained RGB CNN model (e.g., Places-CNN pretrained
on RGB database, Places [2]) to depth data [29], [9], [20],
[19]. Some approaches[20], [29] propose to incorporate CNN
architectures by fine tuning with CNN architectures of two
streams. Zhu et al. [20] fine tune the depth CNN models
from the RGB CNN models by including a multi-model fusion
layer, which simultaneously considers inter- and intra-modality
correlations, meanwhile regularizing the learned features to be
compact and discriminative. Rather than transferring or fine
tuning, Song et al. [30] propose to train depth-specific CNN
models from scratch in weak supervision. More than just using
CNN models, Wang et al. [9] first implement object detection
technique to obtain bounding boxes, and local CNN features
are extracted inside the bounding boxes. Also, CNN features
are extracted from images. Then CNN features of multiple
modalities (RGB and depth) and multiple regions (local re-
gions and images) are combined with a component aware
fusion method. Rather than hidden features of CNN models,
we also integrate object-to-object based representations, such
as COOR and SOOR in the proposed framework.
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D. Image captioning

The goal of image captioning is to describe images with
natural languages. Generally, there are two branches of meth-
ods of generating image captions. One branch is the integrated
models [31], [32], where words or concepts are first detected,
and then integrated into sentences with some fixed templates.
Another branch is the generated models [33], [34] that follow
an similar CNN-RNN architecture. In generated models, CNN
is regarded as “encoder”’, where the visual information are
encoded to some feature vectors, and RNN is acted as “de-
coder”, where the encoded features are sequentially decoded
to the natural languages. More recently, dense captioning
frameworks [35], [36] are proposed to generate local captions,
which focus on the local regions of images. The frameworks
of dense captioning are mainly inspired by Faster R-CNN
[16], which first implement region proposal network (RPN)
to obtain dense proposals. Then a multi-loss layer, consisting
of a loss layer of the coordinates of bounding boxes and a loss
layer of local captions implemented by RNN model.

These generated models require large amount of annotations
of captions, while our proposed method requires annotation of
objects, which are easier to be collected than captions. Also,
previous works (such as [31], [32]) focus on generating (local)
captions that are friendly to human understanding, while our
proposed approach is designed to generate sentences of local
captions (i.e., SOOR) to describe objects and their spatial
layouts in the scenes, which benefits scene recognition by
integrating richer and more discriminative components into
the representations of scenes.

III. INTERMEDIATE REPRESENTATIONS OF
OBJECT-TO-OBJECT RELATION

A. Co-occurring frequency of object-to-object relation

Common intermediate representations are mostly about
object presence, which can be represented as P}, =
t[pl, Doy e ey p|IO| (see Fig. 4 (b)), where p! is the appearance
requency of object ¢ observed in the image I, and O is the
object vocabulary. With such type of representation, the object
co-occurrences between scenes may reduce the discrimination
between those scenes, leading to the ambiguity to the clas-
sifying models. An alternative (more discriminative) way is
representing images with statistical matrix of object-to-object

Piy p{\O\

co-occurrences, P(SO = (also see

p\ou Plojiol
Fig. 4 (c)), where each element pm represents the appearance
frequency of co-occurrence between object ¢ and j.

However, only representing images with objects information
(e.g., object presence or object co-occurrence) lacks consider-
ing of the spatial layouts of scenes, which may still bring
ambiguity to the scenes with object co-occurrences. Thus,
the proposed intermediate representation integrates objects and
their spatial relations, which is represented as a type of triplet
(object, relation, object), also denoted as co-occurring fre-
quency of object-to-object relation (COOR) representation.
The proposed COOR can be formulated as a three order tensor
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Fig. 3. Analysis of objects and scenes co-occurring, (a) correlation matrix, (b)
correlation matrix after reordering with clustering, where the “(#)” represents
the cluster ID.

Ploor € RIOXIValXIOl (see Fig. 4d), where V, is the vo-
cabulary of directional relations between objects. Particularly,
we define the relative relations based on the coordinates of
object bounding boxes b = [x1,y1, X2, Y2], Where [x71,y;] are
the coordinates of left-top corner, and [z9,y-] represent the
right-down corner. The relation between object ¢ and j are
represented as

VD = [g (4 =)

b =
[9 (xi —fﬂ{) g (yi —y{) .9 (xé —xé) g (yé —yé)}

0 ) =0
’ ZJ_C v . There are |V| =
1, if >0

24 = 16 different types of spatial relations between objects.

where g (z) =

B. Insights of using object-to-object relation

The key limitation of previous object based intermedi-
ate representations (e.g., object presence and object co-
occurrences) is that the object co-occurrences between scenes
may confuse the classifying models. In order to obtain some
insights of the proposed COOR, we first analyze the affects
of object co-occurring (between scenes) for scene recognition.
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Fig. 4. Feature visualization of a toy example, (a) one image of “dining room” from SUN RGB-D, and the object annotations are from the ground truth, (b)
the visualization of P(I), which is normalized by the counting of appearances, we select three object categories for this toy example, (c) the visualization of
P(I)O, the frequency of object co-occurring, (d) the visualization of Péoo g» Which should be represented as 3D tensor. Since 3D tensor is hard to visualize
in (2D) space, we slice it in dimension of “relation”, obtaining feature maps of four types of relative relations (only using less types of relations for better
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visualization) , such as “left-up”, “left-down”, “right-up”, “right-down”. For instance, “left-up” represents the co-occurring frequency between objects in such
relation. Note that (c) and (d) are the visualizations of feature, and for training classifiers, the features are stretched to vectors.

And then we compare the proposed COOR with other types
of intermediate representations on the SUN RGB-D [19]
database. This database contains 40 categories with 10335
RGB-D images. Following the publicly available split in [19],
[9], 19 most common categories are selected, consisting of
4,845/4659 images for training/test. Also, 19 popular object
categories are selected in [19] for the object detection, whose
annotations are given with the bounding box coordinates and
object labels.

1) Scene recognition with intermediate representations: We
illustrate the statistics of the co-occurring (appearing in the
same image) between objects and scenes in a correlated matrix
W, which is visualized in Fig. 3 (a). Each element wy, in the
matrix W is the co-occurring frequency between scene s and
object 0. With such matrix W and the object distributions P},
the scene probability distribution can be obtained as:

Pl = PiwT )

where P{ can be used for predicting the scene label by find-
ing the scene category with maximum probability. Also, the
scene label can be predicted by training SVM [37] classifiers
based on the representations of Pé, Péo’ and Péoo R

2) Comparison of different types of co-occurring based rep-
resentations: Confusion matrices of different representations
are compared in the Fig. 5, where the overall classes accuracy
is calculated by the mean of diagonal values. Note that the
accuracy of Pé (in Fig. 5 (a)) is much lower than others.
Particularly, many scenes such as “dining area”, “conference
room” and “dining room” are misclassified to “classroom”.
This confused problem is mainly caused by similar object co-
occurrences among these scenes. In order to better visualize
such confusion between scenes, the correlation matrix in Fig. 3
(a) is re-organized with the spectral clustering [38] algorithm.
Thus the closed categories (in the same cluster) can visualized
in a closer way. The Fig. 3 (b) visualizes the correlation
matrix after re-ordering the rows and columns. In practice, the
number of cluster is k& = 5, the scenes (rows) are reordered
by the cluster ID, and the objects (columns) are reordered
according to the clustered results of spectral clustering. It can
be observed that many scene categories such as “classroom”,
“dining area”, “dining room”, and ‘“conference room” are

clustered together because of the co-occurring of objects like
“chairs” and “tables” (see the first two columns in Fig. 3 (b)),
this is also the reason of the confusion between scenes in Fig. 5
(a).

3) Insights of removing confusion with COOR: In addition
to using Eq. 2 to predict scene labels, we also recognize scenes
with SVM classifier with different types of intermediate repre-
sentations of P(S, Péo, and Péoo - The confusion matrixes
of using different types of intermediate representations are
visualized in Fig. 5 (b)-(d). Note that the results of both Fig. 5
(a) and (b) are based on the same object based representation
P(I), but using different classifiers, i.e., maximum probability
(use Eq. 2) and SVM. The comparisons of them illustrate the
efficiency of more discriminative classifier SVM. Moreover,
using PL,or With SVM (in Fig. 5 (d)) obtains even better
performance than P} and P/, ,, including better overall classes
accuracy and less confused problems in the confusion matrix.
For instance, the confusion between “classroom” and “dining
room” in Fig. 5 (d) is much better than that in Fig. 5 (a), where
the rate of misclassifying from “dining room” to “classroom”
gets lower from 87% to 20%. This also supports our hypothesis
(in Fig. 1) that the scenes with object co-occurrences also can
be distinguished by integrating the relative relations into the
intermediate representation.

The above evaluations are based on the ground truth of
annotated objects. Since the annotations of object are not
available for the scene recognition in real world, the object
detection technique is implemented to obtain the labels and
bounding boxes of objects, which will be introduced in the
Section V.

IV. SEQUENTIALLY ENCODING OBJECT-TO-OBJECT
RELATION FOR SCENE RECOGNITION

The insights of COOR illustrate the efficiency of integrating
object-to-object relations into intermediate representations.
One benefit of using intermediate representation is not re-
quiring further encoding, COOR can be fed to the classifiers
after flatting the tensors to vectors. However, using such data
structure of COOR with a fixed size tensor to represent the
co-occurring frequency of triplet {(object, relation, object)
also limits the extensibility of COOR. With the increasing

door

door
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Fig. 5. Confusion matrices, evaluated with annotated objects from ground truth, (a) PS{ in Eq. 2, (b) Pé with SVM, (¢) P(éo with SVM, (d) Péoo R With

SVM. The horizontal and vertical coordinates are symmetric.

types of relations, the size of COOR tensor sharply expands,
which limits COOR from exploring richer types of spatial
relations for more complex scenes. Alternatively, the triplet of
(object, relation, object) can be represented as a freer form
of phrases or sentences, such as, “Object (A) Relation Object
(B)”. With such type of representation, external elements
such as new type relations can be directly insert into the
representations. For instance, more types of relations can
be inserted as “Object (A) Relation (a), (b), ..., (x) Object
(B)”, where [Relation (a), (b), ...(x)] represents new types of
relations, while it requires higher order or new tensors to insert
new elements within COOR, while is cost consuming. Details
of using more types of relations to generate representations of
SOOR are introduced in the following section. In contrast to
representing objects and their relations with the co-occurring
frequency tensors in COOR, we propose to explicitly represent
objects and their relations with sequential representations,
such as phrases and sentences of captions. Thus, more types
of relations can be sequentially listed in those sentences
(captions).

In previous works, sequential representations such as image
captions and local captions are generated to describe images,
which are more friendly to human understanding. Particularly
for scene recognition, we propose to generate sequential
representations with the detected objects and relations using
a fixed template, which are in form of the sentences of local
captions. The generated local captions are then encoded with
sequential model (e.g., RNN) to obtain sentence-level scene
distributions (or hidden features). Since our task is to predict
scene labels for the global images, those hidden features
of local captions are then pooled to the global features for
scene recognition. In our implementation, SOOR encoding and
pooling are implemented in an end-to-end framework (see Fig.
2).

A. Richer types of spatial relations

In addition to the directional relations, more types of
relations (such as extended directional relations, distances and
area size of objects) are integrated in SOOR without explicitly
increasing the size of features. Particularly, we focus on the
spatial relations, which can somehow reflect the spatial layout
of the whole scenes (after aggregation of each SOOR). We

do not consider semantic relations, such as “riding on” and
“playing against”, since those types of relations require exter-
nal detectors, which requires external annotations for training.
Also the accuracy of those detectors of semantic relations may
not reliable enough to improve the scene recognition.

1) Extended directional relations: With co-occurring based
representations, some types of directional relations are defined
in Eq. 1. Although those relations consider the relative di-
rections between objects, while they do not consider another
particular type of relations, i.e., overlaps between objects. Note
that overlapping is also an meaningful type of relation between
objects. In order to detect the relations of overlapping, we
extend Eq. 1 as follows:

(id) _
Vi) =
[g (w’i —ff%) g (yi —yé) g (xé —x{) .9 (yé —y{)}

where Vﬁ(w ) represents the cross relation between objects
7 and j. For instance, Vﬁ(m) = [1,1,0,0] represents that
there exists overlap between object ¢ and j. By combining
Vi) and Vﬁ(w ), we obtain the extended relations V(44) =
[Vcsi’j),vléi’j)}. For instance, with vie) = [0,0,0,0] and
Vi = [0,0,1,1], obtaining V() — [V vi)]
[0,0,0,0,0,0,1,1], which means object ¢ is on the left-up of
object j and has overlap (at the right-bottom corner of object
1 and left-up corner of object j ).

2) Distance : Besides the directional relations, we also con-
sider the distance between objects as another type of relation.
Distance is a relevant factor to reflect relation. The smaller
distance (between objects) usually results closer relations.
Particularly, we define 3 types of distance, including central
distance, minimum distance and maximum distance.

Central distance measures the distance between the centers
of the objects, which can be formalized as follows:

Dg’j) = dist (center (b') , center (b)) )

where dist (z,y) represents Euclidean distance between
x and y, and center (x) means the central coordi-
nates of object bounding boxes, i.e., center (bz) =
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[(m’l +4) /2, (yi + y%) / 2}. In addition to central distance,
minimum distance Dl(rm) and maximum distance Dr(ﬁg,z are
also considered. Similar to the directional relations, all

these types of distance are quantified into binary codes by

) = { 0, if x <=thres

] , resulting vectors D =
1, if x> thres

(D&, D), D
3) Area : Besides relative relations, the attribute of the
object area is also included in the generation of local captions.
Similar to the above relations, the area of the objects S (b)
are quantified into binary codes with the length of two bits.

}of |D| = 3 dimensions.

B. Generation of SOOR

Sequential representations (SOOR) are generated by the
objects, their attributes and relations in a template, which
are in a form of local captions. Particularly, the template of
our SOOR is represented as follows: “Attribute(i) Object(7)
Relation (V') Relation (D) Attribute(j) Object(j) in Scene”.
For instance, “01 (small) chair 00000011 (left-up, overlapped)
001 (closed distance) 11 (large) table in dining room. ”

C. Sequentially encoding model

Since the proposed SOOR is generated in the form of
sentences of local captions that represented in a grammatical
order (it can be ensured because we generate local captions
in a fixed template), it’s intuitive to sequentially predict scene
labels with RNN model (i.e., a sequential model). During the
training, the first T words x = [z, ..., 27|, where T'+1 is the
length of words in each caption (7" is the length of captions,
except for the last word, scene label) are sequentially input
to RNN model (we implement GRU unit [39]) to obtain the

hidden activation h = [hy,...,hr|, RNN is formalized as
follows:
re =0 (Wyexy + Uprhy—1) 5)
zt =0 (Wyxy + Uyhe—q) (6)
hy = tanh (Wx; + U (ry © hy_1)) @)
he =(1—2) hy1 + zihy ®)
y = argmax (D (hr)) 9)

where o is a logistic sigmoid function, ® is an element-
wise multiplication, ® is two fully connected layered neural
network. The last element h7 of the hidden activations is then
passed through two fully connected layers to predicate scene
category y of input sequence (see Eq. 9).

Note that the sequential model can not only predict scene
labels of local captions, but also obtain the probability vectors
of scenes after softmax normalization of ® (hy). Particularly
the predicted scene labels are used for the evaluation of
sentence-level recognition, while the probability vectors of
scenes are pooled into global vectors for the image-level
recognition.

D. Local to global model of scene recognition

In order to predict scene labels for the global images,
local captions (SOOR) are encoded into hidden activations,
which are then pooled into the global features and fed to
scene classifier in an end-to-end architecture. The bottom row
of Fig. 2 illustrates the framework of proposed end-to-end
architecture. For each image, a fixed number N of objects
are detected, so a fixed number M = (?v) of local captions
are correspondingly generated. All M local captions are used
as input to RNN model to obtain M last hidden activations
[hL., ..., h3]. After averagely pooling of M activations, the
resulted vector i is fed to the MLP (consisting of two fully
connected layers and one softmax layer) for classification of
scene labels.

M

hr = Zh%) /M (10)
=1

Yy = arg max (<I> (ET>> (11

V. MULTI-MODAL OBJECT DETECTION AND FEATURES

In order to obtain spatial information in a more accurate
way, the object detection technique is implemented on the
RGB-D data, where depth data provides extra spatial (distance)
information to complement RGB-D data. In particular, we
adapt Faster R-CNN model [16] to the RGB-D data, and
the RGB and depth modalities are combined by fusing the
proposals of each modality.

A. RGB-D object detection

Being a region based method for object detection, Faster
R-CNN includes a branch, named region proposal network
(RPN), to generate candidates of bounding box. On each
candidate region, the CNN hidden features are first extracted
by region of interest (Rol) pooling layer, and then fed to the
classifying module. The classifying module usually consist of
two types of regressors, a softmax classifier for object labels
and a regressor for the coordinates of bounding boxes.

In this work, we separately train two Faster R-CNN models
on RGB and depth data, which are denoted as FRCN-RGB
and FRCN-Depth, respectively, where ZF net [40] is used as
pre-trained model in the training process. In addition to train
separate models, both RGB and depth models are combined
by connecting two branches of CNNs (i.e., RGB and depth
branches). Particularly, RGB and depth are combined through
merging of modality-wise proposals. First, two branches sep-
arately generate proposals by using RPN models (requiring
FRCN-RGB and FRCN-Depth train RPNs separately). Then
the region proposals of different modalities are merged to-
gether with our proposed RGB-D proposal fusion method,
which is introduced in following subsection. The proposed
RGB-D object detection model is denoted as FRCN-RGBD

B. RGB-D proposal fusion
With the RPN branches, the proposals B,y =
1) (n) _ (1) (n)

{B .,Brgb} and Bgepin = {Bdepth,..‘,Bdepth} are

rgbr
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obtained on each pair of RGB and depth images, where each
Bf;)b and Bd?pth, i = [1,...,n], contain the proposal infor-
mation in form of bounding box, 1nclud1ng the coordinates

biq)b, bg%) ;, and confidence score C’ o and C((ie)pth Let Nr(;)b

and N, (Eept ,, be the number of proposals contained in Bﬁ g)b and

rgb}

B((ie)pth’ respectively. Besides, we set

Nr(q)b = mm{‘ rgb > Qrgb|

(2) . %
Ndepth =nmn Cdepth > Qdepth | 5

j

Where ‘C by > argb‘ denotes the number of proposals with

value Cﬁ g)b larger than a4, which is considered as the
confidence threshold, and A, is an empirical value of the
maximal number of proposals, ensuring enough proposals. We
consider & = Grgp = Qdepth aNd A = Apgp = Ageptn » Since we
do not obtain other prior of RGB and depth proposals. Note
that these two types of hype-parameters o and A decide the
number of top NT(,;)b /N, ngoth proposals that are selected from

B g/ Bgepth according t0 Crgp/Cyeptn- The selected proposals
are denoted as qub/Bdepth

After merging the proposals of BS g and Bdepth, we obtain

Bfgbd = BrgbUBdepth} Note that it is unavoidable to

lead to the overlapping between the proposals of BT ba» SINCE

b and Bdepth are separately generated without process of
av01d1ng overlap. However, the overlap between proposals may
lead to heavily redundant features for the scene recognition.
In order to avoid overlapping, the process of NMS is imple-
mented to obtain the filtered proposals , which is formulated
as follows:

B;fooled = NMS{ rgb U Bdepth’ﬂ}

where (3 is the threshold of Intersection-over-Union (IoU),
which impacts the overlap between the resulted proposals.
During NMS, the merged proposals Bf g are first ordered

according to the confidence score of C% bd = {CT b C’depth}

where C b/C’ b are the corresponding confidence scores of
the selected proposals Then for each pair of proposals with
overlap (i.e., IoU between the proposals is larger than /), the
proposal with smaller confidence score will be removed from
the B pooled*

After NMS, the hidden features of RGB and depth CNN (of
layer conv5) are concatenated for the region of interest (ROI)
pooling. After ROI pooling, the resulted features are fed to a
module that consists of 2 fully connected layers, and two types
of regressors, including object class score and coordinates (of
bounding boxes) regressors.

C. Multi-modal COOR and SOOR

RGB-D fusion of COOR and SOOR are implemented with
RGB-D object detection. First, multi-modal object proposals
are obtained with RGB-D proposal fusion, then triplets of
(object, relation, object) are obtained with RGB-D fused
proposals, and RGB-D hidden features are concatenated to
feed the Region-of-Interest (Rol) pooling within the bounding

boxes of the object proposals, which are finally used to
generate COOR and SOOR. Compared to single-modal, RGB-
D multi-modal COOR and SOOR mainly rely on the proposed
multi-modal proposal fusion.

VI. EXPERIMENTS

A. Setting

1) Dataset: Our approaches are evaluated on two datasets:
NYU Depth Dataset version 2 (NYUD?2) [41] and SUN RGB-
D[19]. The former consists of 27 indoor categories. Following
the original training/test split of images 795/654 in [41], all
27 categories are reorganized into 10 categories, where some
of categories with few images are combined into a joint
category “other”. The latter contains 10335 RGB-D images
in 40 categories,. Following the public split in [19], [9],
the 19 most common categories are selected, consisting of
4,845/4659 images for training/test. The split is provided in
the toolbox of SUN RGB-D dataset. For the object detection
evaluation, we follow the same split of scene recognition, since
the object detection further serves for the scene recognition.
All depth images are encoded to HHA images using the code
in [42].

2) Evaluation metric: Following [19], [9], we report the
average class accuracy for the scene recognition (i.e., mean
accuracy overall classes). We follow the evaluation method of
[43] to report the average precision (AP) for object detection.
Detected results are considered to be true or false positives
according to the overlap area with ground truth bounding
boxes. To be considered a correct detection, the overlap area
a, between the predicted bounding box B, and ground truth
bounding box Bg; must exceed 50% (i.e., IoU = 0.5) by the
following evaluation metric:

area (Bp N Byt)

o= Grea (B, U By)

B. Object detection

1) Implementation : In training of object detection model,
both FRCN-RGB and FRCN-Depth use the ZF net [40] as the
pre-trained model, and follow the empirical parameter setting
of Faster RCNN.

In the implementation of object detection, we set A =
200 for both FRCN-RGB and FRCN-Depth models, and set
a = 0.3, 8 = 0.6 following the empirical setting of Faster
RCNN work. Note that this setting is only used for object
detection. For various types of scene recognition tasks, such
as extracting COOR and generating SOOR, we practically
evaluate the parameters to obtain better performances. Depth
data is represented as raw depth image, which is further
encoded to HHA image. The detected spatial relations are in
two-dimensional space, although implemented on multi-modal
data.
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TABLE I
OBJECT DETECTION AP (%) OF SUN RGB-D

Model bathtub bed bookshelf box chair counter desk  door dresser garbage bin
FRCN-RGB 344 63.2 39.8 12.5 439 422 20.3 30.7 30.0 40.0
FRCN-Depth 54.5 71.6 25.5 5.0 454 39.5 222 10.5 18.0 342
FRCN-RGBD 57.5 75.6 44.2 17.7 49.6 48.9 254  33.6 40.2 49.2
Model lamp monitor  night_stand  pillow  sink sofa table tv toilet mAP
FRCN-RGB 38.5 343 39.2 33.0 46.9 39.5 346 232 74.5 37.9
FRCN-Depth 40.0 18.8 34.8 40.2 49.2 44.9 41.2 14.3 70.0 35.8
FRCN-RGBD 53.0 44.0 47.6 48.6 61.1 50.3 432 352 81.7 47.7

2) Category-wise evaluation: We evaluate the performance
of object detection on SUN RGB-D dataset, and the compar-
isons between different models and different modalities are
illustrated in Table I with the setting of A = 200. Comparing
between RGB and depth modalities, depth model works better
on some object categories such as “bathtub”, “bed”, “chair”,
“pillow” and “table”, that contain enough depth information
in shapes, while works much worse than RGB model on that
objects such as “door”, “dresser”, “monitor”, ’tv”, that barely
have depth in shapes (thin and flat in shape). However, with
the RGB and depth fusion, the performances of all category
are improved. And the overall result (mAP) of FRCN-RGBD
outperforms RGB model with a large margin about 10%,
which illustrates the effective of using depth data for object
detection.

C. Scene recognition with COOR and SOOR
1) Evaluation of COOR:

—~ Feature (fc7-rgbd
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Fig. 6. Parameter evaluation of using object detection for scene recognition,
evaluated on the SUN RGB-D dataset, with fc7 activation of proposed FRCN-
RGBD.
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Fig. 7. Average number of objects detected from each image with different
parameters « and A on SUN RGB-D.

a) Parameter evaluation of COOR for scene recognition:
For the scene recognition with COOR, the detected informa-

tion of objects are used for generating COOR. We first obtain
region proposals with RPN, then extract fc7 (last but one fully-
connected layer) activation for each proposal, and finally the
regional fc7 activation are combined to a global feature vector
by max pooling on all proposals from one image. In order to
speed up classification model training, the general dimension
reduction method PCA is perform on Fy._concar to project
the features to 512-dimensions. Note that, this dimension
reduction process speeds up the classifier training barely with
accuracy loss.

The evaluations of parameter o and A are illustrated in
Fig. 6. Note that, for the scene recognition, the larger A
results more overlapped area between proposals, redundant
local features and proposals with lower confidence. Thus, we
select much smaller A for scene recognition. In Fig. 6, the
smaller v and larger A lead to better results, and best results
are obtained when o = 0.3 and A\ = 13. The average number
of detected objects of each image are illustrated in Fig. 7. For
the larger o (e.g., @« = 0.4 or a = 0.5), it shows that the
average number of detected objects obviously increases with
A, which is also the reason of accuracy improvement in Fig. 6,
particularly for a = 0.5. Based on the selection of best results,
we set « = 0.3 and A = 13 of object detection model for the
rest experiments of scene recognition.

TABLE II
SCENE RECOGNITION ACCURACY (%) WITH INTERMEDIATE
REPRESENTATION
Intermediate RGB  Depth RGB-D
representations

Pé 16.8 13.9 17.8

I
Py 314 26.5 319

I
P5o 327 28.7 334

I

Ptoor 335 30.0 36.3

b) Comparisons of using COOR: We build the inter-
mediate representations of different modalities based on the
object detection results. The comparisons between different
intermediate representations are illustrated in Table II. Note
that, the main difference between the results in this table and
Fig 5 is the source of object labels and their bounding boxes.
The intermediate representations of RGB, depth and RGB-D
in this Table II are based on the detected results of FRCN-
RGB, FRCN-Depth and FRCN-RGBD, while the results in
Fig. 5 are relied on ground truth annotations. Compared with
the intermediate representations in Fig. 5, the Pé are much
worse due to the lack of confidence for the object detection
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results. However, the other results of P}, P}, and Pl
outperform the ones in Fig. 5, especially the ones built on
the detected results after RGB-D fusion, obtaining the best
result with 36.3%. The advantage of the proposed COOR (with
detected bounding boxes) is covering (and extracting) more
information (object-to-object relations) in scenes, compared
to COOR with annotated bounding boxes. Comparing with
different representations, the PJ,,x achieves best results in
each modality, which outperforms Péo from 0.8% (RGB) to
2.9% (RGB-D), where the main improvement benefits from
the depth data.

TABLE III
COMPARISON RESULTS OF GENERATING LOCAL CAPTIONS WITH
DIFFERENT TYPES OF RELATIONS ON SUN RGB-D IN ACCURACY (%)

Accuracy (%)
OOR Relations GT Detected
"""|RGB [Depth [RGB-D
\4 37.0136.0 | 33.2 | 37.8
SOOR VD |385|37.8| 359 | 39.9
VDA [37.8|379]| 359 | 395
TF/IDF VDA [31.3(33.5]| 314 | 354
Word2Vec[44]| VDA |30.7|32.0| 29.4 | 333
COOR Vv 31.1(33.5] 30.0 | 36.3
COOR+SOOR % 39.1(38.7| 35.8 | 40.9
34— .
@@ RGB
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Fig. 8. Scene recognition accuracy with different number of sentences (in x
axis, the left number of objects N, and the right one is number of sentences
M, ie., N/M ) in each image.

2) Evaluation of SOOR:

a) Evaluation of using SOOR: We evaluate the factor of
object and sentence amount of SOOR to the scene recognition,
the results are illustrated in Fig. 8. The z axis indicates
the number of #(detected objects) /#(generated sentences) of
SOOR, represented as N/M, where M = (%) = N x
(N-1)/2.

The accuracy of recognition is illustrated in Fig. 8. The
best result is obtained with the setting of (N = 11/M = 55),
suggesting that too few objects may lack of information and
too many objects may bring noisy. Thus, a suitable setting of
objects leads to the best results, which is used for the rest of
experiments.

b) Comparison of using local captions: The comparison
results of generating local captions with different types of
relations are illustrated in Table III. Particularly, the sentences

of local captions (of SOOR) generated by the ground truth
(including scene labels, object labels and bounding boxes) are
also included in comparison. Recognizing with V' D relations
(directional relation and distance) based on SOOR obtains best
results with ground truth. Also object detection technique is
implemented on different modal (RGB, depth and RGB-D)
data to generate SOOR, and using RGB-D data achieves best
performance in general. Comparing with different types of
relations, V' D obtains best results with depth and RGB-D data,
while VDA obtains best results at RGB data. It’s interesting
that the SOOR generated by the detected results (particularly
on RGB-D data) obtain even better performance (about 1.4%)
than local captions generated by ground truth. Note that the
ground truth is more reliable, however the amount of ground
truth annotations is limited (about N = 5/M = 10), which
may not represent enough information of the scenes comparing
to the detected results N = 11/M = 55. Comparing to
COOR, recognizing with the SOOR obtains a gain of 3.6%
(RGB-D) in accuracy. In addition to RNN encoding, we
also include different types encoding methods of SOOR for
comparison in Table III, including term frequency, inverse doc-
ument frequency (TF/IDF) and word to vector (Word2Vec). It
can be observed that encoding SOOR with RNN outperforms
other encoding methods with a large margin in accuracy.

D. Multi-feature fusion

We evaluate different types of feature fusion to improve the
performances of scene recognition, the fusions are categorized
in the several aspects.

1) Local and Global features: In addition to COOR and
SOOR, we also directly extract CNN hidden features of region
(Local) and images (Global). The local features are extracted
with fine tuned FRCN models (output of last fc layers). The
global features are extracted with CNN models, such as D-
CNN [30] for depth and Places-CNN [2] for RGB.

TABLE IV
SCENE RECOGNITION ACCURACY (%) WITH CNN ACTIVATION

Feature RGB  Depth RGB-D

Local 43.5 40.0 46.3

Global 41.4 41.1 51.5
Global+Local 46.6 41.1 52.6
Local+COOR 45.8 41.8 50.3
Local+SOOR 46.5 42.8 51.6
Global+COOR  44.9 42.0 52.8
Global+SOOR  46.8 43.5 53.5

2) Comparison of different types of feature fusion: Differ-
ent types of feature fusion are compared in Table IV. When
concatenating with local features, COOR and SOOR outper-
form local features with 2.3%/3.0% on RGB and 1.8%/2.8%
on depth. Note that “Local”, COOR and SOOR can all be
regarded as local features, which consist of object based
information. Thus, it suggests that the gains of concatenating
“Local” with COOR and SOOR mainly benefit from the
higher order relations. When concatenating global features
with COOR and SOOR, we obtain the gains of 3.5%/5.4% on
RGB and 0.9%/2.4% on depth, and obtain the best result with
Global+SOOR. Compared with Local, SOOR is more suitable
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to be combined with global features. When combining RGB-D
models, each type of feature (single or fused) improves with
large margins.

TABLE V
COMPARISON RESULTS ON SUN RGB-D DATABASE

Models Accuracy (%)
RGB [ Depth RGB [ Depth [ RGB-D
Baseline
Places-CNN Places-CNN 41.4 38.7 46.9
- D-CNN - 42.4 -
Proposed
COOR COOR 33.5 30.0 36.3
G+L+COOR | G+L+COOR | 48.3 42.6 54.0
SOOR SOOR 37.9 36.0 399
G+L+SOOR | G+L+SOOR 50.5 44.1 55.5
State-of-the-art
DMFF [20] 36.5 40.4 41.5
Places-CNN + R-CNN [9] 36.5 40.4 48.1
MSMM [45] 41.5 40.1 52.3
RGB-D-CNN [30] 41.5 424 524

G: global, L: local

TABLE VI
COMPARISONS ON NYUD?2 IN ACCURACY (%)

Models Accuracy
RGB [ Depth RGB Depth RGB-D
Baseline
Places-CNN Places-CNN 53.4 51.8 59.5
- D-CNN - 56.4 -
Proposed
COOR COOR 45.1 40.9 48.6
G+L+COOR | G+L+COOR | 62.6 59.8 66.9
SOOR SOOR 459 474 50.6
G+L+SOOR | G+L+SOOR | 64.2 62.3 67.4
State-of-the-art
Places-CNN + R-CNN [9] - - 63.9
MSMM [45] - 56.4 65.8
RGB-D-CNN [30] - - 66.7

G: global, L: local

E. Comparison to the state-of-the-art

1) SUN RGB-D: Different types of features are combined
to compare with other state-of-the-art works [19], [20], [9],
[30]. The comparison results are illustrated in Table V. Some
works [19], [20] only extract global features, while Wang et al.
[9] propose to extract both global features and local features
for scene recognition. Although the work of [30] does not ex-
plicitly extract local features, the depth model (D-CNN) of that
work is trained based on local patches with weak-supervision.
Thus, local information is implicitly included in that work
[30]. Based on the object detection results, by concatenating
the local feature and COOR representation, our method Lo-
cal+COOR obtains 50.3% and outperforms the work of [9]
more than 2%. Note that the proposed Local+COOR only
extracts the local features (COOR is also a kind of local
features), while [9] combines both local and global features.
Although the single global feature in Table IV does not work
as well as that in [30], by combining local and global features
and concatenating with COOR, our Global+Local+COOR
achieves the state-of-the-art result with 54.0%, outperforming
[30] with 1.6%. Note that we take fc7 (with 4096 dimension)

activation as the global feature, in contrast to the fc8 (with 19
dimension) activation in [30]. Moreover, with more types of
relations, combining our proposed SOOR and global features
(i.e., Global+OOR) obtains the accuracy of 55.5%, which is
the state-of-the-art result of SUN RGB-D database to the best
of our knowledge.

2) NUYD2 : We do not train particular CNN models
for NYUD2 dataset, since this dataset contains much less
data than SUN RGB-D. We mainly fine tune the pretrained
models of SUN RGB-D to the NYUD2. Particularly, the Faster
RCNN models of object detection of SUN RGB-D is directly
applied to this NYUD2 dataset. Since using RGB-D features
obtains much better performance, we mainly report results of
RGB-D features of COOR, SOOR, Global+Local+COOR and
Global+Local+SOOR. Comparing to other works [46], [9],
[30], [45], our proposed Global+Local+COOR obtains better
performance of 66.9%. In addition to COOR, our proposed
method Global+Local+SOOR obtains the best results on all
three modalities. Among all the modalities, we obtain the state-
of-the-art result of 67.4% with RGB-D data.

VII. CONCLUSION

Object co-occurrences are unavoidably appeared between
different scenes, representing images with object based in-
termediate representation may result in ambiguity for scene
recognition. By analyzing the limitation of the previous in-
termediate representations of objects, we propose two types
of more discriminative representations, including co-occurring
frequency of object-to-object relation (COOR) and sequential
representation of object-to-object relation (SOOR) consisting
of objects and their spatial relations. First, COOR is pro-
posed as a novel type of more discriminative intermediate
representation, which is represented as three order tensors
that calculate the co-occurring frequency of the triplets of
(object, relation, object). Then, SOOR is generated in a form
of sequential representations. Without the limitation of fixed
data structure, richer types of relations such as extended
directional relations, distance, and area are detected to be
represented in SOOR. In order to better model the spatial
information, both COOR and SOOR are built on RGB-D data.
And the depth data is shown to be helpful for both object
detection and scene recognition tasks, especially for the objects
with depth in shape.

ACKNOWLEDGMENT

This work was supported in part by the National Natural
Science Foundation of China under Grant 61532018, in part
by the Lenovo Outstanding Young Scientists Program, in
part by National Program for Special Support of Eminent
Professionals and National Program for Support of Top-notch
Young Professionals, in part by the National Postdoctoral
Program for Innovative Talents under Grant BX201700255,
and in part by China Postdoctoral Science Foundation under
Grant 2018M631583.



IEEE TRANSACTIONS ON IMAGE PROCESSING

[1]

[2]

[5]

[6]

[8]

[9]

[10]

(11]

[12]

[13]

[14]

[15]

(16]

[17]

[18]

[19]

[20]

REFERENCES

L. Fei-Fei, A. Iyer, C. Koch, and P. Perona, “What do we perceive in
a glance of a real-world scene?” Journal of Vision, vol. 7, no. 1, p. 10,
2007.

B. Zhou, A. Lapedriza, J. Xiao, A. Torralba, and A. Oliva, “Learning
deep features for scene recognition using places database,” in NIPS,
Z. Ghahramani, M. Welling, C. Cortes, N. Lawrence, and K. Weinberger,
Eds., 2014, pp. 487-495.

B. Zhou, A. Lapedriza, A. Khosla, A. Oliva, and A. Torralba, “Places:
A 10 million image database for scene recognition,” IEEE Trans.
Pattern Anal. Mach. Intell., vol. 40, no. 6, pp. 1452-1464, 2018.
[Online]. Available: https://doi.org/10.1109/TPAMI.2017.2723009

L. Herranz, S. Jiang, and X. Li, “Scene recognition with cnns: Objects,
scales and dataset bias,” in 2016 IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), June 2016, pp. 571-579.

L. Li, H.Su, E. Xing, and L. Fei-Fei, “Object bank: A high-level image
representation for scene classification and semantic feature sparsifica-
tion,” in NIPS, 2010.

L. Torresani, M. Szummer, and A. Fitzgibbon, “Efficient object category
recognition using classemes,” in ECCV, 2010.

L.-J. Li, H. Su, Y. Lim, and L. Fei-Fei, “Object bank: An object-level
image representation for high-level visual recognition,” Int. J. Comput.
Vision, vol. 107, no. 1, pp. 20-39, 2014.

A. Bergamo and L. Torresani, “Classemes and other classifier-based
features for efficient object categorization,” in IEEE Trans. on Pattern
Anal. and Mach. Intell., 2014.

A. Wang, J. Cai, J. Lu, and T.-J. Cham, “Modality and component aware
feature fusion for rgb-d scene classification,” in The IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), June 2016.

M. George, M. Dixit, G. Zogg, and N. Vasconcelos, “Semantic clustering
for robust fine-grained scene recognition,” in Computer Vision - ECCV
2016 - 14th European Conference, Amsterdam, The Netherlands,
October 11-14, 2016, Proceedings, Part I, 2016, pp. 783—798. [Online].
Available: https://doi.org/10.1007/978-3-319-46448-0_47

M. Dixit, S. Chen, D. Gao, N. Rasiwasia, and N. Vasconcelos, “Scene
classification with semantic fisher vectors,” in CVPR, 2015.

M. D. Dixit and N. Vasconcelos, “Object based scene representations
using fisher scores of local subspace projections,” in Advances in Neural
Information Processing Systems 29, D. D. Lee, M. Sugiyama, U. V.
Luxburg, I. Guyon, and R. Garnett, Eds. Curran Associates, Inc., 2016,
pp. 2811-2819.

O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma,
Z. Huang, A. Karpathy, A. Khosla, M. Bernstein, A. Berg, and L. Fei-
Fei, “Imagenet large scale visual recognition challenge,” International
Journal of Computer Vision, pp. 1-42, 2015. [Online]. Available:
http://dx.doi.org/10.1007/s11263-015-0816-y

R. Girshick, J. Donahue, T. Darrell, and J. Malik, “Rich feature
hierarchies for accurate object detection and semantic segmentation,”
in The IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), June 2014.

R. Girshick, “Fast r-cnn,” in The IEEE International Conference on
Computer Vision (ICCV), December 2015.

S. Ren, K. He, R. Girshick, and J. Sun, “Faster r-cnn: Towards real-time
object detection with region proposal networks,” in Advances in Neural
Information Processing Systems 28, C. Cortes, N. D. Lawrence, D. D.
Lee, M. Sugiyama, and R. Garnett, Eds. Curran Associates, Inc., 2015,
pp. 91-99.

J. H. Bappy, S. Paul, and A. K. Roy-Chowdhury, “Online adaptation
for joint scene and object classification,” in Computer Vision — ECCV
2016: 14th European Conference, Amsterdam, The Netherlands, October
11-14, 2016, Proceedings, Part VIII, B. Leibe, J. Matas, N. Sebe, and
M. Welling, Eds. Cham: Springer International Publishing, 2016, pp.
227-243.

M. George, M. Dixit, G. Zogg, and N. Vasconcelos, “Semantic clustering
for robust fine-grained scene recognition,” in Computer Vision — ECCV
2016: 14th European Conference, Amsterdam, The Netherlands, October
11-14, 2016, Proceedings, Part I, B. Leibe, J. Matas, N. Sebe, and
M. Welling, Eds. Cham: Springer International Publishing, 2016, pp.
783-798.

S. Song, S. P. Lichtenberg, and J. Xiao, “Sun rgb-d: A rgb-d scene under-
standing benchmark suite,” in Computer Vision and Pattern Recognition
(CVPR), 2015 IEEE Conference on, Jun. 2015, pp. 567-576.

H. Zhu, J.-B. Weibel, and S. Lu, “Discriminative multi-modal feature
fusion for rgbd indoor scene recognition,” in The IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), June 2016.

[21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

[31]

[32]

[33]
[34]

(35]

[36]

[37]

[38]

(39]

[40]

[41]

[42]

[43]

X. Song, C. Chen, and S. Jiang, “RGB-D scene recognition
with object-to-object relation,” in Proceedings of the 2017 ACM
on Multimedia Conference, MM 2017, Mountain View, CA, USA,
October 23-27, 2017, 2017, pp. 600-608. [Online]. Available:
http://doi.acm.org/10.1145/3123266.3123300

J. Vogel and B. Schiele, “Semantic modeling of natural scenes for
content-based image retrieval,” Int. J. Comput. Vision, vol. 72, no. 2,
pp. 133-157, Apr. 2007.

A. Farhadi, I. Endres, D. Hoiem, and D. A. Forsyth, “Describing objects
by their attributes,” in CVPR, 2009.

C. H. Lampert, H. Nickisch, and S. Harmeling, “Attribute-based classifi-
cation for zero-shot visual object categorization,” IEEE Trans. on Image
Process., vol. 36, no. 3, pp. 453-465, 2014.

G. Patterson, C. Xu, H. Su, and J. Hays, “The sun attribute database:
Beyond categories for deeper scene understanding,” Int. J. Comput.
Vision, vol. 108, no. 1-2, pp. 59-81, 2014.

S. Gupta, P. Arbeldez, R. Girshick, and J. Malik, “Indoor scene
understanding with rgb-d images: Bottom-up segmentation, object
detection and semantic segmentation,” International Journal of
Computer Vision, vol. 112, no. 2, pp. 133-149, 2015. [Online].
Available: http://dx.doi.org/10.1007/s11263-014-0777-6

D. Banica and C. Sminchisescu, “Second-order constrained parametric
proposals and sequential search-based structured prediction for semantic
segmentation in rgb-d images,” in CVPR, 2015.

R. Socher, B. Huval, B. Bath, C. D. Manning, and A. Y. Ng,
“Convolutional-recursive deep learning for 3d object classification,” in
NIPS, 2012.

S. Gupta, J. Hoffman, and J. Malik, “Cross modal distillation for
supervision transfer,” in The IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), June 2016.

X. Song, L. Herranz, and S. Jiang, “Depth cnns for RGB-D scene
recognition: Learning from scratch better than transferring from rgb-
cnns,” in Proceedings of the Thirty-First AAAI Conference on Artificial
Intelligence, February 4-9, 2017, San Francisco, California, USA., 2017,
pp. 4271-4277.

G. Kulkarni, V. Premraj, V. Ordonez, S. Dhar, S. Li, Y. Choi, A. Berg,
and T. Berg, “Babytalk: Understanding and generating simple image
descriptions,” TPAMI, 2013.

P. Kuznetsova, V. Ordonez, T. L. Berg, and Y. Choi, “Treetalk: Compo-
sition and compression of trees for image descriptions.” TACL, vol. 2,
no. 10, pp. 351-362, 2014.

O. Vinyals, A. Toshev, S. Bengio, and D. Erhan, “Show and tell: A
neural image caption generator,” in CVPR, 2015, pp. 3156-3164.

J. Mao, W. Xu, Y. Yang, J. Wang, Z. Huang, and A. Yuille, “Deep
captioning with multimodal recurrent neural networks (m-rnn),” 2015.
A. K. J. Johnson and L. Fei-Fei, “Densecap: Fully convolutional
localization networks for dense captioning,” in [EEE Conference on
Computer Vision and Pattern Recognition (CVPR), June 2016.

L. Yang, K. Tang, J. Yang, and L.-J. Li), “Dense captioning with joint
inference and visual context),” in IEEE Conference on Computer Vision
and Pattern Recognition (CVPR)), Jul 2017.

R. Fan, K. Chang, C. Hsieh, X. Wang, and C. Lin, “Liblinear: A library
for large linear classification,” J. Mach. Learn. Res., vol. 9, pp. 1871-
1874, 2008.

I. S. Dhillon, “Co-clustering documents and words using bipartite
spectral graph partitioning,” in Proceedings of the Seventh ACM
SIGKDD International Conference on Knowledge Discovery and Data
Mining, ser. KDD "01. New York, NY, USA: ACM, 2001, pp. 269-274.
[Online]. Available: http://doi.acm.org/10.1145/502512.502550

K. Cho, B. van Merri?nboer, C. Gulcehre, F. Bougares, H. Schwenk, and
Y. Bengio, “Learning phrase representations using rnn encoder-decoder
for statistical machine translation,” 06 2014.

M. D. Zeiler and R. Fergus, “Visualizing and understanding convolu-
tional networks,” in Computer Vision — ECCV 2014: 13th European
Conference, Zurich, Switzerland, September 6-12, 2014, Proceedings,
Part I.  Cham: Springer International Publishing, 2014, pp. 818-833.
N. Silberman, D. Hoiem, P. Kohli, and R. Fergus, “Indoor segmentation
and support inference from rgbd images,” in Proceedings of the 12th
European Conference on Computer Vision - Volume Part V, ser.
ECCV’12. Berlin, Heidelberg: Springer-Verlag, 2012, pp. 746-760.
[Online]. Available: http://dx.doi.org/10.1007/978-3-642-33715-4_54
S. Gupta, R. Girshick, P. Arbelaez, and J. Malik, “Learning rich features
from rgb-d images for object detection and segmentation,” in ECCV,
2014.

M. Everingham, L. Van Gool, C. K. I Williams, J.
and A. Zisserman, “The PASCAL Visual Object

Winn,
Classes


https://doi.org/10.1109/TPAMI.2017.2723009
https://doi.org/10.1007/978-3-319-46448-0_47
http://dx.doi.org/10.1007/s11263-015-0816-y
http://doi.acm.org/10.1145/3123266.3123300
http://dx.doi.org/10.1007/s11263-014-0777-6
http://doi.acm.org/10.1145/502512.502550
http://dx.doi.org/10.1007/978-3-642-33715-4_54

IEEE TRANSACTIONS ON IMAGE PROCESSING

[44]

[45]

[46]

Challenge 2007 (VOC2007) Results,” http://www.pascal-
network.org/challenges/VOC/voc2007/workshop/index.html, 2007.

T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and
J. Dean, “Distributed representations of words and phrases
and their compositionality,” in Advances in Neural Information
Processing Systems 26, C. J. C. Burges, L. Bottou, M. Welling,
Z. Ghahramani, and K. Q. Weinberger, Eds. Curran Associates, Inc.,
2013, pp. 3111-3119. [Online]. Available: http://papers.nips.cc/paper/

5021-distributed-representations-of- words-and- phrases-and- their-compositionality.

pdf

X. Song, S. Jiang, and L. Herranz, “Combining models from multiple
sources for RGB-D scene recognition,” in Proceedings of the Twenty-
Sixth International Joint Conference on Artificial Intelligence, IJCAI
2017, Melbourne, Australia, August 19-25, 2017, 2017, pp. 4523-4529.
[Online]. Available: https://doi.org/10.24963/ijcai.2017/631

S. Gupta, P. Arbelaez, R. Girshick, and J. Malik, “Indoor scene under-
standing with rgb-d images: Bottom-up segmentation, object detection
and semantic segmentation,” Int J Comput Vis, vol. 112, pp. 133-149,
2014.


http://papers.nips.cc/paper/5021-distributed-representations-of-words-and-phrases-and-their-compositionality.pdf
http://papers.nips.cc/paper/5021-distributed-representations-of-words-and-phrases-and-their-compositionality.pdf
http://papers.nips.cc/paper/5021-distributed-representations-of-words-and-phrases-and-their-compositionality.pdf
https://doi.org/10.24963/ijcai.2017/631

	I Introduction
	II Related work
	II-A Intermediate representation
	II-B Scene recognition with object detection
	II-C RGB-D recognition
	II-D Image captioning

	III Intermediate Representations of Object-to-Object Relation 
	III-A Co-occurring frequency of object-to-object relation
	III-B Insights of using object-to-object relation
	III-B1 Scene recognition with intermediate representations
	III-B2 Comparison of different types of co-occurring based representations
	III-B3 Insights of removing confusion with COOR


	IV Sequentially Encoding Object-to-object Relation for Scene Recognition 
	IV-A Richer types of spatial relations
	IV-A1 Extended directional relations
	IV-A2 Distance 
	IV-A3 Area 

	IV-B Generation of SOOR
	IV-C Sequentially encoding model 
	IV-D Local to global model of scene recognition

	V Multi-modal Object Detection and Features
	V-A RGB-D object detection
	V-B RGB-D proposal fusion
	V-C Multi-modal COOR and SOOR

	VI Experiments
	VI-A Setting
	VI-A1 Dataset
	VI-A2 Evaluation metric

	VI-B Object detection
	VI-B1 Implementation 
	VI-B2 Category-wise evaluation

	VI-C Scene recognition with COOR and SOOR
	VI-C1 Evaluation of COOR
	VI-C2 Evaluation of SOOR

	VI-D Multi-feature fusion
	VI-D1 Local and Global features
	VI-D2 Comparison of different types of feature fusion

	VI-E Comparison to the state-of-the-art
	VI-E1 SUN RGB-D
	VI-E2 NUYD2 


	VII Conclusion
	References

