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ABSTRACT

Although saliency prediction in crowd has been recently rec-
ognized as an essential task for video analysis, it is not com-
prehensively explored yet. The challenges lie in that eye fix-
ations in crowded scenes are inherently “distinct” and “multi-
modal”; which differs from those in regular scenes. To this
end, the existing saliency prediction schemes typically rely
on hand designed features with shallow learning paradig-
m, which neglect the underlying characteristics of crowded
scenes. In this paper, we propose a saliency prediction mod-
el dedicated for crowd videos with two novelties: 1) Dis-
tinct units are discovered using deep representation learned
by a Stacked Denoising Auto-Encoder (SDAE), considering
perceptual properties of crowd saliency; 2) Contrast-based
saliency is measured through deep reconstruction errors in
the second SDAE trained on all units excluding distinct unit-
s. A unified model is integrated for online processing crowd
saliency. Extensive evaluations on two crowd video bench-
mark datasets demonstrate that our approach can effective-
ly explore crowd saliency mechanism in two-stage SDAEs
and achieve significantly better results than state-of-the-art
methods, with robustness to parameters.
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1. INTRODUCTION

Crowd saliency essentially targets at identifying the po-
tential regions in crowded scenes that most attract visu-
al attention. Crowded scenes are prevalent in surveillance
videos [20, 27, 28, 29], which are however more risky espe-
cially in salient regions [18, 3]. It is therefore emerging to
design crowd saliency model for video surveillance.

The straightforward solutions directly apply convention-
al saliency approaches, which focus on detecting saliency
regions in regular scenes. In principle, it is assumed that
saliency regions can stand out from their neighbors with
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Figure 1: Overview of the framework for crowd
saliency prediction based on deep networks.

high contrast, which serves as the basis for various saliency
detection models proposed in the image and video domain 8,
5, 1, 21, 2]. Recent advances in saliency detection mainly
focus on detecting salient objects via bottom-up measure-
ments, such as rareness [26, 19] and contrast variants [25,
11]. Besides, it is also shown that the context-dependent,
top-down mechanisms incorporated with object/background
prior are comparably accurate and effective [13]. Neverthe-
less, these approaches are inappropriate for saliency predic-
tion in crowded scenes as they are with different underlying
characteristics. As revealed by the psychological evidence
on crowds [24], two important perceptual cues should be
highlighted in crowd saliency: The “seed”, i.e., an individual
or small group attempting to engage with the crowd; The
crowd engages with a seed to occur its flow motion. Hence,
the salient crowd motion typically appears from the crowd
seed where the crowd modifies the existing states to influ-
ent its neighbors. This inspires us to model the crowd seeds
that are distinct to separate the common patterns from the
crowds, as well as propagate the influence in multi-modal
context. To this end, it is nontrivial to design handcraft
features to differentiate the salient regions. Thus, we resort
to learning such features via deep networks that encodes the
hierarchical mechanisms underlying crowd saliency.
Following this intuition, in this work, we propose a uni-
fied framework for crowd saliency prediction as shown in
Figure 1. Firstly, we select crowd seeds from crowd units
with a seed activation Stacked Denoising Auto-Encoder (S-
DAE). We further calculate deep reconstruction errors using
a seed-excluded SDAE, which measure global contrast be-
tween the salient patterns and common patterns. Crowd
seeds are subsequently leveraged to learn the propagation
errors in a ranking function. The score of crowd salien-
cy is finally refined by context-based seed propagation. The
main contributions of this work are summarized as following
three aspects: (1) We explore the characteristics of crowd
units by training a seed activation SDAE, which introduces



activation metrics of deep representation to discover crowd
seeds. (2) We make use of the reconstruction error by train-
ing a seed-excluded SDAE, which effectively measures the
contrast-based saliency in crowds. (3) A unified model is as-
sembled to predict crowd saliency, and verified on two crowd
video datasets with significant performance gains.

2. CROWD SALIENCY DEEP NETWORKS

In this section, we present the proposed model for crowd
saliency prediction in details.

2.1 Stacked Denoising Auto-Encoders (SDAE)

SDAE essentially builds a deep architecture by stacking
multiple layers of Denoising Auto-Encoders (DAE) [22]. DAE
basically consists of two components, i.e., encoder and de-
coder [22]. Both components attempt to learn two mapping
functions, termed as h(W,b) and g(W,B), where W, b
denote the weights and bias parameters of the encoder and
W, b correspond to the terms of decoder. Before encod-
ing, X is a noise-corrupted version of the clean input data
x by stochastic mapping X = D(X|x). For a corrupted in-
put X;, the hidden layer representation z; can be obtained
through z; = h(X;|W,b) = s(WZX; + b), where s(.) is the
sigmoid activation function. The decoder tries to map the
hidden representation z; back to input x; by computing
%; = g(zW,b) = s(Wz; + b). Given the training set
C = {x;},, the parameters W, b, W, b can be optimized
as a regularized least square optimization problem, i.e.,

N -

min > (R —xl3 +([WIE+ ([WE), (1)
W,b,W,b i=1

where v balances the reconstruction error and regulariza-

tion. The non-linearity of activation function allows SDAE

to learn complex mapping and capture the latent patterns

that reflect the correlation shared among training data.

2.2 Two-stage SDAEs based Deep Structure

Our goal is to assign a saliency value Sal(x;,C) € [0,1]
to each crowd unit x; which best fits the given crowd unit
set C = {xi}fil in a time window ¢. Let Cs denote the set
containing distinct crowd units as “crowd seeds”. C,=C\Cs
denotes the rest. The selection of crowd seeds will separate
the distinct units from the common units. The contrast-
based saliency are measured by deep reconstruction error
between a given crowd unit x; and the common units C;.

A two-stage SDAE model is presented to achieve this goal
as shown in Figure 1, which contains two phases, i.e.,

e To distinguish crowd seeds, we design deep representa-
tion based metrics using neuron activations of the first
SDAE trained on all crowd units.

e To calculate the global contrast, we leverage deep re-
construction errors of the second SDAE trained on
crowd units without seed units.

Both of the SDAEs are with the same structure, including
one input layer and three hidden layers, as shown in Fig-
ure 2. Inspired by [23], an over-complete set of filters is used
to better capture the image/video structure in the first hid-
den layer, followed by two equal-sized hidden layers. In the
training phases, SDAEs are layer-wise trained by optimizing
Eq. 1 using gradient descent, and then fine-tuned globally.
Therefore, the contrast-based saliency can be indicated by
the reconstruction cost of the seed-excluded SDAE.
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Figure 2: Schematic illustration of two-stage SDAE.

2.2.1 Seed Prediction via Deep Representation

The deep structured SDAE provides an effective means to
characterize the crowd seed set Cs, especially in virtue of its
ability to learn latent patterns in an unsupervised manner.

Training Seed Activation SDAE: The first SDAE is trained
on all crowd units C to select crowd seeds. The metrics of the
output (hidden) representation should favor distinct crowd
units as the seed set. In order to distinguish the crowd
seeds Cs, the units should be outstanding from the whole
set C according to the activation value.

Crowd Firing Rate: In neural science, neuron’s firing rate
increases or decreases when certain patterns appear in recep-
tive field [12]. The importance of input signal is reflected as
how much energy the activity consumes. It is therefore rea-
sonable to assume that the larger energy of crowd unit con-
sumes, the more distinct it is. Accordingly, the crowd seed
can be measured by energy consumption of all hidden units.
Thus, we define Crowd Firing Rate (CFR) to describe the
average activity of the j-th neuron in the last hidden layer:

CFR; =3 Hi(xi)/N, (2)

where H3 (x;) refers to the activation value of the j-th neuron
of the last hidden layer z3 for the i-th input unit x;, N is
the number of crowd units.

Seed Activation Rate: Next, we define Seed Activation
Rate (SAR) to calculate how much energy will be consumed
for a given crowd unit:

SAR; = ijl 1447 (x:) — CFRy 3, ®3)

For each unit x;, SAR; denotes the accumulation of energy
cost according to CFR of all the neurons. We sort the SAR
of all the units in a descending order and select the top n
as crowd seeds Cs. Given Cs, we make a binary indicator as
0(x:) = 1,if x; is s € Cs, otherwise §(x;) = 0.

2.2.2  Contrast Inference via Deep Reconstruction

By hierarchically capturing latent patterns, SDAE helps
to measure the contrast between the salient and the com-
mon units through deep reconstruction. We model the com-
mon crowd units with SDAE and indicate the contrast-based
saliency of x; with the deep reconstruction error.

Training Seed-excluded SDAE: We establish the second
SDAE trained on C, =C\C5s to model common crowd units.
The principle is to measure the contrast via the differences
between the input and the reconstructed patterns by SDAE.
The deep reconstruction error is the cost that converts the
input to hidden representations of common patterns through
non-linear transformations. As in Figure 2, seed-excluded



Methods AUC SE NSS SE cc SE
AWS [4] 0.790  0.0010 | 1.019 0.0057 | 0.343  0.0017

1S [g] 0.790  0.0010 | 0.999 0.0056 | 0.339 0.0017
SR [9] 0.788 0.0010 | 1.003 0.0058 | 0.340  0.0018
FT [1] 0.784 0.0009 | 1.018 0.0054 | 0.344 0.0016

GBVS [7] | 0.791  0.0009 | 1.005 0.0051 | 0.341 0.0015
HBS [15] | 0.794 0.0009 | 1.029 0.0055 | 0.346 0.0016
OB [13] 0.796  0.0009 | 1.039 0.0049 | 0.356 0.0014
Ours-NS | 0.797  0.0011 | 1.042  0.0050 | 0.357 0.0017
Ours-NR | 0.807 0.0011 | 1.052 0.0050 | 0.360 0.0017
Ours 0.815 0.0010 | 1.064 0.0048 | 0.368 0.0017

Table 1: Comparisons with image saliency methods
on ASCMN-CROWD dataset.

SDAE is comprised of 3 encoders and 3 decoders.

Deep Reconstruction Error: We calculate deep reconstruc-
tion error in Eq. 4 for x; € C by seed-excluded SDAE, which
globally reflects the contrast with the common crowd units.
The reason is that common patterns are fitted better in the
deeper layer, which is further verified in the experiment.

Er(x;) =||g*(h*(D(Z]|2)))) —2; |2, (4)

The errors Err?(x;) captures the difference between the unit
x; and common patterns, which generally leads to promising
results in contrast-based saliency detection.

Context-based Seed Propagation: Considering that crowd
seeds strongly affect the neighborhood in crowd flow, we in-
tend to purify the salient foreground by the propagation of
the seeds. Therefore, crowd seeds are set as queries and pro-
cessed sequentially by propagating the relevances in a rank-
ing manifold as [16]. We establish the graph G=(V, E) with
all units encoded in the affinity, where V represents crowd
units, E denotes the edge weighted by W = [W;;]nxn with
Wi;; is the difference between crowd units. The degree ma-
trix is S = diag(s11,...,Snn~), where s;; = X;W,;;. This
ranking function assigns a ranking value f; as to each u-
nit x;, and f can be viewed as a vector f = [fi|X,]. Let
y=[6(x:)|~1] denote a binary vector indicating crowd seed
queries. The normalized Laplacian matrix is denoted as
L = S_1~/2WS_1/2. We get the close form solution as
f = (I—aL) ™'y, where I is an identity matrix, a = 1/(1+u).
For all queries indicated by y, the rank score f; gives the
propagation errors of the seeds.

2.3 Online Processing Crowd Saliency

When crowd unit set C arrives, we first train the two S-
DAEs based on C and C,,. We make a simple forward pass
on x; € C through seed-excluded SDAE to get the deep
reconstruction error. The saliency score Sal(x;,C) is then
determined based on Eq. 5 by integrating the refined prop-
agation error and center bias [8] as,

Sal(x;,C)= (Errd(xi)—i—fi) - exp {—HCtr—Pos(xi)H2} (5)

where Pos(x;) defines the coordinates of the unit, Ctr is
the center of the frame. We assign the saliency score to
corresponding Pos(x;) in the frame to generate the saliency
map with Gaussian smoothing for robustness.

3. EXPERIMENTS

We evaluate our method on two dynamic video datasets,
i.e., ASCMN-CROWD dataset [20] and CRCNS-CROWD
dataset [10]. We present results of applying our model in
yielding saliency maps for predicting eye fixations in crowds.

Parameter Settings. For input videos, each frame is
resized to 120 x 160 and uniformly partitioned into non-

Methods AUC SE NSS SE cC SE

RARE [19] | 0.703  0.0060 | 1.253 0.0672 | 0.216 0.0098
SUN [26] 0.653 0.0089 | 1.160 0.0654 | 0.196 0.0109
SDSR [21] 0.673  0.0070 | 1.013 0.0734 | 0.166 0.0110
PQFT [6] 0.688  0.0065 | 1.234 0.0645 | 0.181  0.0089

CE [14] 0.638  0.0088 | 0.508 0.1228 | 0.125 0.0068
DC [30] 0.680 0.0025 | 0.721 0.0741 | 0.179  0.0035
SP [17] 0.739  0.0052 | 0.945 0.1787 | 0.238  0.0099

Ours-NS 0.772  0.0067 | 1.375 0.0890 | 0.271  0.0039
Ours-NR. 0.782  0.0065 | 1.390 0.1120 | 0.302  0.0050
Ours 0.785 0.0022 | 1.505 0.1190 | 0.306 0.0037

Table 2: Comparisons with video saliency methods
on ASCMN-CROWD dataset.

overlapping spatio-temporal cubes of size 5x5x5. We com-
pute 3D gradient of the cube as raw motion signals and 2-
dim coordinates of the cube center to describe each cube as
a crowd unit. Two SDAEs are both fixed as 3 hidden layers
with 250, 100 and 100 hidden nodes, respectively. For each
time window ¢ containing 5 frames, we select top n = 20%
as Cs according to Eq. 3. We set v = 0.002, o = 0.99 and
the mini-batch size to 10. The corruption size in DAE is set
to 0.2. These parameters are empirically chosen and fixed
through all the following experiments. Three metrics are
used to quantify the performance of saliency models for pre-
dicting eye fixations [17], including AUC, NSS and CC with
corresponding Standard Error (SE).

3.1 Evaluations on ASCMN-CROWD Dataset

In order to evaluate the performance on the eye fixation
prediction in the crowded scenes, we conduct experiments
on CROWD subset of ASCMN dataset [20] containing 14
videos in 3 categories that are crowd-specific: 5 videos for
Abnormal Crowd (Abn-Crd), 4 for Surveillance Crowd (Sur-
Crd), 5 for Crowd Activity (Act-Crd).

(1) Image saliency approaches. We compare our model
with the widely compared methods and accomplish an objec-
tive comparison with original fixation data as groundtruth.
Table 1 shows the AUC, NSS and CC with SE for different
models. Note that the metrics of these compared models
are obviously surpassed by our model, which is attribut-
ed to meaningful deep representation. Our model explores
the high-level correlation of crowd units for modeling crowd
saliency, which achieves better performance than others with
improvements 0.02-0.08 in all metrics.

(2) Video saliency approaches. To further validate our
model on capturing dynamic crowded scenes, we compare
our approach to video saliency methods. In this case, the
evaluation measures are designed to use fixation heat maps
as the groundtruth. The average measures are reported in
Table 2, which shows Ours is superior to other studied meth-
ods. There is a consistent improvement in the performance
of all metrics. Overall, our approach outperforms the other
models under all metrics, which indicates that semantics of
crowd perception encoded in deep networks is beneficial in
cluttered foreground.

Validation of Model Components. We further evalu-
ate the effectiveness of our approach with respect to model
components. From Table 1 and 2, we note that, 1) With-
out the seed prediction (Ours-NS), the AUC score slightly
drops, illustrating the significance of distinct crowd seed.
2) Without reconstruction component (Ours-NR), also per-
forms worse than ours, which indicates that the effective-
ness of the reconstruction stage for the contrast measure-
ment. Besides, crowd seeds are helpful to eliminate the dis-
traction and enhance the salient regions in crowd context.
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Figure 3: Visual comparisons of state-of-the-art
saliency detection models. (a) Video frame, (b) Eye
fixation, (c) Ours, (d) RARE, (e) PQFT, (f) SR, (g)
AWS, (h) FT and (i) IS. Best viewed in color.
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3) Exploring contrast (Ours) by fusing seed prediction and
reconstruction yields the best results, demonstrating both
components are complimentary to each other. Ours-NS and
Ours-NR still outperform all existing methods show the ad-
vancement of the deep representation. Qualitative compar-
isons of the selected image and video saliency methods are
shown in Figure 3. It is obvious that most approaches look
like to be influenced significantly when the crowd is clut-
tered and similar appearances occupy the scenes. On the
contrary, ours tends to be less distracted by the common
foreground as well as the cluttered background, which still
predicts desirable fixations in such crowded scenes.

Robustness to Parameters. Figure 4(a) shows how
the main metric AUC score for Act-Crd Category is affect-
ed by the number of seeds ranging from 0% to 80%. We also
compare with the alternative method with the seed selected
from the border set using border background prior [13]. As
we can see, AUC starts to increase dramatically and gradu-
ally decrease when the seed number is larger. It is not very
sensitive within a range of values. It is superior to border
background prior, indicating common patterns are falsely
detected in border background set while ours not. Keeping
seed number as 20%, we tune the layers of the two SDAEs
(Figure 4(b)). Note that AUC generally increase with deep-
er layers of reconstruction (RecErr Layer) when crowd seeds
are predicted from different activation layers (Act Layer =
1, 2, 3). Deeper activation and reconstruction layers help
more to identify salient regions.

Methods AUC SE NSS SE cc SE

AWS [4] 0.596  0.0024 | 0.340  0.0386 | 0.028  0.0002
RARE [19] | 0.727  0.0018 | 0.923  0.0554 | 0.078  0.0004
PQFT [6] 0.678 0.0082 | 0.772  0.1502 | 0.065 0.0011
1S [8] 0.710  0.0009 | 0.756  0.0157 | 0.062  0.0001
Ours 0.844 0.0036 | 1.662 0.0439 | 0.141 0.0005

Table 3: Comparisons of saliency models on crowd
videos in CRCNS-CROWD dataset.
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Figure 5: AUC on (a) Outdoor, (b) Sports scenarios.

3.2 Evaluations on CRCNS-CROWD Dataset

We further evaluate our model on a more challenging
CRCNS-CROWD dataset [10]. We select totally 10 crowd
videos, including “Outdoor”; “Sports” and “TV news”, etc,
which is provided together with eye traces of 8 subjects.

Together, we quantitatively compare our model with four
saliency models that show superior performances on ASCMN-
CROWD dataset, i.e., AWS, RARE, PQFT and IS. The
AUC, NSS and CC values with SE on CRCNS-CROWD
dataset are provided in Table 3. Consistent with the results
on ASCMN-CROWD dataset, our model performs signifi-
cant improvements compared with other models. To gain a
deeper insight, AUC values for videos in “Outdoor” and ‘S-
ports” are shown in Figure 5, suggesting our model’s ability
to adapt to diversified scenarios of crowds. Objective eval-
uation shows our model yields more correct and robust eye
fixation prediction on various scenes. Our model tends to
learn the scene-specific deep representation that is less dis-
tracted by the common crowd patterns than existing mod-
els. Moreover, it is capable of highlighting salient regions in
crowd context through deep networks. The great improve-
ment shows the scene adaptiveness and robustness of our
model as well.

4. CONCLUSION

In this paper, we have proposed a deep-structured salien-
cy model for predicting eye fixations in crowd videos, which
benefits from the rich and discriminative properties of S-
DAE to discover crowd seeds and measure the contrast-
based saliency. Our proposed model takes advantages of
deep representation and reconstruction capability of deep
networks, which simultaneously explores perceptual prop-
erties of both crowd and saliency. Comprehensive experi-
ments are conducted on crowd videos of the publicly avail-
able benchmarks, which demonstrates superior results with
comparisons to the state-of-the-art methods.
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