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Abstract

Depth can complement RGB with useful cues
about object volumes and scene layout. However,
RGB-D image datasets are still too small for di-
rectly training deep convolutional neural networks
(CNNs), in contrast to the massive monomodal
RGB datasets. Previous works in RGB-D recog-
nition typically combine two separate networks for
RGB and depth data, pretrained with a large RGB
dataset and then fine tuned to the respective tar-
get RGB and depth datasets. These approaches
have several limitations: 1) only use low-level fil-
ters learned from RGB data, thus not being able
to exploit properly depth-specific patterns, and 2)
RGB and depth features are only combined at high-
levels but rarely at lower-levels. In this paper, we
propose a framework that leverages both knowl-
edge acquired from large RGB datasets together
with depth-specific cues learned from the limited
depth data, obtaining more effective multi-source
and multi-modal representations. We propose a
multi-modal combination method that selects dis-
criminative combinations of layers from the differ-
ent source models and target modalities, capturing
both high-level properties of the task and intrinsic
low-level properties of both modalities.

1 Introduction
RGB-D data has been widely used in computer vision tasks,
using devices with both RGB and depth cameras, such as Mi-
crosoft Kinect. Depth data can help conventional RGB im-
age recognition by providing additional information to bet-
ter understand the spatial layout of the objects and regions
in the scene. With the explosive growth of image datasets
and the successful development of convolutional neural net-
works (CNNs) [Krizhevsky et al., 2012; Zhou et al., 2014;
Donahue et al., 2014], the performance of RGB image recog-
nition has been dramatically improved. However, training
comparable RGB-D CNN models still remains challenging,
due to the lack of suitable training data. Although transferring
and fine tuning CNNs pretrained with large RGB datasets to
the target depth data is helpful (in particular using the HHA

encoding[Gupta et al., 2013]), the intrinsic differences be-
tween RGB and depth modality limit RGB-D recognition.

Comparing to RGB image datasets, which can be col-
lected by crawling data from the internet, collecting RGB-
D data is fairly complex, requiring a combination of RGB-
D sensors (e.g. Kinect) and a support device (e.g. lap-
top). Previous RGB-D datasets [Silberman and Fergus, 2011;
Silberman et al., 2012; Xiao et al., 2013] contain much fewer
categories and images than RGB counterparts. Recently, a
larger RGB-D dataset SUN RGB-D [Song et al., 2015] was
released providing more images to train more complex mod-
els, also showing that pretrained RGB CNNs can be used in
this dataset with significantly less overfitting than with the
previous reference dataset NYU2 [Silberman et al., 2012].
However, SUN RGB-D is still not large enough to train deep
CNNs with size comparable to RGB ones (1K images com-
pared to 2.5M in Places).

Thus, due to the lack of enough training data, recent ap-
proaches [Gupta et al., 2016; Wang et al., 2016; Zhu et al.,
2016] have focused on transferring pretrained RGB CNN
models and adapting them (typically fine tuning) with the
target depth data. These approaches use the HHA encoding
[Gupta et al., 2014b] for depth data. The HHA provides a
color code which helps to intuitively visualize depth informa-
tion, but more importantly, this encoding reveals some color
patterns that somehow resembles RGB patterns. In [Wang et
al., 2016] RGB and depth CNNs are obtained by fine tuning
CNN models pretrained on large scale RGB datasets, then the
resulting RGB and depth features are concatenated to train an
SVM. RGB CNNs have also been used in other works to ini-
tialize depth CNNs which are further fine tuned using super-
vision transfer [Gupta et al., 2016] or distance loss between
the outputs of RGB and depth CNNs [Zhu et al., 2016].

However, previous works suffer from some important limi-
tations. First, fine tuning pre-trained RGB models with depth
can adapt successfully the top layers of the CNN, but, due to
the vanishing gradient problem, the bottom layers are barely
modified, still remaining tuned to RGB modality. Reaching
the bottom layers is key to learning depth modality-specific
filters that capture low-level patterns. Without learning depth-
specific filters for RGB-D combination, only similar patterns
found in both RGB and depth modalities can be captured,
while depth-specific, not found in the large RGB dataset are
ignored. To illustrate this problem, Figure 1a and b show
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Figure 1: Feature maps (conv1) from Places-CNN and a depth-
specific model, and RGB and depth data. A cross-model compari-
son (a vs c) shows complementary patterns from the same modality
captured by different models, and a cross-modal comparison (a vs
b) shows the type of patterns captured by the same model from dif-
ferent modalities.

the activation maps of the first convolutional layer of Places-
CNN [Zhou et al., 2014] processing the same image but dif-
ferent modalities (i.e. cross-modal relations). As we can see,
the captured patterns are often redundant to those already cap-
tured in the RGB modality (e.g. object edges) and often nois-
ier, since the network is not trained for depth data. Second,
these limited low-level depth representations are rarely con-
sidered, since the multi-modal combination is only performed
at higher layers (e.g. fully connected layers) to exploit higher-
level correlations in previous works.

In contrast, activations in Figure 1c show depth-specific
patterns which are very different from those in Figure 1a (i.e.
cross-model relations). This model (see Section 2.1) has been
trained only with depth data and thus can capture comple-
mentary information. In this way, it can provide truly depth-
specific patterns which can complement RGB ones and help
the overall model with this useful information.

Motivated by the need for better multi-modal features
that capture modality-specific patterns, and also leveraging
the vast knowledge already available in other source mod-
els such as Places-CNN, we propose a framework that com-
bines models from multiple sources (i.e. Places for RGB and
SUN RGB-D for depth) that are applied to be adapted and
combined to the different modalities. In contrast to other
works, this framework proposes a multi-source depth CNN
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Figure 2: Three types of MS-depth-net, (a) MS-average: average
pooling after concatenation, (b) MS-keep: keep the subsequential
convolutional layers after concatenation, (c) MS-remove: remove
convolutional layers (but keep pooling layers after concatenation).

that effectively combines complementary models to capture
modality-specific features. Moreover, by exploiting cross-
modal and cross-model correlations, a layer selection algo-
rithm is proposed to select discriminative combinations of
layers from different models and modalities at different levels
of abstraction.

2 Multi-source Multi-modal Framework
2.1 Base Models
Our framework processes RGB-D scene data, containing two
modalities (RGB and depth encoded in HHA), and leverages
three modality-specific models, one for RGB and two for
depth. The three of them are based on the AlexNet architec-
ture [Krizhevsky et al., 2012]. For convenience we introduce
them at this point:

RGB-net: transferring from Places-CNN to RGB data.
We fine tune Places-CNN model [Zhou et al., 2014] using the
RGB images of the target RGB-D dataset. Since the original
Places dataset contains large amount of scene data,which is
in the same modality as the target RGB recognition task, the
model will greatly benefit from transferring the parameters
from Places-CNN.

Depth-net (Places): transferring from Places-CNN to
depth data. Similar to RGB-net, we fine tune Places-CNN
with the target depth images (in HHA format). In this case
the adaptation is cross-modal, and with limited data, so the
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resulting model will basically adapt the top layers to the tar-
get data, while the low-level representations will remain un-
changed and thus not tuned for depth data.

Depth-net (scratch): training directly from scratch with
depth data. In order to learn a complementary depth-
specific model, including low layers, we ignore Places and
train AlexNet directly from scratch with the target depth data.
To avoid overfitting we train first a truncated version (up to
pool5) using patches (99× 99 pixels sampled from the image
256×256 pixels), and then we fine tune the full network with
full images.

2.2 Model Combination
We consider two types of CNN with different combina-
tions of the three base CNN models, i.e., multi-source (MS)
depth CNN that combines Depth-net (Places) and Depth-net
(scratch) and multi-modal (MM) CNN that combines MS-
depth-net and RGB-net.

Multi-source depth network (MS-depth-net). The most
common method to represent depth is using a model similar
to the one we refer to as Depth-net (Places). However, as we
described earlier Depth-net (Places) and Depth-net (scratch)
have different strengths and capture complementary patterns
due to different modalities and different amounts in training
data. For example, Depth-net (scratch) can capture better
smooth gradients in HHA data due to horizontal and verti-
cal surfaces, while Depth-net (Places) can still capture pat-
terns present in both RGB and depth, such as borders, while
also providing higher level compositional features for more
abstract entities (e.g. objects, scenes) learned from the much
larger dataset Places. Thus, the hypothesis is that by combin-
ing both models the result should be an improved depth rep-
resentation that exploits the specific strengths of each model.

We regard each model as a different source model, and
evaluate three different strategies to combine both models,
illustrated in Fig. 2. The first one is simply concatenating the
activations of a given layer in both models, followed by aver-
age pooling in a 1 × 1 × c tensor (i.e. a fixed c-dimensional
vector). We refer this global representation as average (see
Fig. 2a). For the classification task in the target dataset we
further train a fully connected layer followed by softmax as
classifier.

One drawback is that the spatial information is lost after
average pooling, and the resulting network has fewer layers
than the corresponding source models. We try another alter-
native in which after concatenating the activations, a single
branch with the remaining layers (convolutional, pooling and
fully connected) that are trained with the target depth data
(see Fig. 2b). Since the number of parameters is higher and
we only have limited data from the target dataset, we also
evaluated another variation in which we remove the convo-
lutional layers after concatenation (see Fig. 2c) to reduce the
number of trainable parameters in the model. For simplicity,
we refer to these two variants as keep and remove (convolu-
tional layers), respectively.

Multi-modal network (MM-net). The full multi-modal
network is shown in Fig. 3, where the (multi-source) depth
network is further combined with the RGB branch, i.e. RGB-
net. As shown in the figure, the different networks are com-
bined by attaching fully connected layers as classifiers and
their outputs are added before the softmax, similarly to DAG-
CNN [Yang and Ramanan, 2015]. A more discriminative
combination method is introduced in the next section.

3 Layer Selection and Combination
3.1 Layer Selection
A common way to combine CNN models is directly concate-
nating the outputs of their respectively fully connected layers
before the classifier (e.g. fc7 in AlexNet), then train a clas-
sifier and optionally fine tune the combined network. How-
ever, the activations from top layers may not be always the
most suitable features for the particular task, especially for
multi-modal representations, where the bottom layers are key
to capture the modality-specific patterns. Moreover, it is of-
ten useful combining activations obtained at different layers
of the same model [Yang and Ramanan, 2015].

In order to systematically explore combinations of fea-
tures obtained from different layers of the same or differ-
ent models, we introduce the problem of layer selection.
We formulate the problem as selecting a set of layers L =
{l1, l2, . . . lS}, where each candidate layer ls is selected by
minimizing a weighted sum of the probability of error (POE)
and the average correlation coefficient (ACC) [Mucciardi and
Gose, 1971; Dash and Liu, 1997]. Particularly, POE is com-
puted as the average class-error rate (i.e. top-1 average preci-
sion) on the validation set. Minimizing POE aims at selecting
the most accurate layers. ACC is the average correlation co-
efficient (estimated on the validation data) between the confu-
sion matrix of the model resulting from the selected layers at
certain iteration and the confusion matrix of other model re-
sulting after concatenating new candidate layers. Minimizing
ACC aims at finding layers that increase the discriminative
capability. We address the problem using an incremental for-
mulation where the objective is to find the optimal set L as:

L = arg min
{l1,l2,...,lS}

(1− λ)P (l1, l2, . . . , lS)

+ λC (lS | l1, l2, . . . , lS−1) (1)

where P (l1, l2, . . . , lS) is the POE with the concatenation
of the layers {l1, l2, . . . , lS}, C (lS | l1, l2, . . . , lS−1) is the
ACC between the confusion matrices of the previous selected
layers {l1, l2, . . . , lS−1} and after concatenating a new layer
lS . Since this sum of POE and ACC does not have the Markov
property, it cannot be optimized with a polynomial algorithm.
Using brute-force search, in our typical setting with 3 CNN
models with 7 layers each, there are 221 different combina-
tions to be searched, which is too large to evaluate.

A greedy strategy to solve the problem is PRESET [Dash
and Liu, 1997; Modrzejewski, 1993], which is based on the
concept of “rough set”. The algorithm first finds a reduct (i.e.
a reduct R of LS that performs equally well as LS for the
given task) and then removes all features/layers not selected
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Figure 3: The proposed multi-modal multi-source framework combining RGB-net, MS-depth-net after layer selection. The add operation is
the element-wise sum (better viewed in color).

in the reduct. It iteratively selects the features/layers for the
reduct. In each iteration, all candidates are ranked using the
weighed sum of POE and ACC, and the best candidate is se-
lected.

However, this best first search algorithm is easily affected
by the initial selection, and with a bad first choice the whole
sequence of the selections may not find the best set of layers
to combine. To trade off effectivity (brute force) and effi-
ciency (best first search), we use the beam search (BS) algo-
rithm. Rather than just selecting the first best layers in each
iteration, a beam with a few candidate sets of layers is se-
lected iteratively. At iteration t, the candidate sets U t are
represented as:

U t =
{
ut1, u

t
2 . . . , u

t
B

}
(2)

where B is the beam number, and utb with b = 1, ..., B repre-
sents a possible set of selection until current iteration. At the
next iteration t + 1, all candidates lv for v ∈ {candidates}
are ranked using (1− λ)P (utb, lv) + λC (lv | utb) with cur-
rent U t, and also the top B candidates are kept in the new set
U t+1. The search of one beam ends when no new candidate
can be included.

3.2 Combination and Joint Training
Once the optimal set of layers L = {l1, l2, . . . lS} is obtained,
we combine all of them in the joint CNN architecture, and
fine tune it with pairs of RGB and depth images. A particu-
lar layer l indicates the combination point, i.e. the output of
the corresponding layer of a particular model (e.g. conv4 of

Table 1: Accuracy (%) of base models and the different vari-
ants of MS-depth-net at different layers on the validation set
of SUN RGB-D

conv1 conv2 conv3 conv4 conv5 fc6 fc7
RGB-net 20.4 25.8 27.1 30.1 31.5 31.5 32.7

Depth-net(PL) 22.5 24.2 25.3 25.3 25.7 26.2 26.3
Depth-net(SC) 21.3 25.5 26.7 26.0 26.3 26.4 26.5

MS-average 25.0 27.7 27.1 27.0 27.1 28.0 27.9
MS-keep 21.0 24.8 27.4 28.0 29.5 29.8 29.4

MS-remove 22.2 27.7 28.5 29.4 29.5 29.8 29.4
PL: Places, SC: scratch

Table 2: The best selections with different beam B

B Accuracy (%) (1-λ)POE+λACC
Independent MSMM Independent MSMM

1 35.6 36.1 0.661 0.657
2 36.0 36.4 0.657 0.654
3 36.3 36.8 0.654 0.650
4 36.3 36.8 0.654 0.650

Depth-net (Places)). The weights of that layer and the pre-
ceding ones are copied as initial weights to the corresponding
layers of the joint model.

4 Experiments
4.1 Setup
We evaluate our approach in two datasets: NYU Depth
Dataset version 2 (NYUD2) [Silberman et al., 2012] and
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Table 3: Comparisons on the test set of SUN RGB-D

Method CNN model Accuracy (%)
RGB Depth RGB Depth RGB-D

Baseline (concatenate fc7) Places-CNN Places-CNN - 35.4 30.9 39.1
RGB-net Depth-net (PL) - 41.5 37.5 45.4

Two CNNs (concat fc7+FT) RGB-net Depth-net (PL) - 41.5 37.5 48.5
RGB-net - Depth-net (SC) 41.5 37.2 48.3

Multi-source depth - Depth-net (PL) Depth-net (SC) - 40.1 -
Three CNNs (concat. fc7+FT) RGB-net Depth-net (PL) Depth-net (SC) - - 49.8
Layer selection (independent) RGB-net Depth-net (PL) Depth-net (SC) - - 50.6

Layer selection (MSMM) RGB-net Depth-net (PL) + (SC) - - 51.2
Layer selection (MSMM+wSVM) RGB-net Depth-net (PL) + (SC) - - 52.3

State-of-the-art
Zhu et al.[Zhu et al., 2016] 37.0 - 41.5

Wang et al.[Wang et al., 2016] 40.4 36.3 48.1
Song et al.[Song et al., 2017] - - 52.4

PL: Places, SC: scratch. FT: fine tuning. Proposed models are in bold.

SUN RGB-D [Song et al., 2015]. The former is relatively
small, consisting of 27 indoor categories. Following the orig-
inal training/test split (795/654 images) [Silberman et al.,
2012], all 27 categories are reorganized into 10 categories,
where some of categories with few images are combined into
a joint category “other”. The latter contains 40 categories
with 10335 RGB-D images. Following the publicly available
split in [Song et al., 2015; Wang et al., 2016], the 19 most
common categories are selected, consisting of 4845/4659 im-
ages for training/test, where the training set consists of a split
of 2393/2452 images for training/validation. The split is pro-
vided in the toolbox of SUN RGB-D dataset [Song et al.,
2015]. All depth images are encoded to HHA images using
the code in [Gupta et al., 2014b].

We train SVM [Fan et al., 2008] classifiers using the out-
put of the last fully connected layer as input, as done in most
state-of-the-art approaches. We include a variant (wSVM) in
which we use class-specific weights to compensate class im-
balance. Following [Song et al., 2015], we report the average
class accuracy in both datasets.

4.2 Analysis
In this subsection, all the evaluations are conducted on the
training and validation set of SUN RGB-D dataset, consisting
of 2393 and 2452 images, respectively.

Ablation study of the base models. We evaluate how dis-
criminative are the different layers of the different base mod-
els on their respective modalities by training SVMs and mea-
suring the average class accuracy (see Table 2). The best in-
dividual performance is achieved with fc7, fc7 and conv3 for
RGB-net, Depth-net (Places) and Depth-net (scratch), with
a more significant increase of accuracy with deeper features
in models transferred from Places, while Depth-net (scratch)
suffers from overfitting in higher layers. Table 2 also shows
different behaviours for different modalities and models. In
the case of RGB-net, evaluated with RGB images, bottom
layers perform poorly while higher layers gradually increase
the performance. This shows the power of transferring a
model pretrained with large data (Places) when applied on

RGB data, and also that RGB modality requires deeper mod-
els. Applied on the depth modality (Depth-net (Places)), the
behaviour is similar but with much more limited gains in
deeper layers, showing that cross-modal transfer is of limited
help. Similar performance can be obtained without resorting
to Places, using directly depth data (i.e. Depth-net (scratch)).
This also suggests that the depth modality is less complex
than the RGB modality (e.g. no textures in depth data) and
thus deeper models may not increase the performance signif-
icantly.

Multi-source depth models. We also evaluated the three
strategies described in Fig. 2, with the results shown in Ta-
ble 1. Combining Depth-net (Places) and Depth-net (scratch)
performs consistently better than either of the source models
independently. This happens consistently for all the layers
and using either of the three combination strategies, suggest-
ing that both source models capture complementary proper-
ties of the depth data, and showing the effectivity of the pro-
posed approach. In general, MS-keep and MS-remove per-
form better than MS-average, except for conv1 (very shal-
low model). This suggests that keeping some rough spatial
information when combining modalities is helpful for scene
recognition. Particularly, MS-remove outperforms the other
two strategies for most layers, benefiting from a better trade-
off between the amount of parameters and amount of training
data than MS-keep.

Finally, it is worth noticing that multi-source (MS) models
outperform RGB-net for lower layers (conv1 to conv3), while
RGB-net outperforms them at higher layers, suggesting that
for the final multi-modal model we should combine features
selected from different layers of different models.

Layer selection and multi-modal combination. We em-
pirically set λ = 0.1 and consider two settings. In a first ex-
periment : independent (in Table 2), where layers are selected
only from the three base models. We obtained the best results
for beam sizes of B = 3 and 4. The best selection paths
are reported in Table 2 (there are several possible paths for
B > 1). Fig. 4a shows the layer selected and added at each
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Table 4: Comparisons on test set of NYUD2

Method CNN model Accuracy (%)RGB Depth
Baseline (concatenate fc7) RGB-net Depth-net (PL) - 45.4

Three CNNs (concat. fc7+FT) RGB-net Depth-net (PL) Depth-net (SC) 63.9
Layer selection (independent) RGB-net Depth-net (PL) Depth-net (SC) 64.3

Layer selection (MSMM) RGB-net Depth-net (PL) + (SC) 65.1
Layer selection (MSMM+wSVM) RGB-net Depth-net (PL) + (SC) 66.7

State-of-the-art
Gupta et al.[Gupta et al., 2014a] 45.4
Wang et al.[Wang et al., 2016] 63.9
Song et al.[Song et al., 2017] 65.8

PL: Places, SC: scratch. Proposed models in bold.
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Figure 4: Selection of layers (each iteration includes a new layer)
with B = 3: (a) independent and (b) MSMM as described in Table 2.

iteration, and how the performance progressively increases.
A second experiment (multi-source multi-modal -MSMM-)
shows similar trends and slightly better results (see Table 2
and Fig. 4b) when allowing layers from RGB-net, and the
multi-source models MS-keep and MS-remove. Observe that
in both experiments the algorithm always selects first features
from a top layer from RGB and a lower layer from depth.

4.3 Overall Performance
We compare our method to the state-of-the-art approaches
[Zhu et al., 2016; Wang et al., 2016; Song et al., 2017] on
SUN RGB-D and NYUD2. For SUN RGB-D, we follow the
public split, consisting of 4845/4659 images for training/test.
In the case of NYUD2 we fine tune this pretrained model.

The comparisons are reported in Table 3, where the pro-
posed multi-source model for depth modality combines two
models, improving the performance up to 40.1%. The pro-
posed layer selection algorithm also improves over simple
concatenation of the three networks, with the multi-source

variant (MSMM) achieving the best performance (with an ad-
ditional gain if we address the imbalanced in the dataset with
wSVM). Our method outperforms other approaches [Zhu
et al., 2016; Wang et al., 2016], benefiting from capturing
the depth specific patterns and a better feautre combination
method. Song et al. [Song et al., 2017] propose to train CNN
models with simple but effective architecture for depth data
and concatenate RGB and depth models with fc7 output, ob-
taining similar results as our MSMM model. Compared to
the proposed MS-net model, that depth model lacks of the
considering general patterns shared RGB and depth data.

Table 4 shows the results on NYUD2. Our results also
outperform the baseline and the related works. Note that,
[Banica and Sminchisescu, 2015] reports a very high accu-
racy for NYUD2, however, the authors in [Wang et al., 2016]
re-implement that method, but obtain much lower accuracy.

5 Conclusion
Different modalities provide complementary information to
improve RGB-D recognition. Similarly, different models can
capture complementary aspects within the same modality.
For instance, we showed how Depth-net (scratch), a network
trained from scratch can capture valuable low-level depth-
specific patterns that cannot be captured by just fine tuning
RGB-specific models (e.g., Depth-net (Places)). Moreover, it
can complement other higher-level RGB-specific and depth-
specific features. In this paper we propose a framework to
combine features from multiple modality-specific models, in-
cluding layer selection and joint fine tuning, which outper-
forms significantly current state-of-the-art.
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