
 

 
 
 

Abstract 
With the expansion of data, increasing imbalanced data has 
emerged. When the imbalance ratio of data is high, most ex-
isting imbalanced learning methods decline in classification 
performance. To address this problem, a few highly imbal-
anced learning methods have been presented. However, 
most of them are still sensitive to the high imbalance ratio. 
This work aims to provide an effective solution for the high-
ly imbalanced data classification problem. We conduct 
highly imbalanced learning from the perspective of feature 
learning. We partition the majority class into multiple 
blocks with each being balanced to the minority class and 
combine each block with the minority class to construct a 
balanced sample set. Multiset feature learning (MFL) is per-
formed on these sets to learn discriminant features. We thus 
propose an uncorrelated cost-sensitive multiset learning 
(UCML) approach. UCML provides a multiple sets con-
struction strategy, incorporates the cost-sensitive factor into 
MFL, and designs a weighted uncorrelated constraint to re-
move the correlation among multiset features. Experiments 
on five highly imbalanced datasets indicate that: UCML 
outperforms state-of-the-art imbalanced learning methods. 

 Introduction   
Data imbalance means the case that one class severely out-
numbers another. Usually, the class with more samples is 
called majority class and the other one is called minority 
class. When a classical classifier encounters imbalanced 
data, it tends to favor the majority class samples. The im-
balanced data classification problem has attracted much 
interest from various communities (Li, Wang, and Bryant 
2009; Yu et al. 2013; Pan and Zhu 2013; Huang et al. 2016). 
 Many methods have been addressed to tackle the imbal-
anced data classification problem (He and Garcia 2009; Hu 
et al. 2015), and they can be generally categorized into 
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three kinds: (1) Sampling based methods. They employ 
undersampling or oversampling technique to transform the 
class-imbalanced dataset into a balanced one (Chawla et al. 
2002; Liu et al. 2006). (2) Cost-sensitive learning based 
methods (Thai-Nghe et al. 2010; Cristiano and Antonio 
2013). This kind of methods considers the costs associated 
with misclassifying samples. (3) Ensemble learning based 
methods (Galar et al. 2012; Yang et al. 2014). This kind of 
methods tries to improve the performance of individual 
classifiers by inducing several classifiers and combining 
them to obtain a new and more favorable classifier. 
 Generally, datasets whose imbalance ratio is higher than 
10:1 can be regarded as the highly imbalanced datasets 
(Fernándeza et al. 2008). Table 1 shows properties of five 
highly imbalanced datasets derived from various applica-
tion fields (Menzies et al. 2007; Alcalá-Fdez et al. 2011). 
We can see that the majority class samples outnumber the 
minority class samples severely. Ordinary imbalanced 
learning methods usually decline in classification perfor-
mance in highly imbalanced classification scenarios. 
 Recently, a few methods have been addressed to solve 
the highly imbalanced data classification problem (López 
et al. 2013). Granular SVMs-repetitive undersampling 
(GSVM-RU) (Tang et al. 2009), a modification to support 
vector machines, can minimize the negative effect of in-
formation loss while maximizing the positive effect of data 
cleaning in the undersampling process. Evolutionary un-
dersampling boost (EUSBoost) (Galar et al. 2013) com-
bines boosting algorithm with evolutionary undersampling 

Table 1. Properties of highly imbalanced datasets. 
Dataset Number of majori-

ty class samples 
Number of minori-

ty class samples 
Imbalance 
ratio (IR) 

PC1 711 61 11.7:1 
Pageblock 5245 231 22.7:1 

Glass5 205 9 22.8:1 
Yeast7 1447 37 39.2:1 

Abalone19 4142 32 128.9:1 
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(Jia et al. 2014) presents two sampling methods based on 
the borderline synthetic minority over-sampling technique. 

Motivation 
Fig. 1 shows the influence of imbalance ratio (IR) to repre-
sentative highly imbalanced learning methods, i.e., GSVM-
RU, EUSBoost and (Jia et al. 2014). Here, we take the 
Abalone19 dataset as an example and observe the values of 
the F1 (F-measure with the balance factor  being equal 
to 1) values of these methods with increasing IR (from 1:1 
to 128:1). Half of this dataset is taken as the training set 
and the remainders are used as the testing set. Specifically, 
we choose half of minority class samples (16 samples) and 
the same number of samples from the majority class to 
form the initial training set. In this case, the IR is 1:1. 
Then, we increase the IR by adding more majority class 
samples into the initial training set. 

We can find that when the IR is increasing to 128:1, F1 
of these methods is much lower than that in initial bal-
anced data scenarios. Hence, there exists much room for 
improvement in these methods. Essentially, existing highly 
imbalanced learning methods can be classified into one of 
three kinds of ordinary imbalanced learning methods 
mentioned above, and mostly they utilize the sampling and 
ensemble learning techniques. However, there exist some 
shortcomings in sampling and ensemble learning tech-
niques based methods, which will be analyzed in Related 
Work Section. Therefore, highly imbalanced learning is 
still a challenging task. 

Contribution 
The contributions of our study are summarized as follow-
ing two points: 

(1) We intend to address the highly imbalanced data 
classification problem from the perspective of feature 
learning. Multiset feature learning (MFL) technique can 
jointly learn features from multiple related sample sets 
effectively, such that the information of interest is fully 
exploited. We are the first to introduce MFL for solving 
the highly imbalanced data classification problem. 

(2) We provide a multiple sets construction strategy, 
which can partition the original highly imbalanced data 
into multiple sets with each holding a class-balanced sta-

tus. By designing cost-sensitive between-class scatter, we 
incorporate the cost-sensitive factor into MFL. In addition, 
we design a weighted uncorrelated constraint to remove the 
correlation among features learned from different sets. 
 We call the proposed highly imbalanced learning ap-
proach as uncorrelated cost-sensitive multiset learning 
(UCML). Experiments on five challenging datasets from 
various fields demonstrate the effectiveness of UCML. 

Related Work

Class-imbalanced Learning Methods 
 A. Sampling technique based methods. Undersampling 
based methods balance the distributions between majority 
class and minority class samples by reducing the majority 
class samples. Oversampling based methods, however, add 
the minority class samples to the imbalanced dataset. Ma-
jority weighted minority oversampling technique 
(MWMOTE) (Barua et al. 2014) is a synthetic minority 
oversampling based method, which generates the synthetic 
samples by using the weighted informative minority class 
samples. These methods need to append or remove consid-
erable samples for classifying the highly imbalanced data.  
 B. Cost-sensitive learning based methods. Cost-sensitive 
multilayer perceptron (CSMLP) (Cristiano and Antonio 
2013) is a recently presented algorithm, which uses a sin-
gle cost parameter to distinguish the importance of class 
errors. For cost-sensitive learning based methods, how to 
determine a cost representation is still an important and 
open problem.  
 C. Ensemble learning based methods. Usually, the en-
semble learning based methods are combined with the data 
sampling technique to address the data imbalance problem 
(Yang et al. 2014). Undersampling based online bagging 
with adaptive weight adjustment (WEOB2) (Wang et al. 
2015) can adjust the learning bias from majority to minori-
ty class effectively with adaptive weight adjustment. 
(Dubey et al. 2014) presents an ensemble system that com-
bines feature selection algorithm, data sampling technique 
and binary prediction model. These methods usually focus 
on the classifier level issue. However, how to effectively 
guarantee and utilize the diversity of classification ensem-
bles is still an open problem.  
 The introduction and analysis of highly imbalanced 
learning methods have been given in Introduction section. 

Multiset Feature Learning (MFL) Methods 
The idea of multiset feature learning (MFL) is to jointly 
learn features from multiple related sample sets, such that 
the information of interest can be fully exploited (Memise-
vic et al. 2012). Multiset canonical correlation analysis 
(MCCA) (Li et al., 2009) exploits the correlation features 

Figure 1. F1 of highly imbalanced learning methods on Abalo-
ne19 dataset with increasing imbalance ratio from 1:1 to 128:1. 
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among multiple sets. Discriminant analysis based MFL is 
an important research direction in this domain, including 
multi-view Fisher discriminant analysis (MFDA) (Diethe 
et al. 2008) and multi-view discriminant analysis (MvDA) 
(Kan et al. 2016). MvDA can maximize the between-class 
variations and minimize the within-class variations of 
samples in the learning common space from both intra-
view and inter-view. To our knowledge, MFL has not been 
used to solve the imbalanced data classification problem. 

Our Approach 

Multiple Sets Construction Strategy 
Fig. 2 illustrates the construction procedure of multiple 
sets, which includes two steps: 
 Step 1: We randomly partition the majority class sam-
ples into multiple blocks, whose number of samples is the 
same as that of minority class samples.  
 Since the number of majority class samples might not be 
exactly in proportion to the number of minority class sam-
ples, some majority class samples may be left when multi-
ple blocks have been obtained. We call these left samples 
as “redundant samples”. We delete redundant samples (if 
the redundant samples are less than half of the minority 
class samples) or add adequate number of samples copied 
from original majority class samples (if the redundant 
samples are more than half of the minority class samples) 
to construct integral number of blocks. It is noted that the 
added samples are all randomly copied from original ma-
jority class samples. 
 Step 2: We combine each block of majority class with 
the minority class to form one balanced set. Then, we can 
obtain multiple balanced sets. 
 With the designed multiple sets construction strategy, the 
highly imbalanced data can be transformed to multiple 
sets. And the highly imbalanced data classification problem 
can be addressed by using the MFL techniques. 

Cost-sensitive Multiset Feature Learning 
Assume that v  sets have been constructed. To boost the 
misclassifying cost and improve the classification perfor-
mance, we incorporate the cost-sensitive factor into MFL. 
Concretely, the cost-sensitive factor is embodied in the 

between-class scatter since it represents the relationship 
between the majority and minority classes. 
 Let 1, ,... .1, .; ,.j

ijk ijx i c k n  be the samples 

from the thj  set, where ijkx  is the thk  sample from the thj  

set of the thi  class, c  is the number of classes and ijn  is 

the number of samples from the thj  set of the thi  class. 
Samples from v  sets can be projected to a common space 
by using the v  linear transformations 1 2 .., , ,. vw w w  denot-

ed as 1, 2; 1, , ; 1, ,... ...T
ijk j ijk ijy w x i j v k n . In 

this common space, the between-class variation y
BS  from 

all sets is maximized while the within-class variation y
WS  

from all sets is minimized. To simplify exposition and en-
sure clarity, we assume the desired dimension of projected 
samples equal to one, namely 1 2 .., , ,. vw w w  are a set of 

projection vectors. We use 
1 1

1 ijv n
i i ijkj k

n y as 

mean of samples in the projected space from the thi  class. 
Here, in  is the number of samples in the thi  class. Then 
the within-class scatter y

WS  is defined as:  

1 1 1
ij Tc v ny

W ijk i ijk ii j k
S y y .        (1) 

 Formally, the within-class scatter in (1) can be reformu-
lated as follows (please refer to the (Kan et al. 2016) for 
the detailed derivation): 

111 12 1

221 22 2
1 2

1 2

...
...

...

...

v

vy T T T T
W v

v v vv v

wS S S
wS S S

S w w w w Sw

S S S w

,      (2) 

where 1 2, ,...,
TT T T

vw w w w  . jmS  in S  is defined as fol-

lows with 
1

1 ijnx
ij ij ijkk

n x : 

1 1

1

ijnc
ij ij x x TT

ijk ijk ij ij
i k i

jm
c

ij ij x x T
ij ij

i i

n n
x x j m

n
S

n n
otherwise

n

.   (3) 

 Assume that 1,2cost  denotes the punishment when a 
majority class sample is misclassified as the minority class, 
and 2,1cost  means the punishment when a minority-class 
sample is misclassified as the majority class, as shown in 
Table 2. We incorporate the cost-sensitive factors 1,2cost  
and 2,1cost  in between-class scatter to increase the pun-
ishment when minority class samples are misclassified as 

Table 2. Cost matrix for UCML. 

 Classified as  
majority class 

Classified as  
minority class 

Actually majority class 0 1,2cost  
Actually minority class 2,1cost  0 

                                                 Figure 2. Illustration of multiple sets construction strategy. 
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the majority class samples. As a result, cost-sensitive MFL 
makes the classification incline to classify the samples into 
the minority class. Then the cost-sensitive between-class 
scatter y

BS  is defined as 

1 1,
,c c Ty

B i l i li l l i
S cost i l ,       (4) 

where l  is the mean of samples in the projected space 
from the thl  class.  
 The cost-sensitive between-class scatter can be further 
reformulated as follows: 

11 12 1 1

21 22 2 2
1 2

1 2

...
...

...

...

v

vy T T T T
B v

vv v vv

D D D w
D D D w

S w w w w Dw

wD D D

.   (5) 

Here, jmD  in matrix D  is defined as: 

2
1 1

2

,
c c

ij im ij lmx x x xT T
jm ij im ij lm

i l i li
l i

lj im lj lmx x x xT T
lj im lj lm

i l l

n n n n
D cost i l

n nn

n n n n
n n n

,    (6) 

where imn  is the number of samples from the thm  set of 
the thi  class, lmn and ljn  are separately the numbers of 

samples from the thm  and thj set of the thl  class. 

1
1 imnx

im im imkk
n x  is the mean sample in the thm  set 

of the thi  class, and x
lm  and x

lj  are separately the means 

of samples from the thm  and thj set of the thl  class. 

Weighted Uncorrelated Constraint 
For constructing multiple sets, we partition majority class 
samples into multiple blocks and combine each block with 
the minority class to construct a set. Since the minority 
class is shared by different sets and the samples other than 
the minority class in different sets are all from the majority 
class, there may exist correlation among multiple sets. And 
the correlation in original sets will lead to the correlation in 
the learned features from multiple sets. Therefore, we con-
sider reducing the adverse correlation in the MFL process. 
 There already exist efforts to make features learned from 
single set uncorrelated, including uncorrelated optimal 
discrimination vectors (UODV) (Jing et al. 2011) and 
weighted global uncorrelated discriminant transforms 
(WGUDT) (Jing et al. 2011). UODV and WGUDT sepa-
rately make features from single set statistically uncorre-
lated or weighted global uncorrelated, and achieve impres-
sive effects. Inspired by these single-set-based methods, we 
design a weighted uncorrelated constraint to reduce the 
statistical correlation among features from multiple sets. 
The weighted correlation among multiple sets is defined as:  

,

, ,
1 1

T j mv v
j t m

jm T j j T m m
j m j t j m t mm j

w S w
cor

w S w w S w
,             (7) 

where ,
1 1

1
TN Nj m j m

t jp p mq qq p
S N x x . ,j j

tS  

and ,m m
tS  can be computed in the similar way. Here, jpx  

and mqx  denote the thp  sample of the thj  set and the thq  

sample of the thm  set, respectively. j
p  and m

q  separately 
denote the weighted mean sample corresponding to each 
sample jpx  and mqx . j

p  can be calculated by 
2 2

1
1 , exp 2Nj

p pq jp pq jp jqq
N x x x , 

where  is a scalar constant. Then, our designed uncorre-
lated constraint is defined as: 

,
1 1,

0v v T j m T
j t mj m m j

w S w w Hw ,              (8) 

where 

1,2 1,

2,1 2,

,1 ,2

0
0

0

v
t t

v
t t

v v
t t

S S
S S

H

S S

. It is noted that since dif-

ferent sets contain the same number of samples, in this part, 
we use N  to denote the number of samples in each set. 

Objective Function and Solution 
By combining the multiset within-class scatter, the multiset 
cost-sensitive between-class scatter and the weighted un-
correlated constraint, we define the objective function of 
UCML as follows:  

max

. . 0

T

w
T

w D S w

s t w Hw
.                              (9) 

Like in (Jing et al. 2015), the solution of (9) can be ob-
tained by solving the following eigen-equation problem: 

D S w Hw .                            (10) 
 Once the eigenvectors 1, 2, ,kw k d  associated 

with d  largest eigenvalues of 1D S H  are obtained, 

we get 1 2, , ,k k k
vw w w  from kw . Let 1 2, ,..., d

j j j jW = w w w

where 1, 2,...,j v  and  denote the testing sample set. 
We can obtain the projected features of training sample set 

j
XZ  and testing sample set j

TZ  separately by jj T
X jZ W  

and j T
T jZ W  for 1,2,...,j v . 

 For the 1,2,...,thj j v  set, we firstly use the nearest 
neighbor (NN) classifier with the cosine distance to classi-
fy j

TZ  on j
XZ . Then we can obtain v  predicted results for 

each testing sample in . Next, we can adopt the majority 
voting strategy to make final decision for each test sample. 

Complexity Analysis 
The time cost of UCML mainly includes two parts: (1) 
calculating matrices S , D , and H ; (2) solving the gener-
alized eigenvalue problem in (10). Specifically, matrices 
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calculation needs the time complexity of
22 2 2 dimv N c N , where dim  denotes the dimen-

sionality of samples. Solving the generalized eigenvalue 
problem in (10) needs the time cost of 3dimv . Therefore, 
our approach needs the time cost of 

2 32 2 2 dim dimv N c N v . 

Experiments 

Competing Methods 
In the experiment, we compare our UCML approach with 
state-of-the-art related methods including: highly imbal-
anced learning methods: GSVM-RU (Tang et al. 2009), 
EUSBoost (Galar et al. 2013) and (Jia et al. 2014); repre-
sentative ordinary imbalanced learning methods: 
MWMOTE (Barua et al. 2014), CSMLP (Cristiano and 
Antonio 2013), WEOB2 (Wang et al. 2015) and (Dubey et 
al. 2014); and representative multiset learning methods: 
MCCA (Li et al. 2009) and MvDA (Kan et al. 2016). 

Evaluation Measures and Experimental Setting 
We employ three commonly used measures, including Pre-
cision, Recall, and F-measure, to evaluate the performanc-
es. Assume that A , B , C  and D  are the number of mi-
nority class samples that are classified as minority class, 
the number of minority class samples that are classified as 
majority class, the number of majority class samples that 
are classified as minority class, and the number of majority 
class samples that are classified as majority class, respec-
tively, these measures can be calculated as: 
(1) / ( )Precision A A C .  
(2) / ( )ARec Bal Al . 

(3) 2
2

1- Precision RecallF measure
Precision Recall

. It is a trade-

off between the Precision and Recall. A greater value for 
 indicates the higher importance of recall over precision. 

In this paper, we use the widely used F1, that is F-measure 
with 1 . In addition, we also evaluate the class-
imbalanced learning performance of our approach by using 
F2 (F-measure with 2 ), like in (Maratea et al. 2014). 
 Obviously, an ideal method should hold high values of 
Precision, Recall, F1 and F2. In experiments, we randomly 
select 50% samples to construct the training set for all da-
tasets, and use the remained samples for testing. We repeat 
random selection 20 times and record the average results. 
Assume that the first class is the majority class and the 
second class is the minority class. Then 1,2cost  and 

2,1cost  are separately set as 1,2 1cost  and 
1 22,1 rounded value ofcost N N , where 1N  and 2N  de-

note the numbers of majority and minority class samples. 

The parameter 2  in the weighted uncorrelated constraint 
is set by using 5-fold cross validation on the training set. 

Software Defect Prediction Application 
To validate the effectiveness of UCML for software defect 
prediction, we conduct experiments on the PC1 dataset 
(Menzies et al. 2007). Each sample in this dataset has 38 
features. Table 3 shows the experimental results on PC1. 
We can see that UCML can achieve better results. 

Document Classification Application 
To validate the effectiveness of UCML for document clas-
sification, we conduct experiments on the Pageblock1 da-
taset. The imbalance ratio is 22.7:1 and each sample has 10 
features. Table 4 shows the experimental results. We can 
see that UCML obtains the best classification results. 

Object Classification Application 
Object classification also usually encounters the highly 
imbalanced data. Thus, we conduct experiment on this type 
of dataset like Glass5 (Alcalá-Fdez et al. 2011). Each sam-
ple in this dataset has 9 features and the imbalance ratio is 
22.8:1. Table 5 shows the experimental results. We can see 
that our UCML is superior to other compared methods. 

1  UC Irvine Machine Learning Repository, 
http://archive.ics.uci.edu/ml/, 2009. 

Table 3. Experimental results on the PC1 dataset. 
Method Precision Recall F1 F2 
MCCA 0.42±0.03 0.48±0.05 0.44±0.04 0.47±0.05 
MvDA 0.46±0.06 0.51±0.04 0.47±0.04 0.50±0.06 

MWMOTE 0.72±0.04 0.83±0.05 0.77±0.04 0.81±0.05 
CSMLP 0.66±0.03 0.84±0.02 0.73±0.02 0.80±0.04 
WEOB2 0.69±0.02 0.82±0.02 0.76±0.02 0.79±0.04 

Dubey et al. 0.71±0.04 0.80±0.03 0.75±0.02 0.78±0.03 
GSVM-RU 0.73±0.03 0.82±0.04 0.76±0.03 0.80±0.06 
EUSBoost 0.72±0.04 0.81±0.02 0.75±0.03 0.79±0.05 
Jia et al. 0.72±0.03 0.80±0.03 0.76±0.03 0.78±0.05 
UCML 0.74±0.03 0.84±0.04 0.78±0.02 0.82±0.03  
Table 4. Experimental results on the Pageblock dataset. 
Method Precision Recall F1 F2 
MCCA 0.39±0.06 0.45±0.04 0.42±0.05 0.44±0.02 
MvDA 0.44±0.04 0.47±0.05 0.45±0.05 0.46±0.03 

MWMOTE 0.88±0.05 0.90±0.05 0.88±0.04 0.90±0.05 
CSMLP 0.89±0.06 0.92±0.02 0.89±0.03 0.91±0.02 
WEOB2 0.91±0.03 0.93±0.03 0.91±0.03 0.93±0.03 

Dubey et al. 0.88±0.02 0.90±0.02 0.89±0.03 0.90±0.01 
GSVM-RU 0.89±0.03 0.92±0.04 0.90±0.04 0.91±0.03 
EUSBoost 0.92±0.02 0.93±0.03 0.92±0.02 0.93±0.04 
Jia et al. 0.89±0.05 0.88±0.04 0.88±0.05 0.88±0.02 
UCML 0.93±0.03 0.94±0.03 0.94±0.04 0.94±0.02  

Table 5. Experimental results on the Glass5 dataset. 
Method Precision Recall F1 F2 
MCCA 0.43±0.12 0.76±0.11 0.56±0.10 0.66±0.08 
MvDA 0.45±0.09 0.75±0.08 0.54±0.08 0.66±0.06 

MWMOTE 0.71±0.05 0.82±0.03 0.74±0.04 0.80±0.04 
CSMLP 0.72±0.03 0.83±0.04 0.75±0.02 0.81±0.05 
WEOB2 0.76±0.06 0.83±0.07 0.78±0.04 0.81±0.07 

Dubey et al. 0.77±0.04 0.86±0.03 0.82±0.03 0.84±0.03 
GSVM-RU 0.78±0.04 0.88±0.03 0.82±0.03 0.86±0.02 
EUSBoost 0.78±0.05 0.85±0.04 0.82±0.04 0.84±0.05 
Jia et al. 0.74±0.05 0.79±0.05 0.77±0.05 0.78±0.04 
UCML 0.81±0.02 0.89±0.04 0.86±0.03 0.87±0.06 
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Bio-information Prediction Application 
We conduct experiments on the Yeast7 and Abalone19 
datasets (Alcalá-Fdez et al. 2011) for bio-information pre-
diction. Yeast7 is usually used to predict the cellular local-
ization sites of proteins. Abalone19 is usually used to pre-
dict the age of abalone. Each sample has 8 features in these 
two datasets. 

Tables 6 and 7 separately show the prediction results on 
Yeast7 and Abalone19. UCML obtains the best prediction 
results on both datasets. We also conduct the statistical test 
(Draper et al. 2002) to analyze the results in Tables 3-7. 
The test results indicate that UCML makes a statistically 
significant difference in comparison with other methods.  

Table 6. Experimental results on the Yeast7 dataset. 
Method Precision Recall F1 F2 
MCCA 0.51±0.05 0.37±0.02 0.44±0.05 0.39±0.03 
MvDA 0.54±0.03 0.39±0.02 0.45±0.03 0.41±0.05 

MWMOTE 0.67±0.04 0.56±0.03 0.60±0.04 0.58±0.07 
CSMLP 0.71±0.03 0.57±0.02 0.63±0.04 0.59±0.08 
WEOB2 0.70±0.02 0.59±0.03 0.65±0.05 0.61±0.05 

Dubey et al. 0.73±0.04 0.60±0.02 0.63±0.04 0.62±0.07 
GSVM-RU 0.73±0.03 0.61±0.04 0.67±0.03 0.63±0.04 
EUSBoost 0.77±0.02 0.61±0.02 0.68±0.05 0.64±0.06 
Jia et al. 0.72±0.04 0.60±0.03 0.66±0.05 0.62±0.07 
UCML 0.77±0.03 0.65±0.04 0.71±0.03 0.67±0.02  
Table 7. Experimental results on the Abalone19 dataset. 
Method Precision Recall F1 F2 
MCCA 0.33±0.04 0.52±0.04 0.41±0.03 0.47±0.05 
MvDA 0.38±0.03 0.53±0.03 0.44±0.02 0.49±0.03 

MWMOTE 0.53±0.02 0.58±0.04 0.54±0.03 0.57±0.04 
CSMLP 0.51±0.01 0.55±0.02 0.53±0.02 0.54±0.05 
WEOB2 0.55±0.02 0.60±0.03 0.57±0.03 0.59±0.07 

Dubey et al. 0.58±0.05 0.67±0.03 0.62±0.04 0.65±0.06 
GSVM-RU 0.60±0.03 0.70±0.04 0.63±0.03 0.68±0.04 
EUSBoost 0.63±0.02 0.69±0.02 0.66±0.03 0.68±0.05 
Jia et al. 0.59±0.04 0.68±0.02 0.62±0.03 0.66±0.02 
UCML 0.67±0.03 0.75±0.05 0.71±0.04 0.73±0.07  

Table 8. F1 values of UCMLnoboth, UCMLnocost, and UCMLnowei. 
Dataset UCMLnoboth UCMLnocost UCMLnowei UCML

PC1 0.74 0.76 0.75 0.78
Pageblock 0.91 0.93 0.92 0.94 

Glass5 0.82 0.85 0.83 0.86 
Yeast7 0.65 0.68 0.66 0.71

Abalone19 0.67 0.70 0.69 0.71 

Effectiveness of Important Components 
Multiset feature learning (main body of our approach), 
cost-sensitive factor, and weighted uncorrelated constraint 
are three important components of our approach. In this 
subsection, we specially evaluate their effectiveness. We 
perform our approach without the cost-sensitive factor and 
weighted uncorrelated constraint, and we call this version 
as “UCMLnoboth”. In addition, we perform our approach 
without the cost-sensitive factor or weighted uncorrelated 
constraint, which are separately called “UCMLnocost” and 
“UCMLnowei”. The experimental results of UCMLnoboth, 
UCMLnocost, UCMLnowei and UCML are given in Table 8. 

From the table, we can see that the F1 values of 
UCMLnoboth are obviously lower than those of UCML, but 
are still comparable to other methods. In addition, 
UCMLnocost and UCMLnowei can improve the results of 
UCMLnoboth. These results demonstrate the effectiveness of 

the three components in our approach. 

Evaluation of the Influence of IR to UCML 
Fig. 3 illustrates the influence of IR to UCML on Abalo-
ne19. The experimental setting can be found in Fig. 1. We 
can find that when the IR is increasing, F1 values of com-
pared methods decline. When the IR reaches the maxim-
ized level (128:1), the F1 values are significantly lower 
than those corresponding to the IR of 1:1 for all competing 
methods. For UCML, its F1 experiences a relatively small-
er decline, which means that UCML is relatively robust to 
highly imbalance ratio as compared with related methods. 

Parameter Analysis 
For the parameter 2 in our approach, we search the pa-
rameter space 3 2 1 0 1 2 3 2

02 ,2 ,2 ,2 ,2 ,2 ,2 , where 2
0  is 

the mean square distance of training data. Here, we evalu-
ate the influence of 2  on the prediction result. Fig. 4 
shows the F1 values of UCML versus different values of 

2  on PC1. We can see that the performances of our ap-
proach are stable with respect to 2  in the range of 

2 2
0 02 ,4 . For simplicity, we set 2  as 2

02  on PC1. A 
similar phenomenon also exists on the other datasets. 
 With respect to the computational time, generally, our 
approach needs comparable time as compared with 
MCCA, MvDA, MWMOTE and (Jia et al. 2014), and 
needs less time than CSMLP, WEOB2, (Dubey et al. 2014), 
GSVM-RU and EUSBoost.  

 
Figure 4: F1 versus 2  on PC1. 

Conclusion 
In this paper, we are devoted to addressing the highly im-
balanced learning problem from the perspective of feature 
learning. We propose a novel approach named UCML. 
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This is the first attempt towards introducing the idea of 
MFL into imbalanced learning. We conduct experiments 
on five highly imbalanced datasets from various applica-
tion fields. The results demonstrate that UCML outper-
forms state-of-the-art highly imbalanced learning methods. 
The experimental results indicate that three important 
components of our approach are effective. We also find 
that our approach is more robust to high imbalance ratio. 
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