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Abstract Hand-held object recognition is an important research topic in image understand-
ing and plays an essential role in human-machine interaction. With the easily available
RGB-D devices, the depth information greatly promotes the performance of object segmen-
tation and provides additional channel information. While how to extract a representative
and discriminating feature from object region and efficiently take advantage of the depth
information plays an important role in improving hand-held object recognition accuracy
and eventual human-machine interaction experience. In this paper, we focus on a special
but important area called RGB-D hand-held object recognition and propose a hierarchical
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feature learning framework for this task. First, our framework learns modality-specific fea-
tures from RGB and depth images using CNN architectures with different network depth
and learning strategies. Secondly a high-level feature learning network is implemented for
a comprehensive feature representation. Different with previous works on feature learning
and representation, the hierarchical learning method can sufficiently dig out the character-
istics of different modal information and efficiently fuse them in a unified framework. The
experimental results on HOD dataset illustrate the effectiveness of our proposed method.

Keywords Feature learning · RGB-D object recogntion · Multiple modalities

1 Introduction

Objects are playing an important role in human-machine interaction, which helps machine
to better understand the environment. Therefore object recognition [2, 3, 6] has been a
significant research field in computer vision. It can assist image content understanding,
scene modeling, multimedia retrieval and so on. At the same time, during human-machine
interaction in AI system, the object held by user is not a negligible factor in understanding
the user’s intention and requirements. Imagining that when you ask an AI system “I want
some thing like this” with a book named “Harry Potter” on your hand, the system should
combine the object you hold and your question together to understand your requirement,
then finds a similar one and shows it to you. Therefore, there rises a special but important
area called hand-held object recognition, which focuses on recognizing the object held on
user’s hand. It can not only help machine to “see” the object that may be correlated to
user’s intention but also make a more specific inference or reasonable reaction about user’s
requirements.

Research on hand-held object recognition [1, 12, 14, 15, 18] can be divided into two cat-
egories: one is the first-person interface [1, 18], in which the hand-held images are captured
from the first-person point of view; another is second-person interface [12, 14, 15], which
uses a camera located in the robot or system for the user to interact with. In first-person
view, the image is always captured from a smartphone and only has RGB information. In
second-person view, the captured image often contains object, person and background, the
object held in hand may only occupy a small region of the image. As RGB-D devices (e.g.
Kinect, RealSense) are more and more common and inexpensive, it’s convenient to capture
the RGB and depth information from real scene. Some RGB-D devices can also provide
skeletal information of the user, which helps the system to know user’s relation with envi-
ronment, especially the hand-held object. The advantages of depth information include: 1)
providing depth information of each pixel in RGB image, which does not exist in traditional
RGB image; 2) depth information naturally contains the object regions (the region area in
same depth level can be a potential object or object set); 3) depth information of an object
region can represent shape information of object surface. Because second-person interface
is widely used in human-machine interaction, we focus on this task in this paper.

Many works [12, 14, 15] on RGB-D images take advantage of RGB-D device to seg-
ment the target object region using depth and skeletal information. Liu et al. [12] first build
a point cloud based on RGB and depth information, then extract ESF [21], C3-HALC [9]
and GRSD [16] features, finally implement multiple kernel learning [4] (MKL) for feature
fusion and SVM for classification. Lv et al. [14] add deep learned features in the fusion
model and concatenate the deep learned features on depth and RGB images in the first
stage, then fuse them with hand-crafted features using MKL. A common pipeline of RGB-D
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Fig. 1 RGB-D hand-held object recognition pipeline

hand-held object recognition is shown in Fig. 1. These works combine the depth and
RGB information either on point cloud level or feature level. While hand-crafted features
are various and each of them describes one or several aspects of the image (for example
ESF mainly represents the shape information, C3-HALC represents color information),
which makes it difficult to select a suitable combination of features to have a compre-
hensive and discriminative representation of the dataset. Meanwhile the feature designing
procedure is timeconsuming and has less scalability. With the explosion of deep learning
(i.e.Convolutional neural networks (CNN)), it tremendously alleviates the complexity in
designing a representative feature by learning feature from the image dataset itself. In [14],
a CNN model is trained on the ImageNet2012 dataset, then the model is directly used to
extract features from RGB and depth image in HOD dataset. Because the training dataset
is not HOD, which will reduce the representative ability in target dataset, therefore Lv et
al. [14] add hand-crafted features in [12] and use MKL to fuse them and use SVM for
classification.

Motivated by previous works on RGB-D hand-held object recognition, we want to find
a way that can learn features on RGB and depth images from the RGB-D hand-held object
dataset, and automatically learn a high-level feature using two modal features. Therefore,
in this paper we propose a modality-specific and hierarchical feature learning method for
RGB-D hand-held object recognition. The method implements two networks in different
depths for RGB and depth feature learning respectively, and a third network for high-level
feature learning. The main contributions in this paper are as follows:

– We propose a new feature learning and representation framework for RGB-D hand-
held object recognition based on CNN in a unified framework. It can learn distinctive
and representative features on RGB and depth information via different network archi-
tectures and learning schemes. It can sufficiently exploit the complementary factor
between different features, and learn a more comprehensive and high-level feature via
hierarchical networks.

– Modality-specific CNN architectures and modality-correlated learning schemes
(msCNN) are proposed for RGB and depth feature learning. It uses external dataset to
pretrain the networks to obtain basic and shared features. Then we finetune the two
networks in different ways to learn modality-correlated features. The feature learning
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method is proved to have an improved representative ability than directly extracting
features using ready-made networks.

This paper is organized as follows. The second section shows some related works. The
Sections 3, 4, 5 sections detail the framework, modality-specific feature learning and high-
level feature learning respectively. Section 6 introduces the experimental results. The last
section summarizes the proposed method and discusses the future work.

2 Related works

2.1 3D convolutional neural network

There are several works on CNN which take two or more input images as input instead of
one RGB image. Ji et al. [8] show a work on action recognition, which combines multiple
images as a whole input for CNN. It changes the first convolutional layer of normal CNN
by using convolutional kernels to convolute multiple input images as one image to generate
the feature map. Gupta et al. [7] convert the depth image into a three dimensional image
called HHA. Firstly, they encode depth image with three channels at each pixel: horizontal
disparity, height above ground, and the angle of the pixel’s local surface normal. Secondly,
they use two same networks and train them on both HHA and RGB images respectively.
Finally, they concatenate the two features and feed them into a SVM classifier. Ji et al. [8]
focus on action recognition, they use multiple RGB images as input for CNN, the RGB
images have some common patterns like the color filter and contour. While our work focuses
on RGB-D images, RGB and depth images have different modal information, directly using
a filter to convolute themwill ignore the difference and make it hard to find the characteristic
of each modality. Although Gupta et al. [7] take use of depth information by converting the
depth image into a new form of image called HHA, which makes the generated image have
similar pattern with RGB image. While this is very complex and converting will change
the original information of the depth image. Our method takes raw depth images and RGB
images as input, which will not reduce or change the input information.

2.2 Object tracking

Zhang et al. [29] propose a tracking algorithm with an appearance model based on fea-
tures extracted from multi-scale image feature space with data independent basis. Zhang
et al. [28] model the motion of local patches of single object tracking that can be seam-
lessly applied to most part-based trackers in the literature. Zhang et al. [27] bound multiple
Gaussian uncertainty to object tracking. Although these works show good algorithms for
tracking the object, our framework focuses on the hand-held object. The hand-held object
can be located by taking the advantage of the skeletal information from Kinect to track the
hand position (it can be regarded as the object position).

2.3 Multi-view image recognition

Liu et al. [13] present multi-view Hessian discriminating sparse coding (mHDSC) which
seamlessly integrates Hessian regularization with discriminating sparse coding for multi-
view feature learning problems. Wu et al. [22] learn a multi-view low-rank dictionary
for classification task. Both of the two works learn features on RGB images. Zha et al.
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[26] propose to learn discriminating features from multiple views of RGB-D content, the
feature learning function is formulated as a robust non-negative graph embedding func-
tion over multiple graphs in various views. Different from these works, we implement the
multi-view feature learning on depth and RGB images using a unified deep learning frame-
work, it can automatically learn different features from different modalities and dig out the
complementary factors between the two modalities.

2.4 Hand-held object recognition

Hand-held object recognition can be divided into first-person interface and second-person
interface. For the first interface works [17, 18, 23], [23] is driven by a head-pose calculation
and laser pointer guidance to estimate the region of interest for the hand-held and object-at-
distance. They compute the region of interest to recognize the hand-held object with SIFT.
The difference in our work is that we use the location of hand to locate hand-held object
which is more precise. [17] is a first-person view. They use motion to separate out hand-
held object and combine the motion of object location and background movement as well
as some temporal cues for a max-margin classifier. But this work is about first-person inter-
faces and our work is designed for second-person interface which has a wider application.
Joes et al. [18] provide a dataset SHORT (The Small Hand-held Object Recognition Test),
while the object covers most of the image, which makes the detection simpler, even without
segmentation. This also makes the application restrictive.

Many works [12, 14, 15] focus on second-person interface. They focus on the scenario
containing user, object and background. The main idea of these works is using RGB-D
devices (i.e, Kinect, RealSense) to capture both the RGB and depth information, they take
advantage of skeletal information of user to locate the hand position and depth information
to segment the object. While the features they use are either all hand-crafted or partial hand-
crafted, it’s time-consuming and have a poor transformation to other datasets. Our work
provides to uses CNN to learn features, which can sufficiently dig out the characteristics of
the dataset and also adjust to other datasets.

3 The proposed framework

The framework consists of three parts: 1) object segmentation; 2) modality-specific feature
learning; 3) high-level feature learning.

In the object region segmentation procedure, we use a method described in [15], which
uses skeletal information and depth image to segment the hand-held object. The method first
locates the hand position via skeletal information which can be acquired from Kinect. Then
a region growing algorithm takes the average depth information computed from the hand
position and its eight neighbor pixels as seed depth, if the difference between the neighbor
pixel and the seed depth is in a predefined threshold, the neighbor pixel will be added to
the region set, the procedure is repeated until no more neighbor pixel can be added. After
obtaining the target region depth information, the RGB object region is directly segmented
from the RGB image using the same bounding-box parameters with the depth object region
in depth image.

After segmentation, we use the object regions including RGB and depth as input. The
features on the object regions are obtained by the following procedures as illustrated in
Fig. 2. Firstly, the feature on RGB image is learned on deep network (e.g. VGGNet [19]) and
the depth feature is learned on shallow network (e.g. AlexNet [10]) respectively. Secondly,
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Fig. 2 The proposed framework

we use high-level feature learning network to fuse the learned features on RGB and depth
images and further learn a high-level and abstract feature. We use modality-specific and
hierarchical networks (mshCNN) to denote our architecture.

4 Modality-specific feature learning

Because RGB-D hand-held object recognition contains different modal information (includ-
ing RGB and depth) and the two modalities have a nontrivial difference such as appearance
and color, we divide the feature learning procedure on RGB and depth images into model
selection and learning strategies designing. We use modality-specific CNN (msCNN) to
denote the feature learning procedure on RGB and depth images.

4.1 Models selection

Although RGB image and depth image are simultaneously captured by the RGB-D device,
they describe different aspects of the object. The RGB image keeps rich color and texture
information about the object region which can help to describe the line and object contour,
while single RGB image can not describe the stereo information of the object. For example
a yellow ball in RGB image will be presented as a yellow circle. On the contrary, the depth
image has simple content (often represented by gray image) and loses rich color informa-
tion of the object, while it keeps the depth information of each pixel on the object, which
can describe the shape and spatial structure information about the object surface. Different
modal information and different description aspects of the object make it hard to use one
CNN model to learn the two modal features. At the same time, the depth information con-
tains less information than the RGB image, the modal complexity for depth feature learning
needs to be less than the RGB feature to avoid over-fitting.

For the above reasons, we implement two different models: a deep network for RGB
feature learning and a shallow network for depth feature learning.
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4.2 Learning strategies designing

Convolutional neural networks have been proven to have a good performance on the image
classification [11, 19] and object detection [5]. While the CNN model often needs a large
scale image dataset (such as ImageNet2012 with 1,000,000 images) for training. Current
available hand-held object datasets such as HOD (it has about 12,800 RGB and depth image
pairs in total) are too small that training a common and standard network model from scratch
will lead to over-fitting. Matthew and Rob [24] show that different layers in CNN respond
to different level features, the low layers learn the fundamental features, the high layers
learn more abstract and class-correlated features. Taking AlexNet [10] as an example, the
layer 2 responds to corners and other edge/color conjunctions, the high layers such as the
layer 5 may learn the objects with significant pose variation. That is to say the parameters
learned in low layer are sensitive to common and basic features, the parameters in high
layer are specific to categories. The learned convolutional filters will be activated by basic
features, which has less correlation with the dataset when the layer is low. Therefore, we
use ImageNet2012 dataset to pretrain the networks to learn basic convolutional filters and
initialize the fully connected layer parameters.

Because the pretrained networks are learned from the ImageNet2012 dataset, it can not
perfectly describe the HOD dataset, especially for depth images. In order to generalize
the initialized networks to the RGB-D dataset, we need to finetune the networks to target
dataset. Because RGB images in HOD are more similar with the ImageNet2012 dataset in
visual information (e.g. color and contour) than the depth information. As shown in Fig. 3,
the images in first row are from HOD and the images in second row are from ImageNet2012.
The first row and second row are examples of the same keyboard and cup categories. For
RGB images in HOD, the keyboard images in HOD have very similar shape, text and color
with the keyboard images in ImageNet2012. Although the cup images in HOD have differ-
ent colors in the two datasets, they still have some common features in structure and shape.

a b c d

Fig. 3 Different dataset examples. The images in first row are from HOD dataset, the images in second row
are from ImageNet2012 dataset
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For example, they both have handle and rim. By contrast, the depth images in HOD have
larger difference in appearance with the same categorical examples from ImageNet2012.
For example, the keyboard example image, the depth image loses many detail information
such as the key and layout on keyboard compared with the RGB image in ImageNet2012,
but the depth image reserves the general contour information and the depth of each pixel.
Therefore, we regard the depth as another description aspect of the object, which has a far
distance in common appearance and pattern with the ImageNet2012 than the RGB images
in HOD. Based on above analysis, we assume that: when the difference in two image set is
large, it needs to have a full parameters finetuning on the original network; when the differ-
ence is small, we just need to finetune partial parameters on the original network (the low
layers share common basic feature filters).

Therefore, different finetuning strategies are chosen for the two modal feature learning.
For RGB image feature learning, we keep parameters in convolutional layers unchange-
able to retain the learned basic feature filters, and only finetune the fully connected layers
in a small learning ratio to make the fully connected layers adapt to the new dataset. For
depth image feature learning, we finetune all parameters in the network to make low-
layer convolutional filters can adjust to depth features (e.g. attaching more importance to
general contour filters and less importance to color filters) and the fully connected lay-
ers parameters adjust to the finetuned low layers. The experimental results validate our
strategies.

Except for implementing different finetuning strategies on different modalities, we con-
sider that RGB and depth images have different content complexity. RGB images always
contain more information than depth images, such as color and texture. As we all know that
the content is more complex, there needs more parameters (such as increasing the filters in
each layer and the layer number) to learn the pattern contained in the image, that may be
one reason why there are many works that use deeper network [19, 20]. Considering dif-
ferent content complexities in RGB image and depth image, we use deep network for RGB
feature learning and a relatively shallow network for depth feature learning.

5 High-level feature learning

Many works focus on directly concatenating multiple features together or assigning dif-
ferent weights to different features and then concatenating them together. While these
methods ignore the relations among the features, for example the complementarity and
noise. Directly combining two modal features is insufficient to have a high-level and com-
prehensive representation about the object region. The RGB feature and depth feature are
learned separately in Section 4, they describe the same object and the features should be
fused to learn a more comprehensive and high-level feature representation (like the functions
of each layer in CNN). In order to learn a more discriminative feature for HOD, as shown in
Fig. 2, we implement a high-level feature learning network to combine the previous learned
features on RGB and depth. which can learn a more comprehensive and representative fea-
ture than single modal feature. The network is a fully connected network which takes the
concatenated vector of RGB and depth features as input. Each hidden node in the first layer
is connected with all the concatenated vector elements as input, this makes the output of
hidden node can combine both depth and RGB features. With the nonlinear transformation,
the network can learn a more representative feature for target dataset.

We use R = [r1, r2, ..., rn] to denote learned RGB feature, the dimension is n, D =
[d1, d2, ..., dm] denotes the learned depth feature, the dimension is m.
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Normalization depth feature and RGB feature are learned from different CNN models,
which make them have different ranges in feature variable values. Simply inputting two
modal features into the fully connected network will make the network itself have to adjust
the weights on different amplitude in a unified learning ratio, this may lead to slowing down
the weight learning procedure and influencing the final performance as well. Therefore, we
implement normalization on both depth and RGB features to restrict them between -1 and
1. The normalization is shown in (1). The xmax and xmin are the maximum and minimum
of all features in one dimension. ymax and ymin are the maximum and minimum of target
variable range, xi is one dimensional value of i-th feature, x′

i is the corresponding value
after normalization.

x′
i = (ymax − ymin).

(xi − xmin)

(xmax − xmin)
+ ymin (1)

After normalizing the feature, the two features are fed into the network. For each node
in the first fully connected layer, its output can be formulated as follow:

xz = f

⎛
⎝

n∑
i=1

wiri +
m∑

j=i+1

wjdj−i

⎞
⎠ (2)

where f (· ) is an activation function, wi is the weight of i-th input node, ri is i-th dimen-
sional value in RGB feature, dj is j -th dimensional value in depth feature, xz is output of
z-th hidden node. For each node in the second layer, the input contains all the outputs from
previous layer. In this way, each node of the next layer contains both RGB and depth fea-
ture information, meanwhile it can learn the weights on each dimension of both RGB and
depth features. Since the first layer is similar to feature selection and re-weighing the input
feature, therefore we implement two layers fully connected network. Twice nonlinear trans-
formation and jointly learning weights on RGB and depth features make the final feature
have an abstract and comprehensive representation of the object region. Different weights
can find the complementarity and suppress the noise in RGB and depth features.

Many works [12, 14, 15] use SVM to classify the fused feature. The reason is that they
have hand-crafted features which make them can not combine the feature fusion procedure
and classification together, meanwhile SVM performs better than softmax in their works.
In this work, we automatically learn a softmax classifier (it can be used to compute the loss
in training procedure and classify in test procedure) when training the networks, this avoids
spending too much time to train SVM. The experimental results validate that in our unified
model the softmax also has a good performance compared with SVM.

6 Experiments

6.1 Dataset and experimental setup

Dataset we use HOD [14] dataset for evaluation. HOD dataset is the only dataset for RGB-
D hand-held object recognition task, which consists of 16 daily categories and 4 instances
for each category. For each category, there are 800 RGB and depth image pairs and 200
pairs for each instance.

Evaluation the evaluation consists of two tasks: seen and unseen. Seen: training and test
sets both contain images from all the instances. Unseen: the training set contains images
from instance 1, 2 and 3, the instance 4 is used as test set.
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6.2 Evaluations on different feature learning models

For convolutional neural network, different layers have different representation level [25],
when the layer is higher, the learned feature is more specific to the object. That means low
layer feature has a high probability in sharing low-level feature filters across different image
datasets. In order to have a good insight into the influence of finetuning on RGB and depth
images, we use unseen data to try different adjustment strategies as shown in Fig. 4. An
eight layers AlexNet model is used, which consists of five convolutional layers and three
fully connected layers. The model is pretrained on ImagetNet2012 dataset, which contains
1000 categories and about 1,000,000 images in total. Because the convolutional layers are
basic feature filters, we take them as a whole for finetuning instead of finetuning each layer.

In Fig. 4, the whole network finetuning on RGB images has the worst performance
compared with the other three finetuning strategies, it is even worse than directly extract-
ing feature using pretrained model without finetuning. This indicates that using the RGB
images of HOD dataset to finetune the convolutional filters may impact or even damage the
representation and discrimination ability of the filters. The filters trained on an enormous
and diverse RGB image dataset (ImageNet2012) already have good descriptions about basic
RGB image features like color and contour, and the RGB images of HOD are few and the
image content are very simple as shown in Fig. 3. While finetuning is a parameter rectifi-
cation procedure, simple and biased training data will make the convolutional filters focus
on part of the filters and reduce the weights of other filters in the finetuning, which weak-
ens the final network in a comprehensive feature description of the object. On the contrary,
finetuning on the last fully connected layers from 6 to 8 layers, the three finetuning strate-
gies all have significant improvement compared with the whole network finetuning. They
also outperform the performance that using the pretrained model to extract feature without
finetuning. This is because convolutional layers have a good description about low-level fea-
ture, while the fully connected network is more sensitive to new dataset. It’s interesting that

Fig. 4 Different finetuning strategies. We compare the finetuning performance on different modal
images(RGB and depth). The horizontal axis shows the different fintuning strategies. “Whole networks”
means we fintune the whole AlextNet. “Fc6, Fc7 and Fc8” denotes finetuning three fully connected net-
works, “Fc7 and Fc8” denotes finetuning the latter two fully connected networks and “Fc8” denotes only
finetuning the last fully connected network. “without finetuning” means that we use a pretrained model to
extract features
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the performance on finetuned 6-8 fully connected network is almost the same with the fine-
tuned 8-th layers, and they both perform better than finetuned 7-8 layers, this might because
the 8-th finetuning has a high-level feature input from 7-th layer. While the 6-8 layers can
learn a more specific feature to HOD dataset, the 6-th layer feature are not as high-level as
the 7-th layer, this makes the 7-8 layers finetuning can not learn a good representation of
the HOD dataset.

For depth images, the whole network finetuning outperforms the other finetuning meth-
ods, and the performance declines with reducing the finetuning layers. This illustrates that
the model needs to finetune the parameters from convolutional layers to fully connected
layers to make the model be able to adjust to depth images. The main reason is that depth
images have great difference in appearance with RGB images as shown in Fig. 3. The
convolutional filters pretrained on ImageNet2012 can not transfer all the basic feature fil-
ters to depth images (such as the filters which will be activated by color information will
be useless for depth image, the filters which will be activated by texture information will
also not work), this makes the convolutional filters can not extract a representative feature
from object depth image. Therefore, the fully connected layers which take the convolutional
results as input will also be influenced. From another perspective, the whole networks fine-
tuning makes the pretrained model adjust to the depth data and improve the representation
ability to the new depth images. The feature directly extracted from the pretrained model
has the worst performance, it’s almost similar to the result of only finetuning the 8-th layer,
this is because the pretrained model has a great difference with depth images in the HOD
dataset.

The evaluations on different architectures assist us finding suitable and discriminating
modality-specific feature learning methods for both RGB and depth images from HOD
dataset. For depth images we need to finetune the whole networks. For RGB images, the
network has already learned common filters, we need to finetune the fully connected layers
to avoid new data bringing noise to the filters.

6.3 Evaluations on different high-level feature learning methods

As shown in Fig. 4, we implement whole network finetuning on depth images and fully
connected layers finetuning on RGB images. For the evaluation of our high-level feature
learning method, we select different networks and low-level feature sources.

Besides the different fusion networks, the AlexNet is replaced with VGGNet [19] on
RGB feature learning, this is mainly because that the VGGNet which has 16 layers has
been proved to have a better representation ability than AlexNet, the fully connected lay-
ers of the two models have same architectures. The number of convolutional layers of
VGGNet is more than AlexNet, which makes the networks have better representative abil-
ity than AlexNet. Therefore, we choose VGGNet for RGB images feature learning. For
depth images, because the content in depth image is simple, the VGGNet may benefit RGB
images, but its filters can not easily adjust to the depth images. Thus, we implement the
AlextNet for depth images feature learning and finetune the whole network.

We compare different feature fusion methods under different combination. The fusion
methods include using two layers fully connected networks and three layers fully connected
networks. The combination methods include: 1) using AlextNet on both RGB and depth
images (using “8C8D” to denote); 2) using AlexNet on depth images and VGGNet on RGB
images (using “16C8D” to denote). We use “FT” to denote the model which uses finetun-
ing and “without FT” means not using finetuning which directly uses the pretrained model
to extract features from RGB and depth images. As shown in Fig. 5, the performance of
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Fig. 5 Different fusion and combination methods. The horizontal axis denotes different combination strate-
gies. “8C8D” means 8 layers networks on RGB and depth images. “FT” means using finetuning. “16C8D”
means we use16 layers networks (VGGNet) on RGB images and 8 layers networks (AlexNet) on depth
images. For different fusion strategies, “2 layers networks” means two layer fully connected networks, “3
layer networks” means three layer fully connected networks, “svm” means that we directly concatenate the
two modal features and use svm for classification

“16C8D” is better than “8C8D” on both finetuning and no-finetuning conditions, this val-
idates that the VGGNet has a better description for RGB images. Besides, comparing “FT
8C8D” and “8C8D without FT” and comparing “FT 16C8D” and “16C8D without FT”
show that the combination of different modal features under finetuning performs better than
using pretrained models, this illustrates that finetuning can help to improve the performance
on both “8C8D” and “16C8D”. For fusion methods, high-level feature learning networks
using two layers networks perform better on both finetuned “8C8D” and “16C8D” than the
three layers, even for the no-finetuned “16C8D”. This is probably because that the HOD
dataset is small and three layers have too many parameters, which makes the network model
too complex for the data being over-fitting. For the “8C8D without FT”, it’s not finetuned
on the HOD and have less parameters, so this makes the network not over-fitting.

We also compare our method with SVM results, which are obtained by directly replacing
the fully connected layers with SVM. The results of SVM nearly outperforms all the per-
formance using fully connected layers. This is because that SVM has been proved to be an
outstanding classifier in many fields, which has a good performance. The best performance
is achieved by using finetuned “16C8D” with two layers networks, which is the only one
that outperforms the result using SVM, it shows that finetuning on “16C8D” and two lay-
ers fully connected networks can have a significant improvement in the feature learning and
representation.

6.4 Evaluation on the proposed approach

In this experiment, we compare the proposed framework with previous works on hand-held
object recognition. Table 1 illustrates the different methods from different works, the accu-
racy is obtained on Seen andUnseen conditions. It is obvious that the proposed method gets
best performance onUnseen condition compared with the rest methods. This means that the
proposed modality-specific and hierarchical feature learning method can improve the visual
description ability of RGB-D objects in HOD dataset under the Unseen condition. While
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for the Seen condition, our approach does not have such improvements. The approach uses
fully connected layers to learn high-level feature. This may be because that the Seen test
images have the same instances appeared in the training data, which makes the features from
test images are similar to the features from same instances in the training data. The nonlinear
transformation in fully connected layers will change the features significantly, which may
damage the similarity. Our approach also outperforms the RGB16l+D8l (it denotes directly
extracting features on RGB and depth images using VGGNet and AlextNet.) method, this
validates the effectiveness of our learning strategy. Our approach behaves better in Unseen

condition thanmsCNN , this illustrates that our method is robust toUnseen data. Although
MKL(C − CNN,D − CNN,C3, ESF,GRSD) [14] obtains a very high performance in
Unseen data, it uses five features for object region representation and our approach gets
about 7 % improvement in Unseen data.

Besides the performance, softmax classifier is often simultaneously trained with the net-
works, this makes the training and test procedure more convenient and have a lower time
and space complexity than using SVM. SVM classifier divides the procedure into two
parts both in training and testing: first, we need to train the networks and extract the fea-
tures; then a SVM is trained and used for prediction. In the computing efficiency, Lv et al.
[15] extract ESF , GRSD and C3 separately using CPU and extract C − CNN as well
as D − CNN using GPU, which makes the feature extraction time-consuming. Besides,
they concatenate all the features and use a SVM for classification, this needs additional
time. Different from the above work, our method incorporates feature extraction and label
prediction into a unified framework. Besides our method is under CNN architecture and
implemented on GPU for acceleration. Therefore, the method is more efficient than the
methods in [15]. In the experiment, we use K40 GPU for training and test, the test time
of an image is about 0.2 s, which is more efficient than the method in [15] (the time of
MKL(C −CNN +D −CNN +C3+ESF, C −CNN +D −CNN,C3, ESF) is about
1.0s).

7 Conclusion

In this paper, we propose a novel hierarchical feature learning method under the setting of
CNN for RGB-D hand-held object recognition. In the first step, the method implements net-
works with different depths for RGB and depth images, and uses modality-specific learning
strategies to learn features, which can sufficiently dig out the characteristics of RGB and
depth patterns as well as learn an adaptive and representative feature on each modality. In
the second step, a high-level feature learning network is used to learn a more comprehensive
feature from the RGB feature and depth feature. It can fuse different modal features as well
as learn a high-level and categorical feature representation. The experimental results vali-
date the efficiency of our method. In the future, we will extend this work in more generic
tasks (e.g. RGB-D scene classification and RGB-D object classification).
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