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Being a Supercook: Joint Food Attributes
and Multimodal Content Modeling for

Recipe Retrieval and Exploration
Weiqing Min, Shuqiang Jiang, Senior Member, IEEE, Jitao Sang, Huayang Wang, Xinda Liu, and Luis Herranz

Abstract—This paper considers the problem of recipe-oriented
image-ingredient correlation learning with multi-attributes for
recipe retrieval and exploration. Existing methods mainly focus
on food visual information for recognition while we model visual
information, textual content (e.g., ingredients), and attributes (e.g.,
cuisine and course) together to solve extended recipe-oriented
problems, such as multimodal cuisine classification and attribute-
enhanced food image retrieval. As a solution, we propose a
multimodal multitask deep belief network (M3 TDBN) to learn
joint image-ingredient representation regularized by different
attributes. By grouping ingredients into visible ingredients (which
are visible in the food image, e.g., “chicken” and “mushroom”) and
nonvisible ingredients (e.g., “salt” and “oil”), M3 TDBN is capable
of learning both midlevel visual representation between images and
visible ingredients and nonvisual representation. Furthermore, in
order to utilize different attributes to improve the intermodality
correlation, M3 TDBN incorporates multitask learning to make
different attributes collaborate each other. Based on the proposed
M3 TDBN, we exploit the derived deep features and the discovered
correlations for three extended novel applications: 1) multimodal
cuisine classification; 2) attribute-augmented cross-modal recipe
image retrieval; and 3) ingredient and attribute inference from food
images. The proposed approach is evaluated on the constructed
Yummly dataset and the evaluation results have validated the
effectiveness of the proposed approach.
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I. INTRODUCTION

FOOD differs in many aspects, such as ingredients, cui-
sine, course, nutrition and taste. The diversity of food

leads to different food preference, which has a strong effect
on our personal health and social lives [1], [2]. Effectively mod-
eling these various food information plays important roles in
applications like food preference learning, food image calorie
estimation and personalized recipe recommendation. The pro-
liferation of online recipe-sharing websites has provided rich
data for recipe-oriented research. For example, one of the most
popular recipe-sharing websites, Yummly1 hosts over one mil-
lion recipes with rich metadata information. Fig. 1 shows some
example recipes from Yummly. Each food item consists of the
visual food photo, textual content (e.g., name and ingredients)
and attributes (e.g., cuisine and course). The huge food im-
ages from these websites often have multimodalities and multi-
attributes. Such kind of food data opens up many opportunities
to recipe-related research communities. Specifically, three ma-
jor problems have been investigated as cuisine classification [3],
recipe retrieval [4] and food image recognition [5]. The top of
Fig. 2 illustrated these problems.

Most of the existing studies addressing the above problems
focus on exploiting the binary correlations between visual con-
tent, textual content, and attributes. For example, Han et al. [3]
utilized associative classification techniques to discover the un-
derlying correlations between textual ingredient content and the
cuisine attribute to address the cuisine classification problem.
Freyne et al. [4] developed an intelligent food planning system
to exploit the correlations between ingredients and recipe names
towards recipe recommendation. Hessel et al. [5] treated food
image recognition as an image captioning problem and inves-
tigated different variants of the Convolutional Neural Network
(CNN) to exploit the correlations between visual photo con-
tent and textual recipe name. However, as shown in Fig. 1,
each recipe consists of textual content, visual content and
multiple attributes. While existing studies modeled only par-
tial correlations among these included information, we believe
both multimodal content and attributes are critical to solve the
above recipe-oriented problems. 1) For cuisine classification,

1[Online]. Available: http://www.yummly.com/
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Fig. 1. Food items from Yummly

similar ingredients will lead to very different recipes in differ-
ent cuisines. For example, we can use the ingredients “chicken”,
“mushroom”, “butter” and “flour” to make a variety of recipes,
such as “Braised Chicken with Mushrooms” from Italy and
“Mushroom Chicken Rice Soup” from China. Ingredient-based
methods probably fail in these cases. The visual content will sig-
nificantly improve the accuracy for cuisine classification. 2) For
recipe retrieval, there are a huge number of internet food images
without ingredients, and therefore simple ingredient-matching
methods do not work on these unstructured food data. 3) For
food image annotation, visual content alone cannot capture all
details of food, and it is very difficult to directly retrieve high-
level recipe names from the low-level visual content. Taking the
recipe attributes and textual ingredients into consideration pro-
vides important mid-level features and contributes to inferring
richer ingredients and attributes from food images.

Therefore, in this work, we are motivated to study a unified
recipe modeling framework, to jointly model both the recipe
attributes and the multimodal content information. The pro-
posed framework is expected to capture the underlying rich
correlations between various recipe information, and extend
the scenarios of traditional recipe-oriented problems to three
novel application problems, i.e., multimodal cuisine classifica-
tion, attribute-augmented cross-modal recipe image retrieval,
and ingredient and attribute inference from food images. As
shown in Fig. 2, we illustrate and compare between the tradi-
tional and extended recipe-oriented problems.

It is non-trivial to model the multimodal and multi-attribute
information in a unified framework. The challenge is two-fold:
1) The correlations between the visual recipe photo and the in-
gredients are weakly-labeled. Some ingredients correspond to
explicit regions from images while the others are completely
non-visible in the image. As shown in Fig. 1, for the “Chicken
Enchiladas” recipe, the ingredients “tomato sauce” and “chicken
breasts” are visible while the ingredients “onion”, “oil” and
“sugar” are not visible. Existing methods either neglect the non-
visible ingredients or directly build correlations between the
visual content and all ingredients at image-level. 2) Multiple
attributes are involved and should be modeled integrated. For
example, the recipes from Yummly include different attributes
such as the cuisines and courses. Different attributes reflect
respective aspects of the recipes and jointly contribute to ac-
curate and complete recipe descriptions. If these attributes are
incorporated into the model in an ad hoc manner, this results in

models with more sophisticated structures and complicated in-
ference procedure. How to find a general solution to encourage
different attributes to collaborate each other is the other chal-
lenging problem.

In order to address these challenges, we propose a solution
framework called MultiModal MultiTask Deep Belief Network
(M3TDBN): 1) the weak correlation between visual content
and ingredients is improved by considering multiple attributes;
2) multiple attributes are simultaneously considered in a multi-
task formulation. Specifically, we define two different types of
ingredients, i.e., visible ingredients and non-visible ingredients.
The visible ingredients are generally visible in the food image
(e.g., “chicken” and “mushroom”) and the non-visible ingredi-
ents are non-visible in the food image (e.g.,“salt”, “sugar” and
“oil”). The goal of M3TDBN is to learn the mid-level repre-
sentation that can capture both the visual representation and
non-visual ingredient representation regularized by different
attributes. Firstly, by annotating the ingredients with visible
ingredients and non-visible ingredients, M3TDBN can learn
joint visual representation between images and visible ingredi-
ents, and non-visual ingredient representation, respectively. Sec-
ondly, M3TDBN incorporates multi-task learning [6] to make
different attributes reinforce each other. Different attributes and
different modality information are correlated through the mid-
level representation. Based on the proposed M3TDBN, we ex-
ploit the derived deep features and the discovered correlations
in three extended recipe-oriented problems.

The contributions of the proposed approach can be summa-
rized as follows:

1) To our knowledge, this is the first time to simultane-
ously model visual content, textual ingredients and mul-
tiple recipe attributes together into a unified framework
to enable various recipe-oriented research problems and
applications.

2) We propose a novel MultiModal MultiTask Deep Belief
Network (M3TDBN) model to address the problem of
weak dependence between visual content and textual in-
gredients, as well as the collaboration among different
attributes. Two pathways are designed to learn mid-level
visual joint representation and ingredient representation
respectively by incorporating multi-attributes into a multi-
task mechanism.

3) We present a wide variety of recipe-oriented applications
based on the proposed M3TDBN, including 1) multi-
modal cuisine classification, 2) attribute-augmented cross-
modal recipe image retrieval, and 3) ingredient and
attribute inference from food images.

4) We collected a real-world food dataset Yummly-28k,
where we have validated the effectiveness of our proposed
approach.

The rest of the paper is organized as follows. Section II
reviews the related work. Section III presents the network
architecture of the proposed MultiModal MultiTask Deep Be-
lief Network (M3TDBN). The model learning and parame-
ter estimation is also introduced in this section. Section IV
introduces three recipe-oriented applications derived from our
proposed model, including multimodal cuisine classification,
attribute-augmented cross-modal recipe image retrieval, and
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Fig. 2. Traditional versus extended recipe-oriented problems. The extended inputs and outputs are highlighted with red color.

ingredient and attribute inference from food images. Experi-
mental results are reported in Section V. Finally, we conclude
the paper and give the future work in Section VI.

II. RELATED WORK

Our work is closely related to the following four research
areas: 1) cuisine classification, 2) recipe retrieval and recom-
mendation, 3) food image recognition and annotation and 4)
multimodal restricted boltzmann machine [7], [8].

A. Cuisine Classification

Cuisine is a style of cooking characterized by distinctive in-
gredients, techniques and dishes, and usually associated with
a specific geographic region2. Recipe cuisines are believed to
be one of the main considerations when users choose to eat.
Automatically presenting the cuisine of a recipe of interest can
boost the quality of recipe recommendation. For cuisine clas-
sification, Ahn et al. [9] used the graph model to explore the
ingredient-based relationship between various regional cuisines
to illustrate the ingredients shared by various cuisines and those
that are unique to a particular region. Han et al. [3] used the
ingredients as the feature, namely 0-1 boolean representation
to investigate the underlying cuisine ingredient connections by
exploiting the classification technologies, including the asso-
ciative classification and support vector machine. In addition, a
famous platform for predictive modelling and analytics compe-
titions, Kaggle organized a competition “What’s Cooking?”,3

where the task is to predict the category of a dish’s cuisine given
a list of its ingredients. These methods mainly use food ingre-
dients for learning tasks. However, similar ingredients will lead
to very different recipes in different cuisines and the ingredi-
ent information is not enough to classify cuisines. In order to
overcome the limitation, our work investigates the multimodal

2[Online]. Available: https://en.wikipedia.org/wiki/Cuisine
3[Online]. Available: https://www.kaggle.com/c/whats-cooking

cuisine classification in the multimedia context. Besides the
textual ingredients, we provide a multimodal framework, which
is capable of simultaneously modeling the visual content and
textual ingredients.

B. Recipe Image Retrieval and Recommendation

Recipe retrieval and recommendation has many applications.
For example, we often need to find recipes based on the in-
gredients on hand. Wang et al. [10] represented the recipes as
cooking graphs consisting of ingredients and cooking direc-
tions and used the graph representation to characterize Chinese
dishes. However, their work fails to take into account the rela-
tionships between ingredients. Teng et al. [11] constructed two
types of networks to capture the relationships between ingre-
dients to represent the recipe features for recipe recommenda-
tion. Freyne et al. [4] proposed an Intelligent Food Planning
(IFP) system to consider the ingredients of a recipe and gave
each ingredient a weight. Then, IFP used the weights of the
ingredients to predict a new recipe. In addition, some work
[12], [13] proposed a matrix factorization method to model hid-
den factors between users and ingredients for recommendation.
Our work is different from them in that besides the images
and the textual ingredients, we incorporated the multi-attributes
(e.g., cuisine and course) information into our proposed
framework for attribute-enhanced cross-modal recipe image
retrieval.

C. Food Image Recognition

Many works focus on food image recognition [14]–[17]. Yang
et al. [15] proposed a visual representation for food items that
calculates pairwise statistics between local features computed
over a soft pixellevel segmentation of the image into eight
ingredient types for food recognition. This approach is bound to
work only for standardized meals. Lukas et al. [18] mined dis-
criminative parts of food images using random forests for dish
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recognition. Compared with these shallow models, Kagaya et al.
[16] mainly applied the CNN for food detection and recogni-
tion. Some works [19]–[22] developed restaurant-specific dish
recognition. For example, Xu et al. [21] proposed a framework
incorporating discriminative classification in geolocalized set-
tings and introduced the concept of geolocalized models for
food recognition. There are also some works such as [23]–[26],
which focused on mobile food recognition. Based on the food
image recognition, Myers et al. [27] further proposed a system
which can recognize the contents of the meal from one image,
and then predicted its nutritional contents. Recent work [28]
utilized additional text information for multimodal food recog-
nition. Hessel et al. [5] further discussed different methods of
CNN for food image caption. In addition, Amano et al. [29]
proposed a method to generate classification categories auto-
matically from the raw meal names. Some food dataset are also
available, such as FoodCam-256 [24], ETHZ Food-101 [18],
UPMC Food-101 [28], and Food201-MultiLabel dataset [27].
These methods focus on food recognition based on the image
name or a few ingredients. Rich attribute information is not ex-
plored, such as the cuisine and course information. Recent work
[30] proposed deep architectures for simultaneous learning of
ingredient recognition and food categorization by exploiting
the visual features, ingredients and image categories. Different
from their work, we also take the recipe attributes into account
for richer food image annotations by inferring ingredients and
attributes from the food images.

D. Multimodal Restricted Boltzmann Machine

Due to the power of representation learning [31], Restricted
Boltzmann Machine (RBM) has been successfully applied to
various tasks, such as image classification [7], information rec-
ommendation [32] and retrieval [33], especially multimodal
learning [34]–[37]. RBMs were originally developed for mod-
eling binary vectors. In multimodal learning, different kinds of
features have different distributions. In order to model different
distributions, Gaussian-Bernoulli RBMs were developed [7] for
continuous values, such as visual features and audio features.
Salakhutdinov et al. [38] further developed another variant of
RBM, namely Replicated Softmax Model (RSM) for modeling
the textual featues with the count data. Based on these basic
units, Srivastava et al. [34] proposed RBM based deep network
for multimodal data modeling, where the data from each modal-
ity is firstly learned from the corresponding single-modality
pathway and the learned high-level features are fused on the top
layer. In contrast, Pang et al. [36] introduced the third pathway
to learn audio-specific features and then learned joint represen-
tation among visual features, textual features and audio features
for affective analysis based video retrieval. Huang et al. [36]
proposed a multi-label conditional RBM for multimodal multi-
label classification. Yuan et al. [37] designed a novel relational
generative deep learning model to solve the social media link
analysis problem. Our work is also inspired by the work [34],
in that we are devoted to using RBM based framework for ex-
ploring the joint multimodal representation. However, we have
differences in two-fold. (1) Motivation. We aim to apply RBM-
based framework to model different modalities and attributes

to enable recipe-related applications. (2) Methodology. At the
bottom layer, we group the ingredients into visual ingredients
and non-visual ingredients and introduce another pathway to
model the non-visual ingredients; At the top layer, we incorpo-
rate multi-task learning in our model to utilize different kinds
of attributes.

III. MULTIMODAL MULTITASK DEEP BELIEF

NETWORK (M3TDBN)

This section introduces the MultiModal MultiTask Deep Be-
lief Network (M3TDBN), which is to model both multi-modality
and multi-attributes from the food items. We firstly describe the
basic ideas and the network architecture, and then introduce the
inference and learning process of the proposed model.

A. M 3TDBN Design

Two key ideas are exploited in our deep network. Firstly, in or-
der to learn mid-level visual joint representation and non-visual
representation, as shown in Fig. 3(a), there are two pathways
namely Pathway-A and Pathway-B. Pathway-A is to learn the
joint representation of image features and visible ingredients.
Pathway-B is to learn the representation of ingredients includ-
ing non-visible ingredients. Secondly, in order to incorporate the
cuisine and course attribute into our deep network, we connect
these two kinds of information to the top level layers, which
enables the fine-tuning of the whole architecture in a multitask
fashion [see Fig. 3(b)].

B. M 3TDBN Representation

Each food item is denoted as {v(p) ,v(o) ,y, z}, where v(p) ,
v(o) , y, z are the input visual units of the image, ingredients,
the cuisine and course, respectively. The visual units v(o) are
divided into two parts, one of which v(m ) denotes the units of
visible ingredients and v(e) the units of non-visible ingredients.
Next, we will show the network representation in details.

1) Pathway-A: As shown in Fig. 3(a), for Pathway-A, be-
cause the input units v(p) are visual features, the connections
between v(p) and h(1p) are modeled with Gaussian Restricted
Boltzmann Machine [7]. The joint distribution of binary visible
units and binary hidden units is written as follows:

P (v(p) ,h(1p)) =
1
Z exp(−E(v(p) ,h(1p) ;θθθ)). (1)

The energy function E(v,h;θθθ) is

E(v(p) ,h(1p) ;θθθ) =
∑

i

(v(p)
i − b

(p)
i )

2σ2
i

−
∑

i

∑

j

v
(p)
i

σi
W

(1p)
ij h

(1p)
j −

∑

j

c
(p)
j h

(1p)
j

(2)

where Z is the normalizing constant. The weights W(1p) =
{w(1p)

i,j } are associated with the connection between the visible

units v(p) = {v(p)
i } and the hidden units h(1p) = {h(1p)

j }, as

well as bias weights b(p) = {b(p)
i } for the visible units and
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Fig. 3. Proposed deep network: (a) joint visual and non-visual learning learning network and (b) M3 TDBN

c(p) = {c(p)
j } for the hidden units. θθθ = {c(p) ,b(p) ,W(1p) , σ}

are the model parameters. In order to simplify the represen-
tation, we will neglect the parameters θθθ in the following and
represent E(v(p) ,h(1p) ;θθθ) as E(v(p) ,h(1p)). The correspond-
ing probabilistic forms of the energy functions are ignored. The
conditional distributions can be written as follows:

v
(p)
i = 1|h(1p)

∼ N
(
b
(p)
i + σi

∑

j

W
(1p)
ij h

(1p)
j , σ2

i

)

(3)

P (h(1p)
j = 1|v(p)) = g

(
c
(1p)
j +

∑

i

v
(p)
i

σi
W

(1p)
ij

)
(4)

where N (μ, σ2) denotes a Gaussian distribution with mean μ
and variance σ2 . g(x) = 1

1+exp(−x) is the logistic function. Note
that variance is empirically set to unit variance σi = 1. This is
because learning the variance of this network made the training
unstable [34].

Different from the visual modalities, the input units v(m ) are
the count data, correspondingly, the connections between v(m )

and h(1m ) are modeled with Replicated Softmax Model (RSM)
[39]. The energy function E(V(m ) ,h(1m )) is

E(V(m ) ,h(1m )) = −
∑

k

∑

j

v̂
(m )
k W

(1m )
kj h

(1m )
j

−
∑

i

b
(m )
k v̂

(m )
k − M (m )

∑

j

c
(1m )
j h

(1m )
j

(5)

where v̂(m ) = {v̂(m )
(1) , . . . , v̂

(m )
k , . . . v̂

(m )
K (m ) } and v̂

(m )
k =

∑M (m )

i=1 v
(m )
ik denotes the count for the kth word. M (m ) is

the length of the document. K(m ) is the size of the ingre-
dient dictionary in our work. The corresponding conditional

distributions are given by

P (v̂(m )
k = 1|h(1m )) =

exp(b(m )
k +

∑
j W

(1m )
kj h

(1m )
j )

∑
q=1 exp(b(m )

q +
∑

j W
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qj h
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(6)

P (h(1m )
j = 1|V(m )) = g

(
M (m )c

(1m )
j +

∑
k
v̂

(m )
k W

(1m )
kj

)
.

(7)

V(m ) is M (m ) × K(m ) observed binary matrix with vik = 1 iff
the multinomial visual unit i takes on the kth value.

The second layer of Pathway-A learns joint visual represen-
tation, which consists of two binary-value RBM.

The energy function E(h(1p) ,h(1m ) ,h(2s)) is

E(h(1p) ,h(1m ) ,h(2s)) = −
∑

i

∑

j

h
(1p)
i W
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ij h
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j
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The corresponding conditional distributions are
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kj h
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)
. (11)
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2) Pathway-B: For Pathway-B, the input units of the first
layer is count data, therefore, the energy function and cor-
responding conditional distributions are similar to (5)–(7).
The energy function E(V(e) ,h(1e)) is

E(V(e) ,h(1e)) = −
∑

k

∑

j

v̂
(e)
k W

(1e)
kj h

(1e)
j

−
∑

i

b
(e)
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∑

j

c
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j h

(1e)
j (12)

where v̂(e) = {v̂(e)
(1) , . . . , v̂

(e)
k , . . . v̂

(e)
K ( e ) } and v̂

(e)
k =

∑M ( e )

i=1 v
(e)
ik denotes the count for the kth word. M (e) is

the length of the document. K(e) is the size of the ingredi-
ent dictionary in our work. The corresponding conditional
distributions are given by

P (v̂(e)
k = 1|h(1e)) =

exp(b(e)
k +

∑
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q +
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)
. (14)

V(e) is M (e) × K(e) observed binary matrix with vik = 1 iff
the multinomial visual unit i takes on the kth value.

The second layer is binary RBM, where the energy function
E(h(1e) ,h(2e)) is

E(h(1e) ,h(2e)) = −
∑

i

∑

j

h
(1e)
i W

(1e)
ij h
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j

−
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i

c
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i h
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c
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The corresponding conditional distributions are

P (h(1e)
i = 1|h(2e)) = g

(
c
(1e)
i +

∑

j

W
(2e)
ij h

(2e)
j

)
(16)

P (h(2e)
j = 1|h(1e)) = g

(
c
(2e)
j +

∑

i

h
(1e)
i W

(2e)
ij

)
. (17)

3) Joint Layer With Attributes: When introducing the cui-
sine and course information, the top layer of the two pathways
connects two kinds of attributes units. These two kinds of at-
tributes can be considered as the part of the input [see Fig. 3(b)]
and used to fine-tune the whole architecture jointly. The energy
function of the top layer is

E(h(2s) ,h(1p) ,h(1m ) ,h(2e) ,h(1e) ,y, z) = E(h(1e),h(2e))

+ E(h(1p),h(1m ),h(2s))

+ E(h(2s),h(2e),y, z) (18)

where

E(h(2s) ,h(2e) ,y, z) = −
∑

a
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l

−
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The conditional probabilities can be written as follows:

P (h(1p)
i = 1|h(2s)) = g

(
c
(1p)
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∑

j

W
(2p)
ij h

(2s)
j

)
(20)

P (h(1m )
i = 1|h(2s)) = g

(
c
(1m )
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j

W
(2m )
ij h

(2s)
j

)
(21)

P (h(1e)
i = 1|h(2e)) = g

(
c
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W
(2e)
ij h
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j

)
(22)
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where the attribute labels are represented as the softmax func-
tion. d(1) = {d(1)

a } and d(2) = {d(2)
p } are the bias terms of y

and z, respectively.

C. Inference and Learning

We train the network with stochastic gradient descent us-
ing Contrastive Divergence (CD) [40]. Since the exact infer-
ence is intractable, we use mean-field or alternating Gibbs sam-
pling for approximate inference. Particularly, each RBM com-
ponent of the proposed M3TDBN is pretrained using the greedy
layer-wise pretraining strategy. In this stage, we adopt k-step
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Algorithm 1: Attribute-Enhanced Cross-Modal Recipe
Image Retrieval

1: Clamp observed visual feature v(o)
q = {v(m )

q ,v(e)
q },

cuisine features yq and course features zq at the input.

2: Infer the values of the hidden variables h(1m )
q in

Pathway-A by forward propagating v(m )
q through to the

first hidden layer using (7).
3: Infer the values of the hidden variables h(1e)

q in

Pathway-B by forward propagating v(1e)
q through to the

first hidden layer using (14).
4: Perform alternating Gibbs sampling to infer h(1p)

q using

(20-26) conditioned on yq , zq , h(1m )
q and h(1e)

q

5: Infer h(1p) from all food images of the query dataset by
forward propagating v(p) through to the first hidden
layer using (4).

contrastive divergence (CDk ) to learn the parameters. For CDk ,
a k-step Markov chain is initialized with the training sample. The
stochastic reconstruction of the training sample from Markov
chain by Gibbs sampling has a decreased free energy. Hence, this
reconstruction can be approximately treated as the distribution
generated by the RBM model. For example, in the first layer of
image pathway in Pathway-A, we use Gibbs sampling through
(3) and (2) for the reconstructed input. In practice, we apply
CD1 in RBM training, this is because the good approximation
of the changing direction is already obtained when k = 1.

IV. RECIPE-ORIENTED APPLICATIONS

M3TDBN can be potentially applied to many recipe-related
problems based on its power of representation and inference.
In this section, we apply the proposed M3TDBN into three
recipe-oriented problems, namely multimodal cuisine classifi-
cation, attribute-augmented cross-modal recipe image retrieval,
and ingredient and attribute inference from food images.

A. Multimodal Cuisine Classification

For each food item with multimodal inputs including the
recipe food and ingredients, we should infer the visual repre-
sentation h(2s) and non-visual representation h(2e) based on
the learned model. In order to generate h(2s) , we first utilize
(4) and (7) to infer h(1p) and h(1m ) , respectively, and then infer
h(2s) using (9). In order to generate h(2e) , we infer h(1e) using
(14) and then infer h(2e) using (17) based on h(1e) . The con-
catenated feature representations < h(2s) ,h(2e) > can be used
for multimodal cuisine classification.

B. Attribute-Augmented Cross-Modal Recipe Image Retrieval

This task is described as follows: given the query ingredients
v(o)

q = {v(m )
q ,v(e)

q } and food attributes, including cuisine yq

and course zq , the goal is to return a ranked food image list. Such
task can be used in many scenarios. For example, one user wants
to cook American breakfast given some ingredients. In this case,

given the query of both the ingredients and two attributes: the
cuisine American and the course breakfast, the user can obtain
more personalized retrieval results from this task. The details of
this inference process can be shown in Algorithm I.

Note that there are two kinds of query ingredients from users’
input. The ingredients contain or do not contain non-visible
ones. For query ingredients without non-visible ones, we just re-
trieve recipe images through Pathway-A. For query ingredients
with non-visible ones, we should jointly use the Pathway-A and
Pathway-B to retrieve recipe images. Through the algorithm, we
can obtain the inferred query features h(1p)

q and all the hidden
features h(1p) . The cosine similarity is used to match queries to
data points.

sim(h(1p)
q ,h(1p)) =

h(1p)
q h(1p)

‖h(1p)
q ‖‖h(1p)‖

(27)

max
ŷ∈Y (xi )

s(CV G(xi, ŷ)) + Δ(yi, ŷ) − s(CV G(xi, yi)) (28)

C. Ingredient and Attribute Inference From Food Images

For this application, given one recipe image, our goal is to
infer rich textual and attribute information including ingredients,
cuisine and course information with high probability. Since our
model can generate the unknown modalities conditioned on a
given modality, we can alternatively perform Gibbs sampling to
draw samples from p(v(m ) ,y, z|v(p)) based on the conditional
distributions as follows:

P (h(1p)
i = 1|h(2s)) = g
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c
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∑
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)
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c
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)
(30)
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∑
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P (zp = 1|h(2s)) =
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(32)
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(34)

where h(1p) in Pathway-A is inferred by forward propagating
v(p) through to the first hidden layer using (7). After the itera-
tion, we can obtain the sample values y and z. We then sample
v(m ) using the inferred hidden variables through (6).
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V. EXPERIMENT

In this section, we firstly describe the experimental setting
including the dataset and implementation details. We then eval-
uate the performance of the proposed three applications in-
cluding multimodal cuisine classification, attribute-augmented
cross-modal recipe image retrieval, ingredient and attribute in-
ference from food images, respectively.

A. Yummly-28K Dataset

To build the food dataset, we crawled the data through
Yummly API4 and obtained 63,492 recipe items in total. Since
our work needs to utilize cuisine and course information, we
removed food items without cuisine or course labels. As shown
in Fig. 1, each recipe item includes the food image, the recipe
name, the ingredients, cuisine and course information.

In order to build the ingredient vocabulary, the ingredients
are preprocessed as follows [11]. Since each ingredient is usu-
ally listed on a separate line, we first found the maximal match
between a pre-curated list of ingredients and the text of the
line. Here the pre-curated list is from the training set in Kaggle
competition.5 We then used the regular expression matching to
remove non-ingredient terms from the line and identified the
remainder as the ingredient. We also removed quantifiers, such
as “1 pound” and “4 cups”, the words representing consistency
or temperature, such as “diced” and “hot”. We also removed
content in parentheses. In addition, highly similar ingredients,
e.g. “cheddar cheese”, used in 1338 recipes, were considered
different from “shredded cheddar cheese”, occurring in 543
recipes. Finally, because one of our application is cuisine clas-
sification, we further removed food items with less than 100
samples for each cuisine.

After preprocessing, we constructed a vocabulary of 3000
ingredients. The ingredients are further divided into 2208 visi-
ble ingredients and 792 non-visible ingredients. Note that there
are some ingredients which are visible in one food image and
non-visible in another. In our experiment, we simply calculated
the proportion of the visible-annotated recipe items for each
ingredient. If the ratio is larger than 0.5,6 then we annotated
ingredients as visible ingredients and non-visible ones, other-
wise. The final dataset has 27,638 items, which we denote as
the Yummly-28K dataset. The statistic of Yummly-28K dataset
is shown in Table I. Table II lists the values of different at-
tributes: there are 16 kinds of cuisines (e.g, “American”, “Ital-
ian” and “Mexican”) and 13 kinds of recipe courses (e.g, “Main
Dishes”, “Desserts” and “Lunch and Snacks”). Fig. 4 shows
some examples. Note that each item can have multiple labels for
each attribute. For example, the dish “Black-Eyed Pea Salad” is
labeled with two cuisine attributes “Southern and Soul Food”
and “American”. It is labeled with three course attributes “Main
Dishes”, “Breakfast and Brunch” and “Lunch and Snacks”.

4[Online]. Available: https://developer.yummly.com/documentation
5[Online]. Available: https://www.kaggle.com/c/whats-cooking/data
6We conducted the experiment using the validation set for cuisine classi-

fication in our dataset. For the ratio r = { 0.1, 0.2, 0.3, 0.4, 0.5, 0.7, 0.8,
0.9, 1.0}, we found that with the increase of r, the performance of MAP is
rising; when r ≥ 0.5, the performance is stable. Therefore, we chose 0.5 as the
threshold.

TABLE I
TATISTICS OF YUMMLY-28K

� Items � Cuisine � Course � Vocabulary

27,638 16 13 3000

TABLE II
VALUES OF DIFFERENT ATTRIBUTES

� Type � Value

Cuisine American, Italian, Mexican, Asian, Indian, Mediterranean,
Southwestern, Kid-Friendly, Chinese, Barbecue, Spanish

Southern&Soul Food, Cajun&Creole, French, Thai, Greek
Course Main Dishes, Desserts, Side Dishes, Salads, Afternoon Tea,

Soups, Lunch and Snacks, Condiments and Sauces, Breads,
Breakfast and Brunch, Beverages, Cocktails, Appetizers

Fig. 4. Some examples with different cuisines and courses

B. Implementation Details

For each item, the ingredients are represented by 3000-D
Bag Of Ingredients (BOI), similar to Bag Of Words. For visual
features, we extract CNN deep features. Yummly-28K dataset
is not large enough to train a CNN model. In order to represent
food images properly, following [5], we fine-tuned the AlexNet
[41] by the Food-101 dataset which contains 101 classes of food
with 101K food images containing 75,250 images for training
and 25,250 images for testing [18]. The last 1000-way softmax
is replaced by 101 and the base learning rate is set to 0.001. The
resulting model has a classification accuracy on the Food-101
test set of 68.3%. Once the network is tuned, we computed 4096
dimensional vector representations for each image in Yummly-
28K by extracting the network activations in the final fully-
connected layer. We call such visual features as CNN Visual
Features (CNN-VF).

For the paramers of M 3TDBN , in Pathway-A, the image
pathway consists of a Gaussian RBM with 4096 linear visible
units and 1000 hidden units. The visible ingredient pathway con-
sists of a RSM with 2208 visible units and 1000 hidden units.
The joint layer contains 2000 hidden units, which connect 16
visible cuisine units and 13 course units. In Pathway-B, the non-
visible ingredient pathway consists of a RSM with 792 visible
units and 1000 hidden units, followed by another layer of 1000
hidden units. The hidden units from the top layer connect 16 visi-
ble cuisine units and 13 course units. Table III lists the number of
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TABLE III
NUMBER OF NEURONS IN EACH LAYER OF OUR M 3 T DBN

Features v h( 1 ) h( 2 ) y + z

CNN 4096 1000 2000 16 + 13
Visual-BOI 2208 1000
Non-Visual-BOI 792 1000 1000 16 + 13

neurons in each layer. The network contains 12,183,000 weight
parameters and 13,125 bias parameters. Like RBM based deep
network [36], [42], the number of parameters in our network is
also high. In order to avoid over-fitting and speed up the learning,
we firstly used the greedy layer-wise pre-training strategy to
train our network, which is developed by Hinton et al. [43] and
has been widely used in RBM-based deep network [36], [42].
That means, we did not train the whole network at once, but only
trained one layer of RBM at each time. Secondly, we introduced
some hyper-parameters, such as the weight decay and sparsity
terms [44] to effectively reduce the complexity of the model.
Thirdly, the deep network is suitable for parallel training of pa-
rameters on each pathway. Furthermore, Hinton et al. [44] found
that if each image contains 1,000 pixels, using 10,000 training
examples to learn weights of a million parameters in one RBM is
quite reasonable. In the proposed network, although the largest
RBM has 4,096 × 1,000 or around 4 million parameters, in the
following experiment with 20,000 samples as the training set,
we did not observe the tendency of over-fitting when training
the network in the layer-wise pre-training strategy.

For the hyper-parameters, the learning rate of RSM layer is
0.10 and other layers is 0.01. They are all selected by grid search.
For the Gaussian-RBM, each Gaussian visible unit is empiri-
cally set to have unit variance σi = 1 [34]. For the inference of
all three tasks, empirically, about 10 times of Gibbs sampling is
enough to obtain a good result.

Considering that each recipe item in Yummly may have mul-
tiple labels for each attribute, similar to [34], [42], we performed
1-vs-all classification using logistic regression classifiers to clas-
sify all learned features for all the tasks involving classification
and prediction. Since the logistic regression can be considered
as one layer forward neural network, the parameters include the
learning rate and the weight decay, and they are selected by grid
search on the validation set.

Yummly-28K is split into three subsets: 20,000 items as the
training set, 3000 items as validation set and 4638 items as the
testing set.

C. MultiModal Cuisine Classification

We evaluate the effectiveness of learned joint representation
by our model M 3TDBN in cuisine classification. Considering
that recipe items in Yummly may have multiple cuisine labels,
we evaluate our models using Mean Average Precision (MAP)
and Precision at top-50 predictions (Prec@50), which are stan-
dard metrics used for multi-label classification [45].

We consider the following baselines for comparison:

TABLE IV
PERFORMANCE OF ALL DIFFERENT ALGORITHMS

FOR MULTIMODAL CUISINE CLASSIFICATION

Method MAP Pre@50

CNN-VF-O 0.213 0.373
CNN-VF [5], [27] 0.376 0.534
BOI [3] 0.548 0.645
CNN-VF+BOI [46] 0.588 0.672
DIF [39] 0.656 0.725
Bimodal DBN 0.682 0.731
Joint-VF-NVF 0.721 0.814
Cu-Joint-VF-NVF 0.750 0.837
M3 TDBN 0.789 0.853

1) CNN-VF-O: CNN Visual Features. The features are gen-
erated by fine-tuning the AlexNet network using our
20,000 training set.

2) CNN-VF: CNN Visual Features [5], [27]. Similar to
CNN-VF-O, the features are generated by fine-tuning the
AlexNet network, but use the Food 101 dataset.

3) BOI: Bag Of Ingredients [3]. Each item is represented by
3000-dimensional Bag Of Ingredients.

4) CNN-VF+BOI [46]. This baseline concatenates the CNN-
VF and BOI as the features.

5) DIF: Deep Ingredient Features [39]. Considering the BOI
ingredients as the input, this baseline uses the learned
hidden representation of one-layer RSM and another
one-layer RBM from our model trained on only the
ingredients.

6) Multimodal DBN: [34], [47]. Considering the visual fea-
tures CNN-VF and textual features BOI as the input, This
baseline is trained on the image and ingredient modali-
ties without annotating visible ingredients and non-visible
ingredients.

7) Joint-VF-NVF: Joint Visual Representation and Non-
Visual Representation. Considering the visual features
CNN-VF and textual features BOI as the input, this
method is trained on both the visual and ingredient in-
formation with differentiating between visible ingredients
and non-visible ingredients. The visual representation is
obtained from learning the joint representation between
visible ingredients and the non-visual representation from
learning the ingredient.

8) Cu-Joint-VF-NVF. This baseline is similar to Joint-VF-
NVF, but fine-tunes the network by the cuisine attributes.

The results are shown in Table IV. From these compari-
son results, some observations and analysis are included as
follows: 1) The performance of CNN-VF-O is lower than
CNN-VF. The probable reason is that the training set for fine-
tuning the AlexNet is not enough. 2) The performance of BOI
outperforms CNN-VF. This shows that ingredient based fea-
tures are more discriminative than visual features. 3) CNN-
VF+BOI outperforms both CNN-VF and BOI. This shows that
the performance of combination of multimodality features is
better than one-single features. When the ingredients from
different cuisines are probably similar, as a complement, the
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visual content can improve the accuracy for cuisine classifica-
tion. 4) The performance of Joint-VF-NVF is better than Mul-
timodal DBN. This means that differentiating between visible
ingredients and non-visible ingredients is useful. Multimodal
DBN maps the non-visual ingredient features and visual fea-
tures into the same space, resulting in less efficient joint rep-
resentation. 5) The proposed M3TDBN outperforms all other
baselines. There is a 5% improvement in MAP and 3 % im-
provement in Pre@50 compared with the best baseline. This
result coincides with the motivation we introduce at the begin-
ning of the paper: Firstly, M3TDBN differentiates between two
kinds of ingredients and thus can learn robust visual and non-
visual joint representation. Secondly, M3TDBN incorporates
multitask learning into our model, where the course and the
cuisine information collaborate each to enhance the correlation
between the images and ingredients, leading to improved cuisine
classification. In addition, we also tested the performance using
the deep network GoogLeNet [48] fine-tuned by the food101
in our experiment. Because of better power of GoogLeNet than
AlexNet, the MAP and Pre@50 of our model achieved 0.803
and 0.871, respectively.

D. Attribute-Augmented Cross-Modal Recipe Image Retrieval

We divided the test set into two parts: one part contains the
ingredients, course and cuisine information, and the other part
contains the food images. We then use the ingredients, course
and cuisine information as the query to retrieve food images.

As for the evaluation metric, since there is only one ground-
truth match between the query < ingredients, course, cuisine >
and the recipe image, we rely on the position of the ground-
truth recipe image in the ranked list to evaluate the performance.
Similar to [49], we use Top K % for evaluation, which is the
relative number of images < ingredients, course, cuisine >
correctly retrieved in the first K% of the ranked list. Some work
such as [50] has used this metric in cross-modal retrieval tasks.
Specifically, we set K ∈ {1, 10, 20, 40, 60, 80} to give us the
accurate rate. Based on the learned representation, the cosine
similarity is calculated to obtain the ranked results.

We consider the following baselines for comparison.
1) Multimodal DBN [34], [47]. A Multimodal DBN is ob-

tained by connecting image and ingredient features with
a joint layer. The model neither differentiates between
visible ingredients and non-visible ingredients nor incor-
porates attributes information in the deep architecture.
Therefore, in this baseline, we can generate the food
images only on a given ingredient list.

2) Corr-AE [50]. Different from Multimodal DBN,
this method adopts the architecture of autoencoder
[51]. This baseline differentiates common information
and modality-specific information through the intro-
duced constraints, but does not consider the attribute
information.

3) Joint-VF-NVF. This baseline uses Pathway-A in Fig. 3(a)
and differentiates between visible ingredients and non-
visible ingredients, but not incorporates attribute infor-
mation in the deep architecture.

TABLE V
PERFORMANCES OF ALL DIFFERENT ALGORITHMS

FOR ATTRIBUTE-AUGMENTED CROSS-MODAL

RECIPE IMAGE RETRIEVAL WITH TOP K%

Method K = 1 K = 10 K = 20 K = 40 K = 60 K = 80

Multimodal DBN 0.014 0.126 0.230 0.415 0.600 0.800
Corr-AE 0.015 0.130 0.241 0.440 0.620 0.825
Joint-VF-NVF 0.017 0.133 0.249 0.453 0.633 0.834
Cu-Joint-VF 0.017 0.140 0.253 0.466 0.642 0.836
Cu-Joint-VF-NVF 0.017 0.140 0.255 0.475 0.664 0.840
Co-Joint-VF 0.019 0.140 0.270 0.486 0.680 0.855
Co-Joint-VF-NVF 0.019 0.140 0.274 0.499 0.686 0.864
M3 TDBN 0.020 0.168 0.304 0.523 0.706 0.866

4) Cu-Joint-VF. This baseline uses Pathway-A in Fig. 3(a)
and introduces the cuisine attribute at the top layer, but
does not use the non-visible ingredients.

5) Cu-Joint-VF-NVF. This baseline uses both Pathway-A
and Pathway-B in Fig. 3(a), and introduces the cuisine
attribute at the top layer.

6) Co-Joint-VF. This baseline uses Pathway-A in Fig. 3(a)
and introduces the course attribute at the top layer, but
does not use the non-visible ingredients.

7) Co-Joint-VF-NVF. This baseline uses both Pathway-A
and Pathway-B in Fig. 3(a), and introduces the course
attribute at the top layer.

Not that for all the baselines, the input of visual features and
textual features is the visual features CNN-VF and textual fea-
tures BOI, respectively. Table V summarizes the Top K% results
of attribute-augmented cross-modal recipe image retrieval task.
We can see that the proposed M3TDBN consistently outper-
forms other baselines with different k values. Joint-VF-NVF
is better than Corr-AE. Because Corr-AE introduces the cor-
relation cost to differentiate between common information and
modality-specific information (such as non-visible ingredients)
while we group ingredients into two parts in advance for more
accurate correlation learning. When we further consider the at-
tributes, the performance is improved. We can also see that from
K = 20, the performance of Cu-joint-VF-NVF is better than Cu-
Joint-VF. The reason is that the network builds the correlation
between the visual layer and the non-visual layer through the
attribute layer. For the query including non-visual ingredients,
the non-visual ingredients and visual ingredients work together
to retrieve food images. Similarly, the performance of Co-joint-
VF-NVF is better than Co-Joint-VF. Furthermore, we found that
the performance of Co-Joint-VF-NVF is better than Cu-Joint-
VF-NVF. The reason may be that the course information is more
specific than cuisine, and thus more discriminative. After incor-
porating two attributes in a multitask framework, our method
M3TDBN achieves the best performance, and outperforms the
best baseline by 10% when K = 20.

Fig. 5 shows three examples of our M3TDBN and the best
baseline method. We observed that in these examples, our
method can retrieval relevant images in top-3 ranked results.
In contrast, there are no groundtruth results in some cases for
the best baseline method. This again verified the effectiveness
of our method.
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Fig. 5. Three recipe image retrieval examples using our M3 TDBN and best baseline method. In each example, the query ingredients and its corresponding
cuisine and course information are shown on the left; retrieved food images of our M3 TDBN are presented on the top; retrieved images of the best baseline model
are presented at the bottom. Ranked score is shown below each image. The groundtruth food images are highlighted with red color.

E. Ingredient and Attribute Inference From Food Images

The learned model can be applied to infer the ingredients,
courses and cuisines from the recipe image. We evaluate the
effectiveness of M3TDBN in ingredient and attribute inference
from food images.

We can perform Gibbs sampling use (28)–(33) to draw sam-
ples of v(m ) , y(1) and y(2) . The returned results are ranked with
probability. Therefore, we resort to MAP@K for evaluation.
Here MAP@K is defined as follows:

MAP@K ==
1
Q

Q∑

q=1

∑K
k=1 Precision@qk ∗ r(qk)

∑K
k=1r(qk)

(35)

where Q is the number of queries. rk is the relevance level at
position k, which is 1 if the ingredient (or attributes) is in the
list of groundtruth ingredients (or attributes) from the query im-
age, and 0 otherwise. rqk is the relevance level at position k
for query q. Precision@qk is the precision at position k for
the query q, and K is the truncation level. In our experiment,
we use MAP@10 for ingredients and MAP@3 for cuisine and
course, respectively. We select five methods CNN-VF, Multi-
modal DBN, Joint-VF-NVF, Cu-Joint-VF-NVF and Co-Joint-
VF-NVF as baselines for comparison. The baseline CNN-VF
considers the ingredients, cuisine and course information as the
supervised label information and uses the logistic regression
to obtain the score of each label for each kind of supervised
information, respectively.

We firstly evaluate the performance of ingredient inference.

Fig. 6. Performance of ingredient inference from food images using
MAP@10.

TABLE VI
PERFORMANCE OF ATTRIBUTES INFERENCE USING MAP@3

Method Cuisine Course

CNN-VF 0.403 0.432
Co-Joint-VF-NVF – 0.515
Cu-Joint-VF-NVF 0.425 –
M3 TDBN 0.472 0.532

Fig. 6 shows the experimental results. We can see that 1)
introducing the cuisine or course information leads to the im-
provement of performance. The baselines Cu-Joint-VF-NVF
and Co-Joint-VF-NVF outperforms Joint-VF-NVF by 5% and
10%, respectively. This shows the regularization effect by the
attributes. 2) our model achieves the best performance than
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Fig. 7. Some examples of ingredient and attribute inference from food images. The probability value derived from our model is provided behind the inference
result. The groundtruth labels are highlighted with red color.

the best baseline, and outperforms it by 16%. This shows that
the course and cuisine attributes enforce each other in a multi-
task fashion. This again validates the advantage of the proposed
method in incorporating two kinds of attributes.

We then show the experimental results on attribute inference.
From Table VI, we can see that M3TDBN introduces the multi-
task learning to make two attributes enforce each other and thus
has a better performance.

Fig. 7 shows some examples of inferred results by our
M3TDBN. In these cases, In top-10 ranked ingredients, at least
6 ingredients are the ground truth. The first returned results in at-
tribute inference by the query are almost ground truth. For each
attribute, even there are more than one values, our method can
also infer accurate results, for example, our model inferred two
values “American” and “Kid-Friendly” for the course attribute
of the food image in the left bottom.

VI. CONCLUSION

In this paper, we proposed a MultiModal MultiTask Deep
Belief Network (M3TDBN) to explore multimodality content
and multi-attribute information in the food domain. This deep
network consists of two pathways, where one pathway is to
learn joint mid-level representation between visual and visi-
ble ingredients, and the other is mainly to learn non-visual
mid-level representation. In addition, M3TDBN incorporates
multitask learning to make different attributes collaborate each
other. We applied M3TDBN into three extended novel prob-
lems, including multimodal cuisine classification, attribute-
augmented cross-modal recipe image retrieval, ingredient and
attribute inference from food images. The experimental results
demonstrate the effectiveness of our model in the learned mid-
level representation and discovered correlation.

This work can be extended in the following four directions:
1) Exploring more information from Yummly for supporting
more applications. For example, we can utilize the accurate
calorie information for improving the performance of existing
food image calorie estimation [27]; 2) Adding user information
into our model for personalized food or recipe recommendation
[12], [13] and food balance estimation [52] based on the indi-
vidual’s taste, ingredient, diet, allergy, nutrition, calories and so
on. 3) The proposed recipe retrieval and exploration framework
provides one attempt to address some challenging problems in
multimodality and multi-attributes analysis. With the fast de-
velopment of Artificial Intelligence (AI), it is important to find
the correlations with emerging methods from AI-related areas
in the future. 4) Since our proposed framework on multimodal-
ity and multi-attributes modeling can be easily generalized, we
hope to apply our framework into other fields such as Flickr
images with multimodality and multi-context information (each
kind of context information can be considered as one attribute)
to enable interesting and valuable analysis.
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