
A Margin-based MLE for Crowdsourced Partial Ranking

Qianqian Xu1, Jiechao Xiong2, Xinwei Sun3,4,
Zhiyong Yang5, Xiaochun Cao5, Qingming Huang1,6,7∗, Yuan Yao8∗

1 Key Lab of Intell. Info. Process., Inst. of Comput. Tech., CAS, Beijing, 100190, China
2 Tencent AI Lab, Shenzhen, 518057, China

3 School of Mathematical Sciences, Peking University, Beijing, 100871, China
4 DeepWise AI Lab, Beijing, 100085, China

5 State Key Laboratory of Info. Security (SKLOIS), Inst. of Info. Engin., CAS, Beijing, 100093, China
6 University of Chinese Academy of Sciences, Beijing, 100049, China

7 Key Lab of Big Data Mining and Knowledge Management, CAS, Beijing, 100190, China
8 Department of Mathematics, Hong Kong University of Science and Technology, Hong Kong

xuqianqian@ict.ac.cn,jcxiong@tencent.com,sxwxiaoxiaohehe@pku.edu.cn
{yangzhiyong,caoxiaochun}@iie.ac.cn,qmhuang@ucas.ac.cn,yuany@ust.hk

ABSTRACT

A preference order or ranking aggregated from pairwise compari-

son data is commonly understood as a strict total order. However,

in real-world scenarios, some items are intrinsically ambiguous

in comparisons, which may very well be an inherent uncertainty

of the data. In this case, the conventional total order ranking can

not capture such uncertainty with mere global ranking or utility

scores. In this paper, we are specifically interested in the recent

surge in crowdsourcing applications to predict partial but more

accurate (i.e., making less incorrect statements) orders rather than

complete ones. To do so, we propose a novel framework to learn

some probabilistic models of partial orders as a margin-based Maxi-
mum Likelihood Estimate (MLE) method. We prove that the induced

MLE is a joint convex optimization problem with respect to all

the parameters, including the global ranking scores and margin

parameter. Moreover, three kinds of generalized linear models are

studied, including the basic uniform model, Bradley-Terry model,

and Thurstone-Mosteller model, equipped with some theoretical

analysis on FDR and Power control for the proposed methods. The

validity of these models are supported by experiments with both

simulated and real-world datasets, which shows that the proposed

models exhibit improvements compared with traditional state-of-

the-art algorithms.
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(a) Trump (b) Ming Yao

Figure 1: Smile as a relative attribute in paired comparisons.
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1 INTRODUCTION

Imagine you are given a pile of distorted images of the same content,

and you are asked to sort or rank them according to their quality.

Can you do it? In other tasks such as relative attribute ordering in

computer vision, for example in Figure 1, can you rank the faces

according to the “degree" of smiling? These are typical scenarios in

crowdsourced ranking.

Nature imposes a limitation that humans are unable to make

accurate preference judgement on even moderately large sets. As

it has been argued that most people can rank only between 5 to 9

alternatives at a time [27]. This is probably why many rating scales

(e.g. the ones used by Amazon, eBay, Netflix, YouTube) are based

on a 5-star (level) scale. In a 5-star test, individuals are asked to

give a rating from Bad to Excellent in 5 levels (e.g. Bad-1, Poor-2,

Fair-3, Good-4, and Excellent-5) to grade the candidates. This leads

to partial orders or ranking of the candidates where the items on the

same level will be regarded as equivalent classes. There are some
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work in the literature studying how to organize information in

partial orders of such tied subsets or equivalent classes (partitions,

bucket orders) [14, 19]. Specifically, the authors in [19] address

computational aspects that arise when working with empirical

distributions on partially ranked data.

Yet in many crowdsourcing tasks, even the 5-star scale may

suffer from various problems such as ambiguity in the definition

of scales, dissimilar interpretations of the scale among users, and

so on, e.g. argued in [3] and reference therein. To address this

issue, the pairwise comparison method becomes a rising paradigm

recently in many crowdsourcing platforms, as for most people, it is

a harder task to rank or rate many candidates than to compare a

pair of candidates at a time. In pairwise comparisons, frequently,

the available data presented to us is in the following form: the

quality of image A is better than image B, etc. A ranking aggregated

from pairwise comparison data is commonly understood as a strict

total order, i.e., an irreflexive, asymmetric, and transitive relation,

specifying for all pairs whether i precedes j, or j precedes i . [14]
attempts to discover an underlying bucket or partial order from

pairwise precedence information between the items without any

ties.

Although some items or candidates could be obvious to rank,

the ambiguity in choosing the preference is ubiquitous that often

imposes some difficulties in making the choice. For example, the

following list describes such cases met in crowdsourcing experi-

ments.

Example 1. In relative attributes in computer vision [24], some
attributes such as smile or age, are hard to judge absolutely, but
accessible to human within a pair on choosing which one to be stronger
in the attribute. Surely there might be some obvious images easy to
judge. Yet there will be other images where the distinction is quite
subtle, or hardly perceivable. Figure 1 gives an example.Who is smiling
more, Trump or Yao? Some people may think the basketball star Ming
Yao is more smiling than Trump; while some people may think Ming
Yao looks crying, so they prefer to Trump as more smiling. Besides,
others may think it is difficult to tell which one in the pair looks
stronger in the smile attribute. Participants may choose to abstain
from this judgement when they are too confusing to make a decision.

Example 2. In subjective multimedia quality assessment [34, 35],
videos and images of the same content are to be evaluated for its
quality. Some pairs are easy to distinguish, while others are not. In
particular, there might be multi-criteria among heterogeneous raters.
In these cases, annotators may declare these two are confusing thus
difficult to judge.

Example 3. In crowdsourced pairwise ranking platforms such as
Allourideas1, an option that “I can’t decide" is provided with further
information such as “I like both ideas", “I think both ideas are the
same", “I don’t like either idea", or "I don’t know enough about either
idea", etc. For example, in world college ranking a participant is asked
about “which university (of the following two) would you rather
attend?". When a voter thinks the two colleges listed are incomparable
and difficult to judge, he may click this button with possible further
options. Such voters essentially provide some information on partial
orders, which can be distinguished from those voters who click this

1http://www.allourideas.org/

button just because they don’t know both of these two colleges or one
of them well.

This kind of pairwise comparison data, together with “I can’t

decide" type of decision, arises in a variety of crowdsourcing appli-

cations. In all these examples, if a rater is not sufficiently certain

regarding the relative order of the two items, he may abstain from

his choice decision and instead declare these two as being incompa-

rable. In fact, partial ranking can be interpreted as a ranking with

partial abstention. In this way, a dataset with abstention of this kind

provides us information about possible ties or equivalent classes of

items in partial orders.

Despite a considerable amount of work on ranking in general and

pairwise ranking in particular, there lacks a systematic treatment

on learning partial orders or rankings from such pairwise compari-

son data with abstentions, which are ubiquitous in crowdsourcing

applications nowadays. Among the prior work on partial ranking

up to our knowledge, the one that comes closest to our goal is [4].

The idea is that it produces predictions in the form of partial order

by thresholding a (valued) pairwise preference relation, i.e., by a

“α-cut" of preference relation. However, it leaves the optimal choice

of hyper-parameter α to various heuristics and needs to know in

advance the preference relation between every pair of items (i.e.,

n(n − 1)/2 pairs in total for n items), which requires a large number

of comparisons, being too prohibitive in modern applications.

To fill in this gap, in this paper, we propose a novel framework

to learn partial ranking probabilistic models as a margin-based

Maximum Likelihood Estimate (MLE) method. In contrast to [4], all

the parameters, including the global ranking score and the hyper

parameter as threshold (called margin parameter here), can be auto-

matically learned from pairwise comparison data with abstentions

via a convex optimization. Our framework can deal with incomplete

and imbalanced data, as an extension of the HodgeRank [16] from

total orders to partial orders with generalized linear models.

As a summary, our main contributions in this new framework

are highlighted as follows:

(A) We propose a framework of learning partial rankings from

pairwise comparison datawith abstentions, based on amargin-

based Maximum Likelihood Estimate (MLE) for probabilistic

models. We prove that for a general class of models, the in-

duced MLE is a convex optimization problem with respect to

all the parameters, including the global ranking scores and

threshold/margin parameter.

(B) In this unified framework, three kinds of generalized linear

models are particularly studied, including the basic uniform

model, Bradley-Terrymodel, and Thurstone-Mostellermodel,

equippedwith theoretical analysis on FDR and Power control

of our proposed method.

(C) Experiments on simulated and crowdsourcing real-world

datasets together show that our algorithm works effectively

in practice.

The remainder of this paper is organized as follows. Sec.2 con-

tains a review of related work. We systematically introduce the

methodology for partial ranking in Sec.3. Detailed experiments with

simulated and real-world datasets are presented in Sec.4. Finally,

Sec.5 presents the conclusive remarks.
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2 RELATEDWORK

Pairwise Ranking. Statistical preference aggregation, in partic-

ular ranking or rating from pairwise comparisons, is a classical

problem that can be traced back to the 18th century. This subject

area has been widely studied in various fields including the social

choice and voting theory in economics [1, 12], statistics [10, 22],

multimedia [34, 35], computer vision [20, 37, 38], and others [2, 7,

17, 23, 25, 26, 30–32].

Various algorithms have been studied to solve this problem. They

include maximum likelihood under a Bradley-Terry model assump-

tion, rank centrality (PageRank/MC3) [9, 21], HodgeRank [16], and

a pairwise variant of Borda count [11], etc. However, all of these

methods have a major drawback: they aim to find one global com-

mon consensus, that assumes all users’ choices are stochastic reve-

lation of a common global preference function on candidates. To

capture the discrepancies among users, lately [36] proposes a parsi-

monious mixed effect HodgeRank, which considers that a majority

of users may follow the common social preferences while some

users may exhibit distinct personalized preferences. However, all

these methods above do not consider the inherent characteristic of

real-world data: some pairs are intrinsically ambiguous, thus may

be difficult to derive a strict global ranking. In this paper, we will

focus on this kind of setting, allowing a model to make predictions

in the form of partial instead of total orders.

Partial Ranking. Despite a considerable amount of work on

ranking in general and pairwise ranking, the literature on partial

rankings is relatively sparse. Pairwise comparisons with absten-

tions are governed by partial orders or rankings. But the notion

of abstention is actually originated from classification community

[5]. In classification with a reject option, for example, a classifier

may abstain from a class prediction if making no decision is consid-

ered less harmful than making an unreliable and hence potentially

false decision. Recently, worth mentioning is the work on a spe-

cific type of partial orders, namely linear orders of unsorted or tied

subsets (partitions, bucket orders) [14, 19]. However, the problems

addressed in these work are different from our goals. Among the

existing work in the literature, [4] is the one that comes closest to

our goal, which produces predictions in the form of partial order

by thresholding a (valued) pairwise preference relation, i.e., by a

“α-cut" of preference relation. It lacks a solid principle to decide the
hyper parameter α as the threshold. Moreover, it needs to know in

advance the preference relation between every pair of items. In this

paper, we propose a margin-based MLE for partial order ranking

based on probability model which could solve these problems in

[4].

3 METHODOLOGY

3.1 Pairwise Ranking on Graphs

Suppose there are n alternatives or items to be ranked. The pairwise

comparison labels collected from users can be naturally represented

as a directed comparison graphG = (V ;E). Let V = {1, 2, . . . ,n} be
the vertex set of n items and E = {(u, i, j ) : i, j ∈ V ,u ∈ U } be the
set of edges, where U is the set of all users who compared items.

Useru provides his/her preference between choice i and j , such that
yui j > 0 means u prefers i to j and yui j ≤ 0 otherwise. Hence we may

assume y : E → R with skew-symmetry (orientation) yui j = −yuji .
The magnitude of yui j can represent the degree of preference and

it varies in applications. The simplest setting is the binary choice,

where yui j = 1 if u prefers i to j and yui j = −1 otherwise.
Traditionally, a statistical ranking is commonly understood as

a strict total order, i.e., an irreflexive, asymmetric, and transitive

relation >, specifying for all pairs whether i precedes j, denoted
i > j , or j precedes i . The key property of transitivity can be seen as

a principle of consistency: If i is preferred to j and j is preferred to k ,
then i must be preferred to k . However, in real-world applications,

some pairs are intrinsically ambiguous, in this case, the rater cannot

reliably decide whether the former should precede the latter or the

other way around, he may abstain from this decision and instead

declare these alternatives as being incomparable. Therefore, it might

be misleading to merely look at a global total ranking (i.e., in which

every pair of distinct elements is comparable) while ignoring the

intrinsic ambiguity among items. In this paper, we focus on deriving

a partial ranking based on a margin-based MLE method.

3.2 Partial Order Ranking

A partial order � is a generalization of the relation > mentioned

above that preserves the consistency principle but is not necessarily

total. Define i � j as (i > j ) ∧ (� (j > i )) . If, for two alternatives i
and j , neither i � j nor j � i , then these alternatives are considered

as incomparable, we then denote i ⊥ j or equivalently j ⊥ i . In other

words, if i and j are too similar such that we think neither i precedes
j nor j precedes i , we then claim that i and j are incomparable.

In [4], it proposes to learn a Partial Order Relation (POR) by

a “α-cut" of preference relation. Suppose P (i, j ) is a measure of

support for the order (preference) relation i � j with property

P (j, i ) = 1 − P (i, j ). Then a POR is defined as

Rα = {i � j : P (i, j ) ≥ α }
by setting α big enough.

However, this construction of POR requires the preference rela-

tion between every pair of items (i.e., n(n − 1)/2 pairs in total for n
items). And each P (i, j ) is usually estimated by empirical probabil-

ity between i and j. Therefore, a good estimation of P (i, j ) needs a
large number of comparisons.

3.3 Probability Model for Binary Data

In order to extend the methods to the case of small number of sam-

ples, we introduce the probability model for binary data. Suppose

that the true scaling scores for n items are s = [s1, · · · , sn] and
we collect N pairwise comparison samples {(ik , jk ,yk )}Nk=1 in total.

Here (ik , jk ) is a pair of items, and yk is the corresponding compar-

ison label. Suppose that, for the kth observation, yk is generated

by:

yk = sign(sik − sjk + ϵk ),
where ϵk are i .i .d and have a c.d.f Φ(t ). Different Φ leads to different

models. For example:

• Uniform model: Φ(t ) = t+1
2 .

• Bradley-Terry model: Φ(t ) = e t

1+e t
.

• Thurstone-Mosteller model: Φ(t ) = 1√
2π

∫ x
−∞ e− t

2

2 dt .
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Note that P (yk = 1) = 1 − Φ(sjk − sik ), a α-cut of preference
relation is thus equivalent to a −Φ−1 (1 − α )-cut of the score differ-
ence function f (k ) = sik − sjk . Therefore, a POR can be obtained if

the score can be estimated, which allows the comparison samples

to be incomplete. It can be proved, such a cut indeed implies a POR.

Proposition 1. For any s and λ > 0, the relation

Rλ = {i � j : si − sj > λ} (1)

is a Partial Order.

3.4 Extended Probability Model

As stated that, any value of λ can produce a POR, then how can

we choose a proper one is a key step. In real-world applications,

as some pairs are intrinsically ambiguous, raters usually provide a

third option, “I can’t decide" or “They are comparable". Such kind

of data can help us to determine the “optimal cut" here. To fit this

kind data with three options, we extend the probability model as

follows:

yk =
⎧⎪⎪⎨⎪⎪⎩

1, sik − sjk + ϵk > λ;
−1, sik − sjk + ϵk < −λ;
0, else.

(2)

where yk = 0 indicates the annotator thinks that i and j are too
close to judge. Then under this model, the POR in (1) has an explicit

meaning: an oracle annotator, whose ϵi j = 0, will give exactly this

POR!

3.5 Maximum Likelihood Estimator

With the label distribution modeled, in this section we elaborate

a Maximum Likelihood method to estimate the model parameters.

First, we construct the design matrix X as X = [x�1 , · · ·x�N ]�,
where xk = e jk −eik . Furthermore, we denote θ = [λ, s] . With the

notations above, we could calculate the possibility thatyk = 1, 0,−1
as follows:

P {yk = 1} = P {ϵk > λ − sik + sjk } = 1 − Φ
(
[1,x�

k
]�θ
)
,

P
{
yk = 0

}
= P {−λ − sik + sjk < ϵk ≤ λ − sik + sjk },
= Φ
(
[1,x�

k
]�θ
)
− Φ
(
[−1,x�

k
]�θ
)
,

P {yk = −1} = P {ϵk ≤ −λ − sik + sjk } = Φ
(
[−1,x�

k
]�θ
)
.

Therefore:

P {yk } =
∏

label ∈{−1,0,1}

[
P {yk = label }

]1{yk=label }
.

Given all above, it is easy to write out the negative log-likelihood

via denoting ζ +
k
as [1,x�

k
]�θ and ζ −

k
as [−1,x�

k
]�θ :

�(y |s, λ) = −
∑
k

(
1{yk = 1}loд

[
1 − Φ(ζ +

k
)
]

+ 1{yk = 0}loд
[
Φ(ζ +

k
) − Φ(ζ −

k
)
]
+ 1{yk = −1}loд

[
Φ(ζ −

k
)
])
.

(3)

To solve our proposed model, one just needs to minimize �(y |s, λ)
with respect to (λ, s ). Furthermore, if we assume that

∑
i si = 0,

then we could replace sn with −∑n−1i=1 si . Correspondingly, we can
rewrite the loss function �(y |s, λ) as a function of (λ, s1, ..., sn−1):
�(y |s/sn , λ) , where s/sn � (s1, ..., sn−1). Then, under Assumption

1 we could prove that Theorem 3.2 holds.

Table 1: The definition of FDR and Power.

Comparable Incomparable

Detected as Comparable N0,0 N0,1

Detected as Incomparable N1,0 N1,1

Assumption 1. Define ϕ (x ) as Φ′(x ), we assume that at least
one of the following assumptions holds for Φ(x ),ϕ (x ) and ϕ ′(x ):

a) ϕ ′(x ) ≡ 0 and ∀x ,ϕ (x ) � 0;

b) ϕ (x ) is an even function, ϕ (x ) and Φ(x ) − ϕ2 (x )
ϕ (x ) is strictly

decreasing on (0,+∞). Furthermore, lim
x→+∞

ϕ2 (x )
ϕ′ (x ) = 0,ϕ ′(x ) �

0 for x � 0, ∀x ,ϕ (x ) � 0 and ϕ ′(x ) < 0 if x > 0 .

Theorem 1. �(y |s/sn , λ) is strictly convex with respect to (λ, s1,
· · · , sn−1).

It is easy to check all the three models satisfy Assumption 1, thus

all these models are strictly convex.

Putting all these together, we conclude that the MLE of these

models are just solutions of strictly convex problems which can be

solved efficiently.

3.6 FDR and Power Control

In this part, we show the theoretical analysis of model performance

on separating the incomparable pairs from the comparable ones.

To measure this ability, we introduce two criteria: False Discovery

Rate (FDR) and Power, as is shown in Table 1. The definition of

FDR and Power in our setting are:

FDR =
N1,0

N1,0 +N1,1
,

Power =
N1,1

N0,1 +N1,1
.

In the following, we will propose a conservative threshold bound

to guarantee FDR to be 0 and an aggressive threshold bound to

guarantee Power to be 1.

Let
(
{s�i }ni=1, λ�

)
be the corresponding true parameters,

(
{ŝi }ni=1,

λ̂
)
be the corresponding estimated parameters returned by our pro-

posed method. Denote δ as the maximum of the variance of the

estimatedmodel parameters i.e. δ =max (σ 2

λ̂
,σ 2

ŝ1
, · · · ,σ 2

ŝn
). Further-

more, we denote δ̂ as the estimation of δ on the observed dataset

and Δ =

√
4loд (n+1)δ̂√

N
. With the notations above, we construct the

set of all incomparable pairs asM, a conservative set as M̂ and the

aggressive set as M̃ :

M = {(i, j ) : |s�i − s�j | ≤ λ∗}, (4)

M̂ = {(i, j ) : |ŝi − ŝj | ≤ λ̂ − 3Δ}, (5)

M̃ = {(i, j ) : |ŝi − ŝj | ≤ λ̂ + 3Δ}, (6)

where N is the number of samples. Now we first propose a theorem

which shows that with high probability, M̂ ⊆ M ⊆ M̃, followed

by a practical interpretation via the remark that comes right after

the theorem.
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Theorem 2. Let θ = (λ, s ). Then with probability at least 1 −
2(n + 1)

δ−2δ̂
δ , we will have that M̂ ⊆ M ⊆ M̃.

Remark 1. If M̂ ⊆ M occurs, we set the threshold λ as λ =

λ̂− 3Δ. Then all the detected incomparable pairs are truly incompara-

ble, thus FDR = 0 is guaranteed. Likewise, ifM ⊆ M̃ i.e. M̃c ⊆ Mc

occurs, we have |ŝi − ŝj | > λ̂ + 3Δ indicating |s�i − s�j | > λ�. Conse-

quently, if we set the threshold as λ = λ̂ + 3Δ, then all the comparable
pairs will be detected as comparable and thus Power = 1 is guaranteed.

To evaluate λ and λ, one must first evaluate δ̂ . Next, we propose a

method to estimate δ̂ with the well-known asymptotic normality of

MLE [28]. First, according to Section 3.5, we know that �(y |s/sn , λ)
is strictly convex for all mentioned distributions. Denote Ĩ ((λ̂, ŝ/ŝn ))
as the estimated Fisher Information matrix, we have:

Ĩ ((λ̂, ŝ/ŝn )) = −�2
λ,s/sn

[
�(y |(λ̂, ŝ/ŝn ))/N

]
� 0,

and

E
[−∇2

λ,s/sn
�(y |s�/s�n , λ�)
N

]
= I ((λ�, s�/s�n )) � 0,

where I ((λ�, s�/s�n )) is the true Fisher Information matrix. Hence,

these two matrices are invertible while the inversion has positive

diagonal elements. Accordingly we have:

I−1 ((λ�, s�/s�n ))1,1 = σ 2

λ̂
;

I−1 ((λ�, s�/s�n ))i,i = σ 2
ŝi
, ∀i = 1, ...,n − 1.

Then, we could estimate the variances as:

σ̂ 2

λ̂
� Ĩ−1 ((λ̂, ŝ/ŝn ))1,1;

σ̂ 2
ŝi

� Ĩ−1 ((λ̂, ŝ/ŝn ))i,i , ∀i = 1, ...,n − 1;
σ̂ 2
ŝn

� (0, 1, 1, .., 1)Ĩ−1 ((λ̂, ŝ/ŝn )) (0, 1, 1, ..., 1)�.

Similarly, we can estimate δ̂ as:

δ̂ =max {σ̂ 2

λ̂
, σ̂ 2

ŝ1
, ..., σ̂ 2

ŝn
}.

4 EXPERIMENTS

In this section, four examples are exhibited with both simulated

and real-world data to illustrate the validity of the analysis above

and applications of the methodology proposed. The first example

is with simulated data while the latter three exploit real-world data

collected by crowdsourcing.

4.1 Simulated Study

Settings We validate the proposed algorithm on simulated data

with n = |V | = 20 labeled by users. Specifically, we first ran-

domly create a global ranking score s� ∼ 10 × N (0, 1) as the

ground-truth for n candidates. Then pairwise comparisons are

generated by Bradley-Terry model, i.e. yi, j = 1 with probability{
exp (s�i −s�j −λ� )

1+exp (s�i −s�j −λ� )
}
, yi, j = 0 with probability

{
exp (s�i −s�j +λ� )

1+exp (s�i −s�j +λ� ) −
exp (s�i −s�j −λ� )

1+exp (s�i −s�j −λ� )
}
, andyi, j = −1with probability

{
1

1+exp (s�i −s�j +λ� )
}
.

Here we set λ = 0.5 : 0.5 : 2. Finally, we obtain a dataset with 10000

samples. The experiments are repeated 20 times and ensemble sta-

tistics for the estimator are recorded.

Table 2: Experimental results of 3 models on simulated data (λ = 1).

(a) Macro-F1

min mean max std

Uniform 0.7842 0.8454 0.9632 0.0437

Bradley-Terry 0.8309 0.9794 1.0000 0.0265

Thurstone-Mosteller 0.8747 0.9679 1.0000 0.0312

(b) Micro-F1

min mean max std

Uniform 0.7872 0.8611 0.9677 0.0389

Bradley-Terry 0.8214 0.9803 1.0000 0.0263

Thurstone-Mosteller 0.8908 0.9749 1.0000 0.0260

Table 3: Experimental results of 3 models on simulated data as λ varies (λ =
0.5, 1, 1.5, 2).

(a) Macro-F1

λ 0.5 1 1.5 2

Uniform 0.8017 0.8454 0.8369 0.8068

Bradley-Terry 0.9753 0.9794 0.9761 0.9818

Thurstone-Mosteller 0.9628 0.9679 0.9714 0.9727

(b) Macro-F1

λ 0.5 1 1.5 2

Uniform 0.8520 0.8611 0.8273 0.7987

Bradley-Terry 0.9794 0.9803 0.9761 0.9814

Thurstone-Mosteller 0.9822 0.9749 0.9710 0.9704

Evaluation metricsWe measure the experimental results via two

evaluation criteria, i.e., Macro-F1, and Micro-F1, which take both

precision and recall into account. The larger the value of Micro-F1

and Macro-F1, the better the performance. More details about the

evaluation metric please refer to [39].

Results Table 2(a) and 2(b) show the Macro-F1 and Micro-F1 of

three models with λ = 1. Since the observed dataset is generated

from the Bradley-Terry model, it obtains the best performance in

terms of both metrics. Moreover, we also show the experimental

results as λ varies in Table 3(a) and 3(b), and it is easy to find that

Bradley-Terry model again exhibits the best performance in most

cases. In the following real-world datasets, we will also show the

experimental results of Bradley-Terry Model.

Validation of the FDR and Power guarantee. To demonstrate

the correctness of Theorem 2, we plot the FDR and Power results

in Figure 2 for λ = 0.25 : 0.25 : 2 when λ̂, λ̂ − 3Δ and λ̂ + 3Δ are

employed as the estimated threshold, respectively. From the results

we can easily find that, when λ̂ − 3Δ is employed as the estimated

threshold, the FDR could always reach 0; while λ̂ + 3Δ could en-

sure the Power to be 1. This observation effectively demonstrates

the correctness of the constructed conservative/aggressive set for

FDR/Power.

4.2 Image Quality Assessment

Dataset Description The second dataset is for subjective image

quality assessment (IQA), which contains 15 reference images and

15 distorted versions of each reference, for a total of 240 images

which come from two publicly available datasets LIVE, [29] and

IVC [18]. Totally, 342 observers, each of whom performs a varied

number of comparisons via Internet, provide 52, 043 feedbacks (i.e.,
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(a) FDR (b) Power

Figure 2: An illustration of FDR and Power control.

(a) Optimal λ (b) Partial ranking

Figure 3: Experimental results of Bradley-Terry model on IQA dataset.

1, 0, -1) for crowdsourced subjective image quality assessment. For

simplicity, we randomly take reference 1 as an illustrative example

while other reference images exhibit similar results.

Competitors Now we introduce the competitors employed in our

experiments. As mentioned in the Section 2, the α-cut algorithm
shares the most similar problem setting with our proposed algo-

rithm and thus is adopted as our main competitor. Seeing that the

α-cut algorithm employs bagging ensembles of weak learners, we

further compare our proposed algorithms with α-cut algorithm
when different types of such weak learners are adopted.

Experiment SettingDifferent from simulated data, as there are no

ground-truth in real-world data, one can not compute Macro-F and

Micro-F as in simulated data to evaluate the method we proposed.

To see whether our proposed method could provide precise partial

ranking, we generate 20 repetitions of training/testing splits with

80% of the samples are selected as the training set and the rest as the

testing set. Regarding the parameter-tuning of the weak learners in

α-cut, we tune the coefficient for Ridge/LASSO regularization from

the range {2−7, 2−6, · · · , 2−3} and the best parameter is selected via

a 5-fold cross-validation on the training set.

Evaluation metrics To test whether the edges we added in the

graph are reasonable or not, we employ two metrics called correct-

ness and completeness, respectively. Given the true partial order

relation �∗, the estimated partial order relation �, the concordant
set:

C = {(i, j ) : (i � j ∧ i �∗ j ) ∨ (j � i ∧ j �∗ i )}
and discordant set

D := {(i, j ) : (i � j ∧ j �∗ i ) ∨ (j � i ∧ i �∗ j )}

Table 4: Experimental results on IQA dataset.

types algorithms
correctness completeness geomean

median std median std median std

α -cut [4]

LRLASSO 0.9137 0.0173 0.8309 0.0325 0.8760 0.0200

LRRidge 0.9227 0.0150 0.8044 0.0301 0.8582 0.0148

SVMLASSO 0.9158 0.0137 0.8310 0.0297 0.8721 0.0166

SVMRidge 0.9184 0.0099 0.8083 0.0484 0.8594 0.0246

LSLASSO 0.9154 0.0117 0.8095 0.0285 0.8623 0.0146

LSRidge 0.9139 0.0126 0.8218 0.0336 0.8668 0.0182

SVRLASSO 0.9236 0.0119 0.7405 0.0291 0.8311 0.0167

SVRRidge 0.9191 0.0145 0.7594 0.0386 0.8378 0.0187

ours
Uniform 0.9137 0.0107 0.8623 0.0142 0.8867 0.0081

Bradley-Terry 0.9113 0.0124 0.9254 0.0141 0.9064 0.0082

Thurstone-Mosteller 0.9146 0.0122 0.9077 0.0122 0.9084 0.0075

we could define a metric for completeness as :

completeness =
|C| + |D|

|{(i, j ) : i �∗ j ∨ j �∗ i}| .

It is easy to find that the completeness metric measures the ability

to detect a comparable pair. Likewise, correctness is defined as

follows:

correctness =
|C|

|C| + |D| .
According to the definition, we see that a higher correctness im-

plies a more accurate prediction for the pairs which are detected as

comparable. Actually, there is always a trade-off between these two

criteria: correctness on the one side and completeness on the other

side. An ideal learner is correct in the sense of making few mistakes,

but also complete in the sense of abstaining rarely. In other words,

the two criteria are conflicting: increasing completeness typically

might as well come along with reducing correctness and vice versa.

Here we plot the trade-off between completeness and correctness as

λ varies. After all, every λ can induce a partial ranking. The partial

ranking obtained by λ-cut of MLE is highlighted as red circle, as is

shown in Figure 3(a).

Performance Comparison Table 4 shows the corresponding per-

formance of our proposed algorithms and the α-cut algorithms. In

this table, the second column shows the weak learner and regu-

larization term employed in α-cut and three models proposed in

our algorithm. Specifically, LR represents for logistics regression

[6], SVM stands for the Support Vector Machine [8] method, LS

stands for the method of least squares [6] while SVR stands for

the Support Vector Regression [13] method. For regularization, we

employ the Ridge [15] and LASSO [33] regularization term. In order

to comprehensively aggregate the performance, an overall metric

should be defined based on both criteria. This leads to our inclusion

of the last columnwhich records the corresponding statistics for the

geometric mean of the two mentioned criteria. According to this ta-

ble, we find that our proposed algorithms significantly outperform

other competitors in terms of completeness, and reach comparable

results in terms of correctness. Moreover, the advantage in terms

of the third metric also suggests the comprehensive superiority of

our proposed algorithms.

Partial Order Visualization Here Figure 3(b) depicts a diagram

for the partial order induced by Bradley-Terry Model. Disconnected

nodes in the diagram indicate the incomparability of their corre-

sponding subjective quality. Take the fourth level (ID=8,2,3) as an

example. These three images come from LIVE datasets [29], and the

corresponding names in LIVE dataset are ID=8 (img91-jp2k.bmp),
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Table 5: Experimental results on human age dataset.

type algorithms
correctness completemess geomean

median std median std median std

α -cut[4]

LRLASSO 0.8640 0.0095 0.8352 0.0974 0.8511 0.0562

LRRidge 0.8693 0.0070 0.8467 0.0186 0.8584 0.0090

SVMLASSO 0.8674 0.0084 0.8565 0.0315 0.8619 0.0144

SVMRidge 0.8660 0.0076 0.8447 0.1049 0.8542 0.0597

LSLASSO 0.8688 0.0072 0.8583 0.0265 0.8617 0.0128

LSRidge 0.8681 0.0072 0.8513 0.0193 0.8556 0.0096

SVRLASSO 0.8732 0.0087 0.7687 0.0380 0.8177 0.0188

SVRRidge 0.8732 0.0082 0.7750 0.0229 0.8237 0.0118

ours
Uniform 0.8655 0.0056 0.8523 0.0098 0.8591 0.0056

Bradley-Terry 0.8671 0.0061 0.8990 0.0070 0.8826 0.0042

Thurstone-Mosteller 0.8682 0.0062 0.8949 0.0067 0.8816 0.0044

Figure 4: Partial ranking of human age dataset.

ID=2 (img95-fastfading.bmp), ID=3 (img91-fastfading.bmp). Via our

proposed partial ranking algorithm, the quality of three images are

treated as confusing thus located on the same level. To see whether

they are really confusing or not, we go back to check the mean

opinion score (MOS) of three images provided by LIVE dataset. We

are pleasantly surprised to find that their MOS are so close: 50.96,

50.29, 48.62, respectively. From this viewpoint, the partial ranking

we obtained is reasonable. However, MOS is not always accurate

enough, which suffers from: i) Unable to concretely define the con-

cept of scale; ii) Dissimilar interpretations of the scale among users;

iii) Difficult to verify whether a participant gives false ratings either

intentionally or carelessly. In this case, the results derived from

our method could stand up to undertake the mission of being the

ground-truth for image quality assessment.

4.3 Human Age

Dataset Description In this dataset, 25 images from human age

dataset FG-NET 2 are annotated by a group of volunteer users on

ChinaCrowds platform. The groundtruth age ranking is known to

us. The annotator is presented with two images and given a choice

of which one is older (or difficult to judge). Totally, we obtain 9589

feedbacks from 91 annotators.

Performance Comparison For age dataset, we adopt the same

experiment setting, competitors and hyperparameter tuning strat-

egy as the IQA dataset. Table 5 shows the comparable results on

this dataset. Similar with the results on the IQA dataset, we can

2http://www.fgnet.rsunit.com/

(a) Conflict images (b) Optimal λ

Figure 5: Conflict images and optimal λ of human age dataset.

find that our proposed algorithms reach comparable performance

in the sense of correctness. While, for the last two models (i.e.

Bradley-Terry and Thurstone-Mosteller), our proposed algorithm

significantly outperforms the competitors in terms of completeness.

This leverages a better geometric mean of our algorithm with the

last two models.

Partial Ranking VisualizationMoreover, Figure 4 (Left) shows

the partial ranking we obtained with 7 hierarchical levels on this

dataset. It is easy to see that ID=23, the oldest, stands on the first

level, while ID=5,10,13,3,24,7 are on the second level, and so on. On

the leaf nodes, individuals with ID=16,1,9,17,22 are the youngest

group of this dataset. To demonstrate whether the partial ranking

we derived is reasonable or not, the original images are shown on

the right panel, with ground truth ages painted red on the right

corner of each image. From top to down, we can see that ID=23 (46

years old) is indeed older than most of the individuals on level 2

except ID=3 (51 years old). In other words, the partial ranking by

mistake thinks 46 older than 51! If we look into the details of these

two individuals, as is shown in Figure 5(a), the man with ID=23 gets

more wrinkles, especially around his forehead and eyes, compared

with the woman with ID=3. Besides, the man has white hair on his

temples while the woman not. Another three conflicts happen on

level 3 of ID=20 (18 years old), level 4 of ID=11 (30 years old), and

level 6 of ID=8 (22 years old), respectively. We guess the reason

behind lies in the three individuals have more or less the gap with

their actual ages. For example, ID=20 looks older than he really

is, while other two women (ID=11 and ID=8) look significantly

younger than they really are. Especially the woman ID=8 with 22

years old looks even younger than other two girls (ID=14 and ID=2)

who are actually 7 years younger than her. From this viewpoint, the

partial ranking derived from our proposed method is reasonable.

Moreover, the optimal λ on this dataset is highlighted as red circle,

as is shown in Figure 5(b).

4.4 WorldCollege Ranking

Data Description We now apply the proposed method to the

worldCollege ranking dataset, which is composed of 261 colleges.

Using the Allourideas crowdsourcing platform, a total of 340 dis-

tinct annotators from various countries (e.g., USA, Canada, Spain,

France, Japan, China, etc.) are shown randomly with pairs of these

colleges, and asked to decide which of the two universities is more

attractive to attend. If the voter thinks the two colleges are incom-

parable, he can choose the third option by clicking “I can’t decide".
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Table 6: Experimental results on worldCollege dataset.

types algorithms
correctness completeness geomean

median std median std median std

α -cut [4]

LRLASSO 0.5100 0.0121 1.0000 0.0412 0.7135 0.0120

LRRidge 0.7439 0.0139 0.7475 0.0639 0.7391 0.0285

SVMLASSO 0.5090 0.0091 1.0000 0.0012 0.7135 0.0063

SVMRidge 0.7488 0.0150 0.7531 0.0655 0.7448 0.0297

LSLASSO 0.5090 0.0091 1.0000 0.0000 0.7135 0.0064

LSRidge 0.7490 0.0117 0.6518 0.0699 0.7020 0.0325

SVRLASSO 0.5090 0.0091 1.0000 0.0000 0.7135 0.0064

SVRRidge 0.7463 0.0151 0.7394 0.0671 0.7373 0.0300

ours

Uniform 0.7557 0.0101 0.7478 0.0104 0.7501 0.0074

Bradley-Terry 0.7629 0.0108 0.7566 0.0087 0.7583 0.0069

Thurstone-Mosteller 0.7619 0.0110 0.7586 0.0082 0.7576 0.0066

Finally, we obtain a total of 11012 feedbacks, among which 9409

samples are pairwise comparisons with clear opinions and the re-

maining 1603 are records with voter clicking “I can’t decide".

PerformanceComparisonsTable 6 shows the comparable results

on the college dataset. It is easy to see that our proposed algorithms

again attain better correctness than all the α-cut variants. Moreover,

we find that all the LASSO-based α-cut variants exhibit almost per-

fect completeness. Nonetheless, this superiority on completeness

comes at a fatal price: the corresponding correctness results are

close to 0.5, a value for a random ranker. Having perfect complete-

ness alone thus does not make LASSO variants the top rankers.

Consequently, in view of the aggregated metric, we see that all

the LASSO variants show unreasonable performance on the third

column while our proposed algorithms attain better comprehensive

performance thanα-cut variants. Furthermore, compared to the two

real-world datasets above, the performance on this dataset is a little

bit worse than the IQA and human age datasets. We then go back

to the crowdsourcing platform and find out that the reason behind

lies in the “I can’t decide" button. Though most voters click this

button when he thinks two colleges are incomparable and difficult

to choose, there are also some voters click this button because he

does not know both of these two colleges or one of them. From this

viewpoint, colleges with distinguishable difference even have the

possibility to be treated as incomparable, just because the voters are

not familiar with them. Due to the existence of these contaminated

samples, though the performance of our proposed method declines

by 10% approximately on this dataset, we still think it a reasonable

phenomenon. Besides, the optimal λ on this dataset is illustrated in

Figure 6(a).

Partial Order Visualization Considering the partial ranking on

261 colleges is difficult to show, we only illustrate the partial ranking

on top-20 colleges in Figure 7. It is easy to see that Yale, Princeton,

and Harvard are the top 3 at the first level, while MIT, UC. Berkeley,

Stanford, Cornell, UCLA are the second level. These results we

derived are basically matched with the college ranking in reality.

But a mystery has emerged from the experimental results. That

is, Peking University (PKU) magically jumped into the third ech-

elon together with Cambridge, Oxford, CMU, etc. To investigate

the reason behind this phenomenon, we go back to see the world

map of all the annotators. As is shown in Figure 6(b), most of the

annotators come from China, thus significantly raises the ranking

of PKU located in the capital of China—Beijing.

(a) Optimal λ (b) World map

Figure 6: Optimal λ and world map of all the annotators in worldCollege
dataset.

Figure 7: Partial ranking of worldCollege dataset.

5 CONCLUSIONS

In this paper, we propose a partial ranking algorithm based on

margin-based MLE to learn partial but more accurate (i.e., mak-

ing less incorrect statements) orders in crowdsourced ranking. In

this scheme, three kinds of models are systematically discussed,

including the uniform model, the Bradley-Terry model, and the

Thurstone-Mosteller model. Moreover, we conduct theoretical anal-

ysis on FDR and Power control to demonstrate the effectiveness of

the proposed method. Experimental studies conducted on simulated

examples and three real-world datasets show that our proposed

method could exhibit better performance compared with the tradi-

tional methods. Our results suggest that the proposed methodology

is an effective tool to provide partial ranking for modern crowd-

sourced preference data.
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