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ABSTRACT
In image-sentence retrieval task, correlated images and sentences
involve different levels of semantic relevance. However, existing
multi-modal representation learning paradigms fail to capture the
meaningful component relation on word and phrase level, while
the attention-based methods still suffer from component-level mis-
matching and huge computation burden. We propose a Joint Global
and Co-Attentive Representation learning method (JGCAR) for
image-sentence retrieval. We formulate a global representation
learning task which utilizes both intra-modal and inter-modal
relative similarity to optimize the semantic consistency of the
visual/textual component representations. We further develop a
co-attention learning procedure to fully exploit different levels
of visual-linguistic relations. We design a novel softmax-like bi-
directional ranking loss to learn the co-attentive representation
for image-sentence similarity computation. It is capable of dis-
covering the correlative components and rectifying inappropriate
component-level correlation to produce more accurate sentence-
level ranking results. By joint global and co-attentive representation
learning, the latter benefits from the former by producing more
semantically consistent component representation, and the former
also benefits from the latter by back-propagating the contextual
information. Image-sentence retrieval is performed as a two-step
process in the testing stage, inheriting advantages on both effec-
tiveness and efficiency. Experiments show that JGCAR outperforms
existing methods on MSCOCO and Flickr30K image-sentence re-
trieval tasks.

CCS CONCEPTS
• Information systems → Information retrieval; • Comput-
ing methodologies → Learning linear models; Learning latent
representations;
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1 INTRODUCTION
Vision and language are two important aspects in understanding
the world. Research endeavor is motivated by breaking the bound-
aries between the two in image-sentence matching [13, 20, 22, 37,
41], image captioning [14, 21, 22] and visual question answering
(VQA) [19, 40, 43]. The key to bridging vision-language gap is to
find a good metric that accurately measures the semantic image-
sentence similarity, and based on which the semantically similar
images and sentences can be properly associated. Owning to recent
achievement in deep learning [6, 28, 35], image-sentence retrieval
(a.k.a., cross-modal retrieval [37]) is built on top of modality-specific
representation learning modules, thus promising performance has
been reported on benchmark evaluation [20, 38].

As a straight-forward way of image-sentence retrieval, a glob-
al joint embedding space is learned which maximizes document-
level (i.e., sentence-level or image-level) semantic correlation using
various linear or nonlinear mapping functions [1, 8, 11, 13, 22, 29, 37,
38]. Accordingly, documents from different modalities are represent-
ed with low dimensional vectors, and their distances/similarities
that reflect their semantic relations are intermediately measured
for relevance ranking. To deal with the evident information dis-
crepancy and modality heterogeneity between visual and textual
contents, some modality specific mapping functions are employed
in global embedding learning, e.g., CNN for image or LSTM for
sentence. The learned representations suffer from much irrelevant
information brought by useless visual regions and words in the w-
hole document. For example, some meaningless background visual
regions or meaningless words may be mistakenly used to calculate
the global representation, and they may dominate the correlation
contribution.

In fact, the correlated images and sentences involve different
levels of component semantic relevance. For example, words de-
scribe objects in image, phrases describe attributes or activities
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of objects, and the whole sentence expresses the topic of the en-
tire image. Beyond document-level correlation, word-level map-
ping [5, 32, 33], phrase-level correspondence [14, 23, 26, 48] and
their combination [20] are utilized towards a more comprehensive
multi-level correlation aggregation. Recently, attention [19, 40, 43]
was introduced into vision-language task to identify “where to look"
(i.e., spatial maps) and “which words to listen to" (i.e., meaningful
words/phrases) in image-text pairs. A bottom-up question-image
co-attention model [19] is proposed to identify the hierarchical
correlative components. Compared to global representation learn-
ing paradigms, these approaches are able to explore meaningful
component correspondence that contributes significantly to the
cross-modal relation.

However, it is usually assumed that semantically correlated com-
ponents in image and sentence depend on each other for attention-
based models, which means that different image-sentence pairs
may have different component-wise correspondence. In this case,
there may not exist a unique meaningful (i.e., attentive) component
set for a single document without knowing its cross-modal counter-
part [19, 22]. Searching for true component-wise correspondence/co-
attention is very time-consuming, leading to inefficiency in cross-
modal correlation learning. Besides, due to the diverse component-
level content representation, incorrect matching between word-
s/phrases and visual regions may be inappropriately introduced
during the co-attention learning process, which results in inaccu-
rate bottom-up image-sentence correlation modeling.

To address both effectiveness and efficiency issues, we investi-
gate image-sentence retrieval by a collaboration of global represen-
tation learning and co-attention learning. We formulate a global
representation learning task which utilizes both intra-modal and
inter-modal relative similarity to optimize the semantic consistency
of the global component-based visual and textual representations.
The global representation not only enhances the overall component-
wise semantic matching accuracy, but it can also be used as the
first-stage searching to identify candidate component pairs that are
highly possible to be true correspondence. To further capture the
inter-modal relation, we propose a co-attention learning procedure
which fully exploits different levels of image-sentence matching
relations. The upper level correlation depends on lower level one,
e.g., phrase is generated by selected meaningful words and its cor-
responding visual region by smaller meaningful visual regions
correlated with the selected words. We design a novel softmax-like
bi-directional cross-modal ranking loss, and by minimizing the
loss the co-attentive representation for image-sentence similarity
computation is learned. It is capable of discovering the correlative
components and their contextual relation in image and sentence,
and producing a more accurate sentence-level ranking results by
rectifying inappropriate component-level correlation.

With our Joint Global and Co-Attentive Representation learn-
ing method (JGCAR), the subtle and implicit semantic relations
between images and sentences are fully exploited. The latter task
benefits from the former task by producing more semantically con-
sistent component representation, and the former also benefits
from the latter by back-propagating the co-attention to compo-
nents. Image-sentence retrieval is performed as a two-step process
in testing stage, where a set of cross-modal candidates are first
identified by comparing similarity on global representation, and

the final ranking results are obtained by ranking on co-attentive
representation similarities. The number of trials for time consuming
co-attentive image-sentence correlation inference is significantly
reduced, thus both effectiveness and efficiency are gained. Promis-
ing results have been achieved by our approach on MSCOCO and
Flickr30K image-sentence retrieval tasks, which demonstrates the
remarkable accuracy of JGCAR in identifying sentence-level and
component-level correlation.

2 THE PROPOSED METHOD
We are given a training set O = {V, S}. Let V = {V1, . . . ,VNv }

denote the visual features ofNv images. Sr = {Sr1 , . . . , S
r
Nt

} denotes
the textual features of Nt sentences, where r = w denotes the word-
level feature, r = p denotes the phrase-level feature and r = s
denotes the sentence-level feature. Without loss of generality, we
use i(i ′) ∈ {1, . . . ,Nv } to denote the index of image and j(j ′) ∈

{1, . . . ,Nt } to denote the index of sentence. We present the joint
learning framework in Figure 1, which performs global and co-
attentive representation jointly for image-sentence retrieval. Note
that our method involves a joint learning in the training stage, and
a two-stage retrieval in the testing stage.

2.1 Visual/Textual Component Representation
Textual features. Given a sentence j with T words, G j = [дj (1),
. . . ,дj (T )] denotes its 1-hot encoding representation, where дj (t)
is the feature vector of the t-th word, we obtain sentence represen-
tation from low-level word features progressively. We first embed
words into a low-dimensional space through an embedding matrix
to obtain its word-level feature Swj = [swj (1), . . . , s

w
j (T )] as

swj (t) =Weдj (t), t ∈ {1, 2, · · · ,T } (1)

where We is weight parameters that can be optimized towards
specific task. Similar as [19], at each word location t , we use three
CNN-like convolution filters to compute the phrase-level features,
which have the sizes of unigram, bigram and trigram, to calculate
inner product of word vectors. The t-th convolutional output using
window size c is computed by

ŝ
p
j ,c (t) = tanh(Wcs

w
j (t : t + c − 1) + bc ), c ∈ {1, 2, 3} (2)

whereWc and bc are weight parameters. The word-level features
Swj are 0-padded before feeding into bigram and trigram convo-
lutions, by which we ensure the same lengths of different feature
sequences after convolution. After obtaining the convolution out-
puts, we obtain phrase-level features Spj = [s

p
j (1), . . . , s

p
j (T )] by

max-pooling operation across feature vectors at each word location
t as

s
p
j (t) = max(ŝpj ,1(t), ŝ

p
j ,2(t), ŝ

p
j ,3(t)), t ∈ {1, 2, . . . ,T } (3)

To fully exploit the semantic information of the sequential fea-
tures spj (t), we feed the phrase-level vectors spj (t) of words into
bi-directional LSTM [7]. At location t , the d-dimensional sentence-
level feature ssj (t) is calculated by adding hidden vectors from the
forward and backward LSTMs

ssj (t) = Bi-LSTM(s
p
j (t),ϕm ), t ∈ {1, 2, . . . ,T } (4)
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Figure 1: The framework of our approach. In the training stage, the global representation learning task optimizes the visual
representationV and sentence representation S by minimizing inter-modal loss, intra-modal loss and de-correlation loss; the
co-attentive representation learning task optimizesV and S and learns the element-wise weights jointly by minimizing the bi-
rank loss to produce the co-attentive representation v̄ and s̄ for each image-sentence pair. In the testing stage, given a specific
query type, the top most similar cross-modal candidates are first returned by comparing the similarity on V and S , then the
final ranking score is produced on the co-attentive representation between the query and each of the cross-modal candidates.

where ϕm denotes the parameters of bi-directional LSTM. Then we
obtain the feature for a given sentence j as Ssj = [ssj (1), . . . , s

s
j (T )].

We denote Ssj = ft (G j , θs ), where θs includes We ,Wc , bc and ϕm .
Visual features. We apply VGG-16 [28] for extracting visual

feature from an original image. Each image i is first re-scaled to be
448 × 448 pixels. Then we select the feature from the last pooling
layer to preserve the spatial information of the original image, so
the feature has a dimension of 512×14×14.We denote the feature as
Ri = [ri (1), ..., ri (N )], where N = 14 × 14 is the number of regions
in the raw image and 512 is the dimension of the feature vector
ri (n) of each region. A single layer perceptron is used to embed
each 512-dim feature vector into a new vector that has the same
dimension d as the sentence vector.

vi (n) = tanh(WI ri (n) + bI ) (5)

where WI ∈ Rd×512 is an embedding matrix and bI ∈ Rd is a
bias term. For simplicity, the feature of image i is denoted by Vi =
[vi (1), . . . ,vi (N )] = fv (Ii , θv ) where θv includes the parameters
of CNN, WI and bI .

2.2 Global Representation Learning
Given the visual representation Vi ∈ Rd×N produced by fv for an
image i and textual representation Ssj ∈ Rd×T produced by ft for
a sentence j, we aim to learn the global representations for each
image and sentence. To this end, we employ the intra-modal and
inter-modal semantic relation on the image-sentence dataset.

Specifically, we use V̂i and Ŝsj to denote the d dimensional fea-
tures derived by Global Average Pooling on Vi and Ssj , respectively.
Denote Ωi j = V̂⊤

i Ŝsj , we apply bi-directional triplet loss [38] to

model the inter-modal relation as
J1 =

∑
i , j , j−

max
[
0,m − Ωi j + Ωi j−

]
+

∑
j ,i ,i−

max
[
0,m − Ωi j + Ωi− j

] (6)

wherem denotes the margin in triplet loss. (i, j) is correlated image-
sentence pair, i− denotes the uncorrelated image to j and j− the
uncorrelated sentence to i . It is easy to find that minimizing this
loss will drag correlated image-sentence pairs to be closer, and
push uncorrelated image-sentence pairs away. Therefore, we can
preserve the relative semantic similarities of cross-modal instances.

Also, good representation should also have good discriminative
abilities in their own modality to preserve semantic information.
The semantic relation in each modality are beneficial to improve
the performance of cross-modal retrieval. By enforcing the glob-
al representations for semantically similar instance to be similar
to each other, the global representations are also endowed with
more discriminative power. To this end, we add the intra-modal
pairwise embedding loss for image modality and textual modality,
respectively. For image modality, based on the visual representation
Vi , i = 1, ...Nv , the constraint is formulated as

J2 =
∑

i ,i+,i−
max [0,m − Ωii+ + Ωii− ] (7)

where Ωii+ = V̂
⊤
i V̂i+ . Similarly, for textual modality, based on the

textual representation of sentences Ssj , j = 1, ...Nt , the constraint is
formulated as

J3 =
∑

j , j+, j−
max

[
0,m − Ωj j+ + Ωj j−

]
(8)
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where Ωj j+ = (Ŝsj )
⊤Ŝsj+ . In global representation learning, if some

dimensions have high correlation, there will be redundant informa-
tion in between. Therefore, to reduce the correlations among feature
dimensions, we design a de-correlation constraint on both modal-
ities. Given a batch of Nb

v (≪ Nv ) training images and Nb
t (≪ Nt )

training sentences, the constraint is formulated as

J4 =
1
2

(
| |Cv | |2F − ||diaд(Cv )| |2F

)
+

1
2

(
| |Ct | |2F − ||diaд(Ct )| |2F

)
(9)

where Cv (d1,d2) = 1
N b
v

∑N b
v

k=1(Vk (d1, :) − µd1 )
⊤(Vk (d2, :) − µd2 ),

d1,d2 = 1, . . . ,d . Cv is the co-variance of different dimensions
on V over the image data batch, and µd1 =

1
N b
v

∑N b
v

k=1Vk (d1, :). Sim-
ilarly, Ct is the co-variance of different dimensions on Ss over the
sentence batch. The de-correlation enforces that different dimen-
sions should be de-correlated to each other as much as possible
on each batch. Therefore, the redundancy between dimensions
can be suppressed, leading to more representative feature repre-
sentation. Note that our de-correlation constraint is designed on
matrix co-variance rather than vector co-variance as in [42]. The
key difference between the two is that the spatial location informa-
tion is preserved in the matrix co-variance. The covariance is only
measured between features in the same spatial location in images
or sentences, which avoids inappropriate loss on spatial context
during the feature de-correlation procedure.

The overall global representation learning objective function is

min
U,Ss

JG = min
U,Ss

(J1 + λ2J2 + λ3J3) + λ4J4 (10)

where 0 ≤ λ2, λ3, λ4 ≤ 1. We set λ2 = λ3 = λ4 = 1 which guaran-
tees good performance.

2.3 Co-attentive Representation Learning
Co-attention. Based on Vi ∈ Rd×N and Ssj ∈ Rd×T for image
and sentence, we propose to learn the co-attentive feature rep-
resentation, which generates visual and textual attention maps
simultaneously. We first define a common embedding for both im-
age and sentence features. Then we link the embedded image and
sentence features through calculating the correlation matrix, which
is the weighted combined dot product between image and sentence
features at all pairs of image locations and sentence locations [40].
The affinity matrix A ∈ RT×N is calculated by,

Aji =
(
Ssj

)⊤
WbVi =

(
ft (G j , θs )

)⊤Wb fv (Ii , θv ) (11)

whereWb ∈ Rd×d contains the attention embedding weights for
both visual features V and textual features S . We consider this
affinity matrix Aji as a common feature of sentence j and image
i . This joint operation concurrently guides the visual and textual
attentions, which can make two attentions to closely cooperate
with each other. We feed the image feature Vi and sentence feature
Ssj through a single neural network to generate the hidden states
of image and sentence:

Hv
i |j = tanh(WvVi + bv ) ⊙ tanh(WsS

s
jAji )

H s
j |i = tanh(WsS

s
j + bs ) ⊙ tanh(WvViA

⊤
ji )

(12)

where Wv , Ws ∈ Rl×d , bv ∈ Rl×N and bs ∈ Rl×T are weight
parameters. ⊙ is element-wise multiplication. From Eqn. 12, we
know that the affinity matrix Aji can transform textual attention
space to visual attention space (vice versa for A⊤

ji ).
Then a softmax function is used to generate attention distribu-

tions over regions of image and words of sentence:
avi |j = softmax(w⊤

hvH
v
i |j + bhv )

asj |i = softmax(w⊤
hsH

s
j |i + bhs )

(13)

where whv ,whs ∈ Rl are the embedding parameters. av ∈ RN

and as ∈ RT are the attention probabilities of each image region
vn and word st , respectively.

Based on the obtained attention weights, the visual and textual
co-attentive features are computed as weighted sum within the
image features Vi and sentence features Ssj as follows:

v̄i |j =
N∑
n=1

avi |j (n)v
n, s̄j |i =

T∑
t=1

asj |i (t)s
s (t) (14)

In image-sentence matching tasks, we need to compare numer-
ous images and sentences. To facilitate effective and efficient cross-
modal similarity learning, we proposes a novel comparison method
that evaluates the relative ranking scores between given query
sample and a certain retrieved sample, by which more disparities
between retrieved samples can be achieved in contrasts. Based on
the co-attentive representations v̂ and ŝs , the relative ranking score
between given query sample v̂ and retrieved sample ŝ is measured
as:

α(v̄i |j |s̄j |i ) = cosine(v̄i |j , s̄j |i ) =
v̄i |j · s̄j |i

∥v̄i |j ∥∥s̄j |i ∥
(15)

where v̄i |j and s̄j |i are the learned co-attentive features of image
and sentence, respectively. ∥ · ∥ denotes the norm operator. Due to
the task-specific property of image-sentence matching, the relative
ranking score with respect to the above image-sentence similarity
should be considered in two directions, i.e., the image-to-sentences
direction and sentence-to-images direction.

Bi-rank loss.Given an input image v̄i , we use its corresponding
sentence s̄j→i as a positive sample. To obtain representative non-
matching pairs, we select the topM ′ most dissimilar sentences and
top M ′ most dissimilar images in each mini-batch as a negative
sentence set S−

i and a negative image set V−
i , respectively. This

overall loss can effectively explore both cross-modal and intra-
modal relations. Similar as [17], a softmax-like formula is used to
compute the ranking score for both cross-modal comparison set Si
and intra-modal comparison set Vi :

P (v̄i |s̄ , v̄ , Si , V−
i ) =

2 −
exp(γ α (v̄i |s̄j→i ))∑
s̄∈Si exp(γ α (v̄i |s̄))

−
exp(γ α (v̄i |s̄j→i ))∑
v̄∈Vi exp(γ α (v̄i |v̄))

(16)

where Si = s̄j→i ∪ {S−
i } denotes the set of input sentences to be

ranked, and Vi = v̄i ∪ {V−
i }. γ is set empirically during experi-

ments. Similar to the Boltzmann exploration [34] in reinforcement
learning, small γ enforces all retrieved sentences to be nearly e-
quiprobable, while large γ increases the probability score of the
positively related sentence and decreases the scores of negatively
related sentence. The search scope of true matching sample will
be shrunken with a larger value of γ such that the probability of
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Table 1: Bidirectional retrieval results on MSCOCO.

Image-to-Sentences Sentence-to-Images

Method
Task

R@1 R@5 R@10 R@1 R@5 R@10

Mean vector [15] 33.2 61.8 75.1 24.2 56.4 72.4
CCAFH [15] 37.7 66.6 79.1 24.9 58.8 76.5
CCAFGH [15] 39.4 67.9 80.9 25.1 59.8 76.6
DVSA [14] 38.4 69.9 80.5 27.4 60.2 74.8

m-RNN-VGG [21] 41.0 73.0 83.5 29.0 42.2 77.0
mCNN [20] 42.8 73.1 84.1 32.6 68.6 82.8
SPE [38] 50.1 79.7 89.2 39.6 75.2 86.9
GRLd=256 45.6 78.5 86.9 37.8 70.7 80.6

SGCARd=256 51.5 80.6 89.7 39.2 71.2 82.5
JGCARv1

d=256 49.2 78.6 87.1 38.0 70.6 80.1
JGCARv2

d=8 28.1 60.2 73.7 24.6 56.7 71.3
JGCARv2

d=16 32.4 65.2 78.5 28.9 61.4 76.2
JGCARv2

d=256 52.4 82.3 90.4 39.5 74.6 85.3
JGCARd=8 31.8 63.7 75.6 26.5 59.3 74.9
JGCARd=16 36.3 67.8 80.1 31.6 63.7 78.6
JGCARd=256 52.7 82.6 90.5 40.2 74.8 85.7

correct matching is increased. The sentence-to-images rank loss
can be defined in similar way whereM andM ′ are set to be identical
to the image-to-sentences rank loss. Our bi-rank loss JC is the sum
of the two directional rank losses. Unlike previous works [22, 38],
we directly use negative intra-modal and inter-modal pairs without
searching for extra positively intra-modal pairs.

2.4 Joint Learning
The overall joint learning objective function is

J = βJG + (1 − β)JC (17)

where 0 ≤ β ≤ 1 denotes the weight of each task, and we heuristi-
cally set β = 0.5 under all circumstances. It can be easily optimized
by stochastic gradient descent optimizer family. By analyzing E-
qn. 10 we can see that, JG can be optimized with respect to V and
Ss . JC can be optimized with respect to αv , αs ,U and Ss , while αv
and αs are also parameterized by V and Ss according to the chain
rule of derivatives, as seen in Eqn. 13 and 12. Therefore, the model
can be trained end-to-end. V and Ss can be seen as the information
bottleneck of the deep representation learning architecture, which
aggregate both pair-wise relative semantic relation and the contex-
tual co-attentive information. Thus enhancing efficacy on one of
the two complementary tasks benefit the other.

Also, it is reasonable to useV and Ss to conduct a first-step quick
candidate search without much compromise on accuracy. The truly
matched objects in other modalities given a query can be easily
captured using a large number of candidate set, e.g., the top 100
ranked documents. In the second step, the co-attentive similarity
between the query and candidates are computed to produce a more
accurate re-ranking results. Based on the two-step retrieval, the
potential ability of the co-attentive representation learning can be
fully exploited, since it can discover the true component correlation
by filtering meaningless background components and document-
level correlation.

Table 2: Bidirectional retrieval results on Flickr30K.

Image-to-Sentences Sentence-to-Images

Method
Task

R@1 R@5 R@10 R@1 R@5 R@10

DCCA [41] 27.9 56.9 68.2 26.8 52.9 66.9
mCNN [20] 33.6 64.1 74.9 26.2 56.3 69.6

m-RNN-VGG [21] 35.4 63.8 73.7 22.8 50.7 63.1
SDT-RNN [29] 9.6 29.8 41.1 8.9 29.8 41.1

GHF [16] 35.0 62.0 73.8 25.0 52.7 66.0
HF [23] 36.5 62.2 73.3 24.7 53.4 66.8
SPE [38] 40.3 68.9 79.9 29.7 60.1 72.1

DAN(VGG) [22] 41.4 73.5 82.5 31.8 61.7 72.5
GRLd=256 34.4 64.6 76.3 29.7 52.6 64.7

SGCARd=256 42.3 73.6 81.0 33.4 57.5 65.9
JGCARv1

d=256 43.2 71.4 76.8 38.0 56.4 65.3
JGCARv2

d=8 27.0 48.1 53.8 24.1 47.9 55.6
JGCARv2

d=16 32.0 54.6 63.5 26.0 50.6 59.7
JGCARv2

d=256 44.6 74.8 81.2 35.1 61.5 71.8
JGCARd=8 30.3 50.6 54.4 25.9 49.8 57.7
JGCARd=16 34.7 56.9 65.8 28.4 53.1 61.5
JGCARd=256 44.9 75.3 82.7 35.2 62.0 72.4

Table 3: Bidirectional retrieval results with higher K .

Image-to-Sentences Sentence-to-Images

Method
Task

R@20 R@50 R@100 R@20 R@50 R@100

On MSCOCO
GRL 89.3 97.4 98.3 87.0 94.6 96.8

SGCAR 92.9 98.0 98.3 92.3 96.2 96.8
JGCAR 94.2 98.0 99.1 93.8 97.0 97.8

On Flickr30K
GRL 78.4 85.0 90.4 69.2 82.7 90.0

SGCAR 83.2 87.1 90.4 75.7 85.3 90.0
JGCAR 83.9 88.0 90.5 76.7 86.3 91.1

3 EXPERIMENTS
3.1 Experimental setting
Datasets. Flickr30K [44] consists of 31,783 images, each of which
is associated with five descriptive sentences. We follow the public
splits [14, 15, 22, 23, 38]: 29,783 training, 1,000 validation and 1,000
for testing. The larger MSCOCO [18] dataset consists of 123,000
images, also associated with five sentences each. On this dataset,
to be consistent with [14, 15, 38], we also report results on 1,000
test images and their corresponding sentences. We use the category
information with 80 classes of MSCOCO for the global representa-
tion learning task. On Flickr30K, we extract object labels from the
bounding box annotation for the intra-modal triplet loss in global
representation learning. We treat visual/textual instances with no
identical label to be the negatively correlated examples.

Implementation details. We develop our architecture in Py-
Torch framework [3]. We adopt the SGD for training GRL and
Rmsprop for training co-attention, where the learning rate, momen-
tum and weight decay are set as 4e-4, 0.99 and 1e-8, respectively.
We train our model by at most 128 epochs with a mini-batch size
of 200, and the training will be early stopped if the validation per-
formance has not been improved in the last 5 epochs. All word
embedding and hidden layers are 512-dimensional vectors. The
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A large passenger airplane
flying through the air

The bike has a circle as a tire
Fog is in the air at an intersection

with several traffic lights
A group of people riding
mopeds in a busy street

Figure 2: Qualitative results of image-to-sentences retrieval
with attention visualization. The four query images are
shown in the top row. The middle row shows the attention
maps. The bottom row shows the retrieved most correlated
sentences.

dimension parameter d is set to be 256 on both MSCOCO and Flick-
r30K to ensure good effectiveness and efficiency tradeoff. To avoid
over-fitting, we apply dropout with probability 0.5 on each layer.
We set the maximum word numbers of each sentence as 20 and 15
on MSCOCO and Flickr30K, respectively. We tune the parameters
of bi-ranking loss until the best performance is obtained. Conse-
quently, the ranking loss uses the parameter setting as γ = 10 and
M ′ = 30. In the testing stage, we return the top 100 most similar
examples as the cross-modal candidates for consequent co-attentive
similarity ranking.

Competitors. We compare JGCAR with recent popular mod-
els on image-sentence retrieval. Some models explore the seman-
tic matching in the word-level like Mean vector [15], CCA with
FV + HGLMM (CCAFH ) [15], CCA with FV + GMM + HGLM-
M (CCAFGH ) [15], DCCA [41], GMM + HGLMM + FV (GHF) [16]
and HGLMM + FV (HF) [23], and some others in sentence level like
DVSA [14], m-RNN-VGG [21], SPE [38] and SDT-RNN [29]. Specif-
ically, mCNN (ensemble) [20] exploits the semantic association at
multi-level multi-modal matching. DAN (VGG) [22] is the first s-
tudy on learning multi-modal attentions for image-text matching.
For better illustrating the effectiveness of JGCAR, we construct
another two baseline for comparison. The first is only with global
representation learning (GRL), which corresponds to β = 1 for
JGCAR. The second is a separate learning of global representation
and co-attentive representation (SGCAR), where two cross-modal
deep networks should be constructed, one for global representation
learning and the other for co-attentive learning. This baseline has
the same data sampling process as the full JGCAR model, where
the top 100 most similar examples are chosen for co-attentive simi-
larity computation. We do not set JGCAR where β = 0 as the third
baseline since the computation burden for image-sentence retrieval
using only co-attentive similarity ranking is prohibitive. To clearly
identify the influence of different loss functions in our method, we
also compare with several simplified version of JGCAR. Specifically,
we use JGCARv1 to denote our method without the intra-modal
losses J2 and J3, and use JGCARv2 to denote our method without
de-correlation loss J4. On JGCARv2, we also report the results
when d = {8, 16} in addition to the optimal setting of d , to show
the influence of de-correlation on different d .

three birds sit on the

back of a giraffe.
a man riding a

dirt bike becomes airborne.

military jet fighter flying in
formation alongside a
military propeller pilot

a boat that looks
like a car moves
through the water.

a large church building with
a massive clock tower.

an airplane
performing sky tricks
leaving a trail behind.

a giraffe and some zebras
in the plains.

two white sheep, a
black goat and a

white goat in a field.

an orange reddish rose
in a vase filled with

water on top of a table.
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Figure 3: Visualization of some good image-sentences atten-
tion maps of JGCAR. For each instance, the original im-
age and sentence are shown in the top row. The bottom
row shows image-sentence attentionmaps. The top-3 salient
words are shown in red, blue and green.

3.2 Image-sentence retrieval
Follow the same protocols as in [14, 15, 22, 23, 38], we report the
retrieval performance of Recall@K (K=1, 5, 10) which calculates
the fraction of times the ground truth match is found among the
top K matches in Table 1 and 2. We highlight the best performances
of each task in boldface.

First, in all cases, JGCAR outperforms all competitors significant-
ly in recall@1. For example, onMSCOCOdataset, the proposedmod-
el achieves 2.6% and 0.6% higher in terms of absolute performance
gain than the best compared results achieved by SPE on image-to-
sentences and sentence-to-images, respectively. On Flickr dataset,
JGCAR also achieves 3.5% and 3.4% higher in absolute performance
than the best compared results (i.e., DAN) on image-to-sentences
and sentence-to-images, respectively. JGCAR outperforms other-
s except SPE in recall@5 and recall@10 in Sentence-to-Images
on MSCOCO data. The reason may be attributed to that SPE uses
bounding box annotation which is more powerful than the instance-
level annotation used in our approach. SPE also involves negative
mining process, thus it can potentially discover more false negatives
from a large number of negative candidates. On Flickr 30K data,
JGCAR outperforms all others in recall@5 for both tasks, but under-
performs DAN in recall@10 on sentence-to-images. The reason
may be explained by the advantage of alternatively interdependent
co-attention learning used in DAN. According to analysis in [19],
co-attention derived alternatively may achieve a better result than a
parallel co-attention mechanism as ours. Despite of that, by average
the performance on both directions, JGCAR still achieves state-of-
the-art performance on bidirectional image-sentence retrieval.

Second, from the performance comparison between GRL, SGCAR
and JGCAR we see that our full model consistently outperforms the
other two baseline approaches. The global representation learning
(GRL) achieves good recall rates at all positions, and a two-step
procedure even with separately trained models can further improve
the performance. Remarkable performance gains are observed on
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two dogs are looking up
while they stand near the
toilet in the bathroom.

the woman is riding a
bike with a child while

walking her dog.

looking
0.1698

they
0.1338

dogs
0.1181

the
0.1971

woman
0.1013

child
0.0935

Figure 4: Visualization of some poor image-sentences atten-
tion maps of JGCAR. For each instance, the original image
and sentence are shown in the top row. The bottom row
shows image-sentence attention maps.

JGCAR over SGCAR, which further validates that our joint learning
mechanism encourages a collaborative learning on the component-
wise representation V and Ss . The global representation learning
improves the overall component-wise representation ability, and co-
attentive representation learning endows the component-based rep-
resentation with more contextual information and derives their ag-
gregated representation effectively. More importantly, co-attentive
representation is very crucial in improving the top 1 recall rate,
which indicates that the co-attention representation learning is
specially effective to find the best match.

Third, from the performance of different versions of JGCAR in
Table 1 and 2 we can see that intra-modal losses have minor in-
fluence on R@1 but stronger impact on R@5 an R@10. J2 and J3
play complementarily with Bi-rank loss JC in performance im-
provement. De-correlation guarantees better performance when d
is small, but tends to be marginal when d is larger. Similar to orthog-
onal constraint, de-correlation enforces feature dimensions to be
as much de-correlated as possible. It is indispensable to guarantee
good performance when d is small (8 or 16) by ensuring that each
feature dimension contains useful information by squeezing out as
much redundancy as possible. Besides, it improves the convergence
property of model training according to experimental facts.

In Table 3 we show how the recall rate changes with larger K
on both datasets. The recall will increase and go close to 100% with
a higher K . The R@100 of GRL and SGCAR are identical since
the number of similar examples chosen for the second-stage co-
attentive ranking is also 100. So R@100 of GRL and SGCAR merely
depend on the performance of the first-stage ranking, and the co-
attentive learning has no influence on the final performance for
SGCAR. But JGCAR slightly outperforms GRL and SGCAL when
K = 100 since the co-attention information is also injected into
V and Ss , which shows the positive influence on improving the
semantic consistency of V and Ss used for the first-stage ranking.
The result further verifies the effectiveness of JGCAR.

3.3 Illustrative examples
We show some attention visualization results of image-to-sentences
retrieval in Figure 2. We observe that JGCAR effectively detects the
important semantic components appeared in both modalities. This
property mainly depends on correctly identified relevant semantic
description of each modality, and then minimizing the proposed
ranking loss further enhances their semantic correlation. Figure 3

provides some good examples of image-sentence co-attention by
our model. For all instances, it can discover the meaningful com-
ponents for both image and sentence, and further describe the
semantic relation of the explored correlative components. In each
instance, the top-3 salient words clearly describe their related visual
objects.

We give some poor results of co-attention generated by our
model. For the two instances, the visual and textual attentions are
somewhat inaccurate. This is mainly due to the gap between human-
level cognition and the attention representation. For example, the
objects of an image may have some positional relationship, e.g.,
“riding a bike" implies that the “woman" should be located above of
the “bike". Unfortunately, this relationship can hardly be learned
without knowledge guidance. Moreover, objects in an image may
also have affiliation relation. For example, “toilet in the bathroom"
indicates that “bathroom" naturally contains “toilet". Therefore,
it is our next-step work to explore these complex context by in-
corporating cognitive knowledge towards a more comprehensive
correlation modeling for image-sentence retrieval.

3.4 Parameter sensitivity analysis
We investigate two important parameters in the proposed method,
i.e., the dimension number d and the scope parameter γ . Without
loss of generality, parameter sensitivity analysis is conducted on
training sets on both MSCOCO and Flickr30K to test how these
parameters impact the performance on the validation data. For each
parameter, we conduct empirical analysis by varying its value and
fixing the other parameters, and then we show the performance on
validation data. Figure 5 shows the Recall@K (K=1, 5, 10) scores of
image-sentence matching with different parameter settings. First,
the left two columns show the performance with different d on
the two retrieval directions. We can see that the performance is
enhanced when d becomes larger. The performance keeps the same
level as d = 256 when d is larger than 256. Therefore, we set d = 256
to ensure both efficiency and effectiveness. Second, the right two
columns show the performance with different scope parameter
γ on the two retrieval directions. Small γ will make all retrieved
samples to be nearly equiprobable, thus it is hard for each sample
to find its counterpart, resulting in poor performances. With a
larger γ , the performances are gradually improved. However, the
performance is not improved with constantly increasing γ because
this will reduce the diversity of samples. In our experiment, the
gradient will become “nan" when γ is greater than 70 on both
datasets. Therefore, we set γ = 20 to guarantee the robustness of
cross-modal Bi-ranking.

4 RELATEDWORK
The key problem in image-sentence retrieval is to measure the se-
mantic similarity between visual and textual domains. A common
idea is to learn a joint embedding space where heterogeneous fea-
tures are directly comparable [24, 25, 27]. It has been proved that
both the inter-modal relation and intra-modal similarity are equally
important in constructing a good metric for measuring the image-
text similarity [47]. Numerous nonlinear [9] or non-parametric [30]
cross-modal representation learning paradigms have been proposed
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Figure 5: Parameter sensitivity analysis of dimensions d and γ on Flickr30K and MSCOCO datasets.

using both intra-modal and inter-modal relations for model learn-
ing. Cross-modal hashing, as a close relative of subspace learning,
aims to transform images and texts into a joint Hamming embed-
ding space with graph-based [12, 31], rank-based [4], alternating
learning [10], online learning [39] or distributed (local) learning
mechanisms [45, 46], and promising performance has been achieved
on real-world multimedia search or cross-modal retrieval.

However, the domain properties and component relations have
not been fully explored by previous subspace-based approaches. It
may lead to limited learning capability on real world problems. To
address this concern, some works focus on modeling the relation
between image and annotated words [1, 5, 11, 24, 27, 32, 33, 37],
and some others pay attention to image and phrases [26, 48]. These
works have weakness in capturing complicated matching relation
between image and sentence. Recent works have been proposed to
explore the semantic relation at sentence level [8, 13, 20, 22, 29, 38].
For image-sentence retrieval, Socher et al. [29] adopt semantic
dependency-tree recursive neural network (SDT-RNN) to embed
images and sentences into the joint semantic space, where their
similarity can be measured. Wang et al. [38] design a two-branch
neural network with cross-view ranking and within-view structure
preservation constraints for modeling semantic image-sentence
relations. However, they neglect the local fragment of sentence and
their corresponding visual patches. In contrast, Karpathy et al. [13]
focus on a finer level matching by constructing semantic relation
between sentence fragments and visual regions. Nam et al. [22]
first utilize attention model to automatically highlight the shared
semantic relations between images and sentences. Although the
local inter-modal semantic relations between image regions and
sentences fragments are highlighted, the global matching relations
are ignored. Ma et al. [20] proposed a multimodal convolutional
neural network (m-CNN) to construct different semantic fragments
from words, and then the fragments are interacted with image at
different levels. It takes different matching levels as separate steps,
which ignores the intrinsic relation from words to sentence. In im-
age captioning and visual question answering tasks, neural image
caption [36], multimodal recurrent neural network (m-RNN) [21]

and deep visual-semantic alignments(DVSA) [14], produce possi-
bilities for generating caption for a given image. Deeper LSTM
Question [2], dual attention networks [22] and hierarchical co-
attention [19], conducts multi-modal reasoning to predict answer
for a question relating to a given image.

5 CONCLUSION
We propose a joint global and co-attentive representation learn-
ing method for image-sentence retrieval. We formulate a global
representation learning task which utilizes both intra-modal and
inter-modal pair-wise relative relations to optimize the semantic
consistency of the visual and textual component representations.
We further propose a co-attention learning procedure to fully ex-
ploit different levels of visual-linguistic relations by minimizing the
softmax-like bi-directional ranking loss for image-sentence simi-
larity computation. By joint global and co-attentive representation
learning, the latter benefits from the former by producing more
semantically consistent component representation, and the former
also benefits from the latter by back-propagating the contextual
component information. Experiments show that JGCAR outper-
forms existing methods onMSCOCO and Flickr30K image-sentence
retrieval tasks quantitatively and qualitatively. In future work, we
will study how to improve the efficiency of the first stage search
using global representations, and further enhance the robustness
and efficacy of co-attention learning.
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