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Abstract—Age estimation has broad applications in many
fields, such as video surveillance, social networking, and human-
computer interaction. Many of the existing approaches treat age
estimation as a classification problem; however, the individual
age values are not independent classes; they have an ordinal
relationship. Classification loss such as softmax is not able to
model such kind of relationship. In this paper, we propose a new
loss, called revised contrastive loss, to model the ordinal relation-
ship of individual ages. Specifically, the revised contrastive loss is
proposed to penalize the distance between two face images in the
feature space according to their age difference, which makes the
learned features more discriminative for the age estimation task.
We embed the proposed revised contrastive loss and softmax loss
into a Convolutional Neural Network (CNN), and optimize the
networks via Stochastic Gradient Descent (SGD) in an end-to-end
fashion. Experimental results on a number of challenging face
aging databases (FG-NET, MORPH Album II, and CLAP2016)
show that the proposed approach outperforms the state-of-the-art
methods by a large margin using a single model.

I. INTRODUCTION

Age estimation from facial images has broad applica-
tions in different fields, such as video surveillance, social
networking, and human-computer interaction. Existing ap-
proaches for age estimation can be grouped into three cate-
gories: classification-based method, regression-based method,
and ranking-based method. Classification-based methods are
commonly used for age group classification of face images
[1][2]. The classification-based methods do not consider the
ordinal relationship of different age group, and thus the costs
of classifying a young subject as middle-aged subject and old
subject are the same. Apparently, such a modeling method is
not optimum for the age estimation task.

Regression-based methods are widely used to estimate the
exact age of the subject in a face image [3][4][5]. Many of the
existing regression-based methods use a Euclidean loss, which
is able to reflect the ordinal relationship of the age values.
However, this type of loss defined based on a single image
does not necessarily retain the relative order among samples.

In recent years, several ranking-based methods have been
proposed for age estimation from face images [6][7]. These
approaches treat the age values as a rank order data. And
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Task difficulties for human: 
 
 
Q1: Which of the two subjects is older?             Easy 
 
 
Q2: What are the ages of the two subjects?      Hard 

Fig. 1. Given two face images from the FG-NET dataset, we can see that
estimating the exact age of each subject is more difficult than determining
which subject is older than the other. The ordinal relationship of the individual
ages could be exploited by the age estimation models for learning features
that are discriminative for individual face images with different ages.

use multiple binary classifiers to determine the rank of a
test face image. Different from the L2 loss based regression
methods, these methods could explicitly make use of the
ordinal relationship among the samples.

We observed that it is very difficult to estimate the exact age
of each subject; by contrast, it is relatively easy to determine
which subject is older than the other given two subjects’
face images (see Fig. 1). Inspired by this observation and
relative attribute learning [8], in this paper, we propose a
revised contrastive loss that makes use of the pair-wise ordinal
relationship between individual face images to achieve more
age informative feature learning. As shown in Fig. 2, in
addition to the softmax loss for age classification, a revised
contrastive loss is proposed to penalize the distance between
two face images in their feature space according to their age
difference. This makes the learned features more informative
for the age estimation task. The contributions of our work are
as follows:

• We propose a new loss, named revised contrastive loss, to
model the pair-wise ordinal relationship among individual
samples in order to learn more age informative features.

• The proposed function can be easily embedded into
different CNN networks, and optimized via SGD in an
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Fig. 2. Overview of the architecture of the proposed approach for age estimation. The input is a pair of images, which are passed through two CNNs sharing
the same weights for feature extraction. A joint loss consisting of softmax and revised contrastive loss is then used during backpropagation, in which softmax
loss penalizes the differences between the estimated age and the ground-truth age, and the revised contrastive loss penalizes the incorrect ordinal relationship
of each pair of images.

end-to-end fashion.
• The proposed approach is evaluated on a number of

challenging databases (FG-NET [9], MORPH Album
II [10] and CLAP2016 [11]), and achieves better results
than the state-of-the-art methods.

II. RELATED WORK

A. Age Estimation

Kwon et al. [12] did the very early work on age estimation
from a face, in which the ages are divided into only three
groups, babies, young adults and senior adults. Later, accu-
rate age estimation from a face image attracted increasing
attentions. Guo et al. [13] used multi-directional and multi-
scale Gabor filters followed by feature pooling to extract
BIF features for age estimation. BIF based age estimation
methods [13][14] reported promising age estimation results
on a number of public-domain face databases such as FG-
NET [9], MORPH II [10] databases.

With the success of deep learning methods, deep learning
architectures are also being used in age estimation. Similar
to [12], Yi et al. [15] used CNN models to extract features
from different facial regions, and used a square loss for age
to do age estimation. The deep feature shows its advantages
over the previous hand-crafted features. Ordinal information
was used in [7] to train multiple binary CNN networks and
aggregated these outputs as predicted age. Yang et al. [16]
proposed an age distribution learning method based on soft-
max, in which the label is an age distribution, instead of an
age value.

B. Relative Attributes Learning

Typical visual classification approaches usually map low-
level image features to object category classes directly. Nev-

ertheless, relative attributes [8] aimed at learning a ranking
function by utilizing the information of how object/scene
categories relate according to different attributes. The relative
attribute has been studied in a number of ways. For example,
Wang et al. [17] proposed an approach to learn attributes
and object classes together, utilizing explicit similarity-based
supervision to share training samples with limited. A hier-
archically structured approach was proposed in [18] to learn
some rankers for each facial attribute and combined all of the
features and ranks per attribute as a new feature for a global
ranking function to classify these attributes.

III. PROPOSED METHOD

As shown in Fig. 2, we propose a revised contrastive loss
for learning features that are discriminative for individual
ages. We embed the revised contrastive loss and softmax loss
together into CNN, and optimized the network via SGD [19] in
an end-to-end fashion. We provide the details of our approach
in the following sections.

A. Revised Contrastive Loss

Contrastive loss was originally proposed for dimensionality
reduction in [20] aiming to map similar input samples to
nearby points and dissimilar samples to distant points in the
low dimensional feature space. Contrastive loss has been found
to be useful for image classification tasks, face recognition, etc.
The fundamental idea of contrastive loss can be represented
as

`c(xi,xj)=

{
1
2

∥∥ f (xi)− f (x j)
∥∥2

2 , yi = y j
1
2 max(0,M−

∥∥ f(xi)− f(xj)
∥∥2)

2, yi 6= y j,
(1)

where xi and x j are the input samples, yi and y j are the age
labels, f (x·) is the feature learning function, and M is a

3587



margin. We can see that the standard contrastive loss includes
two parts: one part is the distance between a pair of samples
and the other part is the distance margin. A pair of samples
contributes to the loss only when their distance is within the
margin.

While contrastive loss aims to retain the intra-class and
inter-class distances, it does not retain the ordinal relationship
between individual samples. However, for age estimation task,
the ordinal relationship of individual ages can be very impor-
tant. For example, classifying a 20-year old subject as 30-year
old and classifying a 20-year old subject as 50-year old are
both poor age estimates, but apparently, these two estimates
should have different penalties.

Let (x,y) denote a face image and the corresponding age
label. Given three face images and their ages, i.e., (xi,yi),
(x j,y j), and (xk,yk), without loss of generality, we assume
yi > y j and y j > yk. Thus, we can get yi > y j > yk based on
the transitive property. In addition, we can derive

yi− yk > yi− y j,and yi− yk > y j− yk. (2)

Based on the three face images, we can build three image pairs,
i.e., {(xi,yi),(x j,y j)}, {(xi,yi),(xk,yk)} and {(x j,y j),(xk,yk)}.
For the three pairs of face images, we expect that the feature s-
pace learned by f (·) is able to retain their ordinal relationships
as derived in Eq. 2, i.e.,

‖ f (xi)− f (xk)‖2 >
∥∥ f (xi)− f (x j)

∥∥
2

‖ f (xi)− f (xk)‖2 >
∥∥ f (x j)− f (xk)

∥∥
2

(3)

Eq. 3 suggests that in order to retain the ordinal relationship
between individual face images in the learned feature space,
the margin used for image pair {xi, xk} should be larger than
either the margin used for image pair {xi, x j} or the margin
used for image pair {x j, xk}. In another word, the margin
should NOT be a constant; by contrast, it should change w.r.t.
the age difference between a pair of face images. Therefore, in
the proposed revised contrastive loss, we determine the margin
of an image pair {xi,x j} based on their age difference, i.e.,

Mi j = α(yi− y j). (4)

where α is a scalar, and we use α = 1 by default. Then, when
yi 6= y j, the revised contrastive loss `r can be computed as

`r(xi,x j) =
1
2

max(0,Mi, j−
∥∥ f (xi)− f (x j)

∥∥
2)

2. (5)

When yi = y j, similar to the standard contrastive loss, the
two samples in the feature space are expected to be as close
as possible ∥∥ f (xi)− f (x j)

∥∥
2→ 0. (6)

Finally, our revised contrastive loss `r can be formulated as

`r(xi,xj)=

{
1
2

∥∥ f (xi)− f (x j)
∥∥2

2 , yi = y j
1
2 max(0,Mi j−

∥∥ f(xi)− f(xj)
∥∥2)

2,yi > y j,
(7)

Compared with the standard contrastive loss, the revised
contrastive loss is able to determine the margin according to
the age difference between a pair of face images. As a result,

the learned feature space is expected to retain the ordinal
relationship between individual face images with different
ages.

B. Embedding into CNNs

As shown in Fig. 2, we use CNN (e.g., AlexNet [21],
VGG [22]) as the feature extraction function f , and embed the
proposed revised contrastive loss into CNN to learn features
that are discriminative for individual ages. Similar to [23], we
also use softmax loss together with our revised contrastive loss
to make the convergence of the network stable [23].

In the training phase, given a pair of input images {xi,x j},
we obtain the features { f (xi), f (x j)} using the CNN network.
Then, we could compute the revised contrastive loss `r for
these two features following Eq. 7. At the same time, for each
feature in { f (xi), f (x j)}, we calculate the softmax loss, and
get `si and `s j, respectively.Therefore, the joint loss during
training can be written as

`= `si + `s j +λ`r

=
N

∑
i=1
−logpiyi +

N

∑
j=1
−logp jy j

+
λ

2

N

∑
i=1

{∥∥ f (xi)− f (x j)
∥∥2

2 , yi = y j

max(0,α(yi− yj)−
∥∥ f(xi)− f(xj)

∥∥2)
2, yi > y j.

(8)

where λ is a parameter balancing the impact of the revised
contrastive loss and the softmax loss. We set λ = 0.01 based
on empirical results. We perform SGD [19] to optimize the
weights of the network. The gradients of the joint loss used
for updating the network weights are calculated as

∂`

∂ f (xi)
=

∂`si

∂ f (xi)
+λ

∂`r
∂ f (xi)

, (9)

and
∂`

∂ f (x j)
=

∂`s j

∂ f (x j)
+λ

∂`r
∂ f (x j)

. (10)

The gradients w.r.t. xi and x j of the revised contrastive loss in
Eqs. 9 and 10 can be discussed in two cases..

If yi = y j, the gradients are

∂`r
∂ f (xi)

= f (xi)− f (x j), (11)

∂`r
∂ f (x j)

=−( f (xi)− f (x j)). (12)

If yi > y j and
∥∥ f (xi)− f (x j)

∥∥
2 > Mi, j, the gradients of the

revised contrastive loss are

∂`r
∂ f (xi)

=−
(α(yi− y j)−

∥∥ f (xi)− f (x j)
∥∥

2)( f (xi)− f (x j))∥∥ f (xi)− f (x j)
∥∥

2
, (13)

and

∂`r
∂ f (x j)

=
(α(yi− y j)−

∥∥ f (xi)− f (x j)
∥∥

2)( f (xi)− f (x j))∥∥ f (xi)− f (x j)
∥∥

2
. (14)

When yi < y j, the gradients of the revised contrastive loss are
with the same form as Eqs. 13 and 14. We should point out
that the two images in the image pair {xi,x j} go through two
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CNN branches, but these two CNN branches share exactly the
same network weights.

While the softmax loss in the joint loss makes the training
of the model stable, the revised contrastive loss utilizes the
ordinal relationship to make the feature space more discrim-
inative for individual ages. In the inference phase, the input
is a single face image not a pair of face images. So it only
needs to go through one branch of the network to compute the
per class probabilities, i.e., {p1, p2, ..., pC} using for softmax
loss. C is the total number of distinct ages in the training set.
The age with the maximum probability is used as the final age
estimate for the test face image.

IV. EXPERIMENTS

We provide extensive evaluations of the proposed age es-
timation approach and comparisons with the state-of-the-art
methods on several public-domain face aging databases includ-
ing MORPH Album II [10], FG-NET [9], and CLAP2016 [11].

A. Datasets

MORPH Album II is one of the largest longitudinal face
databases in the public domain, which contains 55,134 face
images of 13,617 subjects and the range from 16 to 77 [24].
We use two types of widely used testing protocols in our
evaluations. One is the five-fold random split (RS) protocol
for all the images [7][6][25][26]; the other is the five-fold
subject-exclusive (SE) protocol [14]. The latter testing protocol
is more challenging since it assures the images of one subject
only appear in one fold.

FG-NET database was a very early database used for
age estimation, which contains 1,002 face images from 82
individuals and the ages range from 0 to 69 [9]. We follow a
widely used leave-one-person-out (LOPO) protocol [6], [26],
[14] in our experiments.

CLAP2016 dataset was released in 2016 at the ChaLearn
Looking at people challenge, which contains 4,113, 1,500, and
1,979 face images in the training set, validation set, and testing
set, respectively [11]. Different from the MORPH II and FG-
NET databases, the ages provided in the CLAP2016 dataset
are apparent ages collected via crowdsourcing, so there are a
mean age and a variance for each face image.

B. Evaluation Metrics

We report the mean absolute error (MAE) [27] and cu-
mulative score (CS) [13] on the MORPH II and FG-NET
databases. MAE is defined as the mean absolute error between
the estimated age (ŷi) and ground-truth age (yi): MAE =
1
N ∑

N
i=1 |yi − ŷi|, where N is the number of testing images.

CS measures the age estimation accuracy given a tolerance
of absolute error θ : CS(θ) = ∑

N
i=1[|yi−ŷi|≤θ ]

N ×100%, where [·]
equals 1 if the expression is true; otherwise it equals 0.

For the CLAP2016 dataset, we use the ε-error [11] provided

with the standard testing protocol ε = 1− 1
N ∑

N
i=1 e

− (yi−µi)
2

2σ2
i ,

where µ and σ are the ground-truth mean age and standard
deviation, respectively.

C. Experiment Settings

We use Caffe [28] to implement age estimation network.
We align all the face images based on five facial landmarks
detected using an open source SeetaFaceEngine 1, and resize
all the face images into 256 × 256 × 3.

Two CNNs, e.g., AlexNet [21] with batch normaliza-
tion [29] and VGG-16 [22] are used in our approach. Both
models are pre-trained on ImageNet 2012 [30]. Besides, the
VGG-16 model is also pre-trained using IMDB-WIKI, which
is a large scale face database with age and gender labels [26].2

We use an initial learning rate of 0.001 and a batch size of 64
for both AlexNet and VGG-16, and reduce the learning rate by
multiplying 0.1 for every 10 epochs (AlexNet), and 15 epochs
(VGG-16). The input face images are randomly cropped to
224×224 and 227×227, respectively. In our experiments, all
the pairs or triples are random sampled.

D. Age Estimation Results

Comparisons of Different Losses. To validate the effec-
tiveness of our revised contrastive loss, we first compare it
with the traditional softmax loss and the joint of softmax loss
and contrastive loss, triplet loss by performing age estimations
on the MORPH II database using both the RS and SE
protocols. The MAE and CS (θ = 5) of the four different
losses are shown in Table I. We can see that jointly using
softmax loss and contrastive loss, triplet loss outperforms
using softmax loss alone. This is reasonable because although
the traditional contrastive and triplet loss does not enforce the
ordinal relationship during feature learning, it still considers
the pair-wise relationship between samples, and leads to more
robust features. However, joint use of softmax loss and the
revised contrastive loss performs the best. This shows that
retaining the ordinal relationship is helpful for learning more
robust features in age estimation tasks.

Loss RS SE
MAE CS(θ=5) MAE CS(θ=5)

Softmax loss 3.324 78.96% 4.043 73.24%

Softmax and
contrastive loss 3.219 80.12% 3.832 75.33%

Softmax and
triplet loss 3.249 80.48% 3.750 76.21%

Softmax and
Proposed loss 3.075 81.83% 3.513 78.57%

TABLE I
COMPARISONS OF THE AGE ESTIMATION MAES AND CS(5) BY

DIFFERENT LOSSES ON THE MORPH II DATABASE.

Comparisons with the State-of-the-art. We then provide
comparisons with the state-of-the-art age estimation methods

1https://github.com/seetaface/SeetaFaceEngine
2This database is large, but the age labels can be quite noisy because

they are calculated based on the date of birth of the public figures and the
timestamps of the photos crawled from the Internet.
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on the MORPH II, FG-NET, and CLAP2016 databases. A
number of the state-of-the-art methods are used for compar-
isons such as Rank-CNN [7], DEX [26], RED-SVM [31],
and DIF [14] and so on. Table. II shows the MAEs on the
MORPH II and FG-NET datasets with RS and SE proto-
cols. The results suggest that ranking-based methods, such
as [7][6][25] perform better than classification or regression-
based methods [26][31]. This is reasonable because the ordinal
relationship is considered by ranking-based methods, which
improves the robustness of the age estimation models. The
proposed method performs the best among all the approaches,
because our method not only considers the ordinal relationship,
but also explicitly quantizes the distance between an ordinal
image pair. We also calculate the MAEs for males and females
on the MORPH II, which shows that the MAE of males is
lower, because of the imbalance of the distribution of gender.
Even if the MAE for females is larger, the MAE of female is
close to the overall performance of state-of-the-arts.

Method MORPH II FG-NET
MAE Protocol MAE Protocol

Rank-CNN [7] 2.96 RS - -
OHRank [6] 6.07 RS 4.48 LOPO

DIF [14] 3.60 SE 3.80 LOPO
OR-CNN [25] 3.27 RS - -

DEX [26] 3.25 RS 4.63 LOPO
RED-SVM [31] 6.49 RS 5.24 LOPO

Ours 2.46/2.88 RS/SE 4.21 LOPO

male/female 2.31/3.22 RS - -
2.73/3.61 SE - -

TABLE II
COMPARISONS OF THE AGE ESTIMATION MAES BY THE PROPOSED

APPROACH AND THE STAGE-OF-THE-ART METHODS ON THE FG-NET AND
MORPH II DATABASES.

Fig. 3 show the entire CS curves on the FG-NET and
MORPH II databases using the LOPO and RS protocols,
respectively. The proposed method achieves higher accuracy
than all the baseline methods on average.

(a) (b)

Fig. 3. Age estimation cumulative scores by the proposed approach and the
state-of-the-art methods on (a) FG-NET with a LOPO protocol, and MORPH
II (b) with a random split (RS) protocol.

On the CLAP2016, our age estimation method achieves an
ε-error of 0.3171, which is the best result among single model
age estimation methods (see Table. III). The first place method
in the CLAP competition reported a lower error, but they used

Rank Team Name ε-error Single model?
1 OrangeLabs [32] 0.2411 NO
* Ours 0.3171 YES
2 Palm seu 0.3214 NO
3 CMP+ETH 0.3361 NO
4 WYU CVL 0.3405 NO
5 ITU SiMiT 0.3668 NO
6 Bogazici 0.3740 NO
7 MIPAL SNU 0.4565 NO
8 DeepAge 0.4573 YES

TABLE III
COMPARISONS OF THE ε -ERROR BY THE PROPOSED APPROACH AND
STAGE-OF-THE-ART METHODS ON THE CLAP2016 DATABASE. THE

RESULTS OF STATE-OF-THE-ART METHODS ARE FROM [11].

the score-level fusion of multiple CNNs. Such a fusion is likely
to have a larger memory and computational costs than our
method. In addition, they collected some children’ face images
from the Internet to train their age estimation models.

Fig. 4 shows some age estimation results by the pro-
posed approach on the MORPH II, FG-NET, and CLAP2016
databases. We observe that the proposed approach is robust to
most of the common facial appearance variations such as small
poses, partial occlusions, and expressions. The age estimation
accuracy may decrease when the face images have very bad
illumination, partial occlusion, and blurring (see the bottom
row of Fig. 4).

V. CONCLUSION

In this paper, we proposed revised contrastive loss to
utilize the ordinal relationship in a pair of face images. By
jointly use our revised contrastive loss and softmax loss, an
explicit ordinal constraint is introduced to achieve more robust
feature representations than using softmax or the traditional
contrastive loss alone. Experimental results on the MORPH
II, FG-NET, and CLAP2016 databases show that the proposed
approach outperforms the state-of-the-art age estimation ap-
proaches by a large margin. In our future work, we would like
to generalize the proposed approach towards cross-database
testing scenarios. In addition, age estimation from imbalanced
data will also be studied.
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