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Abstract—Remote photoplethysmography (rPPG) based non-
contact heart rate (HR) measurement from a face video has
drawn increasing attention recently because of its potential
applications in many scenarios such as training aid, health
monitoring, and nursing care. Although a number of methods
have been proposed, most of them are designed under certain
assumptions and could fail when such assumptions do not hold.
At the same time, while deep learning based methods have been
reported to achieve promising results in many computer vision
tasks, their use in rPPG-based heart rate estimation has been
limited due to the very limited data available in public domain.
To overcome this limitation and leverage the strong modeling
ability of deep neural networks, in this paper, we propose a novel
spatial-temporal representation for the HR signal and design a
general-to-specific transfer learning strategy to train a deep heart
rate estimator from a large volume of synthetic rhythm signals
and a limited number of available face video data. Experiment
results on the public-domain databases show the effectiveness of
the proposed approach.

I. INTRODUCTION

Heart rate (HR) is an important physiological signal that
reflects the physical and emotional activities, and HR mea-
surement can be useful for many applications, such as training
aid, health monitoring, and nursing care. Traditional HR mea-
surement methods usually rely on contact monitors, such as
electrocardiograph (ECG) and contact photoplethysmography
(cPPG), which are inconvenient for the users in many appli-
cation scenarios. Recently, remote HR measurement based on
remote photoplethysmography (rPPG) from face videos has
drawn increasing attention, and many effective methods have
been proposed [1], [2], [3], [4], [5], [6], [7].

Existing rPPG based remote HR estimation methods are
mainly designed using hand-crafted features and signal pro-
cessing methods, such as chrominance feature [4] or signal
filters [5], which are based on some certain assumptions
with respect to the skin reflection and face movement. At
the same time, data-driven methods, especially deep learning
methods, are believed to have the ability to handle complicated
variations and have achieved great success in many tasks like
image classification [8] and object detection [9]. However,
when it comes to the task of rPPG-based HR estimation,
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Fig. 1. (a) Due to the small number of available data for training, directly
learning a deep HR estimator could get overfitting. (b) With prior knowledge
from related domains, such as image classification and synthetic rhythm sig-
nals, a deep learning based HR estimator could obtain improved generalization
ability.

the effectiveness of deep learning could be limited, because
most of the existing remote heart rate estimation methods are
tested on some small-scale self-collected databases which are
usually not available to the public domain. Meanwhile, a good
representation of face sequences is also important for learning
an accurate HR estimator, but there are only a few attempts
have been made on this aspect [10], [11].

In this paper, we present a deep HR estimator learned in
a general-to-specific fashion using synthetic spatial-temporal
representation. Specifically, we firstly propose a spatial-
temporal map representation which can effectively model the
periodic signal from face sequences. Then we generate a
large scale of rhythmical spatial-temporal maps, which will
be further used for pre-training. Finally, the pre-trained model
with the knowledge of mapping periodic signals to the number
of periods is used to adapt to the HR spatial-temporal maps
from face sequences. Experiments on the public-available
databases show the effectiveness of our methods.

The main contributions of this work include: (i) we propose
a general-to-specific transfer learning method for building a
deep rPPG-based HR estimator from synthetic rthythm spatial-
temporal maps and (ii) we propose the first known work
that uses deep learning to directly estimate HR from spatial-



temporal representation of the HR signals from face video
sequences.

II. RELATED WORK

In this section, we briefly review previous methods on
remote heart rate estimation and transfer learning.

A. Remote Heart Rate Estimation

The possibility of using face videos to estimate HR remotely
was first reported by Verkruysse et.al in 2008 [12]. Since
then, a number of methods have been proposed for remote
HR estimation.

Independent component analysis (ICA) was used in [1] to
decompose a multivariate temporal signal into independent
non-Gaussian signals, of which one is expected to be the heart
rhythm signal. In a later work of [3], temporal filters, such as
the moving average filter and bandpass filter, were applied to
reduce the noise in the temporal signal sequence.

Under a certain face motion assumption, Haan and Jeanne
proposed a chrominance difference feature for remote HR esti-
mation [4]. They computed the chrominance feature based on
two orthogonal projections of Red-Green-Blue (RGB) space
to reduce the influence of face motion. In the work of [13],
instead of a region-wise calculation, a pixel-wise chrominance
feature computation method was used.

Recent studies on HR measurement focus on how to select
region of interest (ROI) from the face. In [15], Kumar et
al. proposed a method to combine the green channel signals
of different ROIs using the frequency characteristics. Lam et
al. used multiple randomly selected patches from the face as
ROI, and used a majority vote rule to decide the final HR
estimation [16]. Tulyakov et al. divided the face into multiple
ROI regions, and used a matrix completion approach to purify
the temporal signals [6]. Niu et al. provided a multi-patch
ROI strategy for HR estimation and introduced the problem
of continuous HR estimation [7].

Besides of the color-based HR measurement methods, a
motion-based method was proposed in [2]. Inspired by the
Eulerian magnification method [17], they tracked subtle head
motions caused by cardiovascular circulation, and get the pulse
signal from the trajectories of multiple tracked feature points.
Since the method is based on subtle motion, no additional
voluntary head movements are allowed, leading to very limited
use in real applications.

In addition to the methods using handcrafted features for
remote HR estimation, there are a few attempts to build a
learning-based HR estimator. In [11], Hsu et al. combined
the frequency domain features of RGB channels as well as
ICA components and used support vector regression (SVR) to
estimate the HR. Hsu et al. [10] generated the time-frequency
maps from pre-processed green channel signals and used them
as input of a VGG-16 model to estimate the HR. Although
these methods attempts to build learning based HR estimator
(as opposed to signal analysis based estimator), they failed to
build an end-to-end estimator. In addition, the features they

used remain handcrafted, which may not be optimum for the
HR estimation task.

Many of the existing methods reported their performance on
their private databases, leading to difficulties in performance
comparisons with each other. Li et al. [5] firstly introduced
the MAHNOB-HCI database [14] and proposed a complete
framework for remote HR estimation, which achieved the
state-of-the-art HR estimation accuracy. In the latter work of
Tulyakov et al. [6], a more challenging database MMSE-HR
has been proposed.

In summary, the published methods for HR measurement
still have limitations. First, the existing approaches usually
made some particular assumptions, which may limit the ap-
plication scenarios. Second, most of the published approaches
are designed in a step-by-step way requiring sophisticated
knowledge and experiences.

B. Transfer Learning for Domain Adaption

Transfer learning refers to the methods that transfer knowl-
edge between different but related task domains. It is common-
ly believed that training and test data are sampled from the
same distribution, and most learning methods require rebuilt
when the distribution of test data changes. However, it is
very expensive, and often impossible for many real-world
applications to collect and label a new large-scale training set.
In such a case, knowledge transfer from related task domains
is desirable in order to build a robust model based on a limited
amount of training data in the target domain.

Although deep learning methods have achieved great suc-
cess in many tasks, it is believed that a large scale of training
data is needed in order to learn a robust neural network. When
the available training data is limited, a good initialization of
the network with prior knowledge has been found to be very
helpful [18]. There are many successful applications using
transfer learning for domain adaption. In [19], although the
number of images used for age estimation is very small(a
few thousands), fine-tuning the network pre-trained on large-
scale face recognition database still leads to a promising age
estimation. In the task of face anti-spoofing, given a few small-
scale public databases, Keyurkumar et al. fine-tuned the neural
network pre-trained on large-scale face databases to extract
texture features that are discriminative between genuine and
spoof faces [20].

While the propose approach also uses a deep transfer
learning method similar to [19], [20] to build our deep HR
estimator in an end-to-end fashion, the proposed approach has
its novelty. We design the general-to-specific training strategy
specifically for the HR estimation task by generating synthetic
rhythm signals.

III. PROPOSED APPROACH

Fig. 2 gives a diagram for the proposed approach of learning
a deep HR estimator from general to specific via transfer
learning. Generally speaking, we firstly use ImageNet [21] and
a large amount of synthetic rhythm spatial-temporal maps to
pre-train our deep HR regression model. Then the pre-trained
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Fig. 2. A diagram of the proposed deep heart rate estimator using a spatial-temporal representation and general-to-specific transfer learning.

model was transferred to the real HR estimation task where
only a small portion of operational face video data is available
in this target domain.

A. Spatial-temporal Map for Representing HR Signals

According to [22], the most informative facial part con-
taining the color changes due to heart rhythms is the cheek
area. This area contains much less non-rigid motions such as
eye blink. Therefore, we choose the cheek area as the ROI to
get the raw RGB signals. Specifically, we use an open source
face detector! to localize 81 facial landmarks (see Fig. 3),
and calculate the bounding box of the cheek area of the face
based on the landmarks. Since the facial landmarks detection
is able to run at a frame rate of more than 30 fps, we perform
landmarks detection on every frame in order to get stable ROI
localizations in a face video sequence.

As shown in Fig. 3, after getting the cheek area, we
resize this area into a M x N rectangle for the convenience
of computing. Then we divided the cheek rectangle into n
block ROIs. Since each facial landmark has a fixed semantic
meaning, we can assume that different blocks are aligned.
Based on the n blocks, we can generate a spatial-temporal
representation map for each face video sequence. As stated
in [12], average pooling is helpful to reduce the sensor noises
of heart rhythm signals. Let C'(z,y,t) denotes the value at
location (z,y) of the t'" frame from one of the R, G and B
channels, and the average pooling of the i*" block ROI for
each channel at time ¢ can be presented as

Val Zz,yEROli C(J?,y,t)

where |ROI;| denotes the area of a block (the number of
pixels). So, for each face video we obtain 3 x n temporal
sequences with the length of 7" for R, G, and B channels, e.g.,

(1

Thttps://github.com/seetaface/SeetaFaceEngine

face video

Fig. 3. An illustration of our algorithm to generate the spatial-temporal map
representation for a face video. A RGB face video with 7" frames will finally
be converted to a three-channel image with the size of n x T

C, ={Ci(1),Ci(2),---,Ci(T)}, where C donates one of the
R, G and B channels and ¢ donates the index of the ROI. Then,
max-min normalization is applied for each temporal signal,
and the values of the temporal series are scaled into [0, 255].
Finally, we directly place the n temporal sequences into rows,
and get a spatial-temporal map representation for each channel.
Eventually, we get a spatial-temporal representation from the
raw RGB video sequence with the size of n x T x 3 as the
input of our deep HR estimation network.

B. Synthetic Rhythm Generation

There are only about 600 video sequences for training and
testing, which are far from enough to learn a robust deep HR
estimation model. To address this problem, we propose an
algorithm to generate synthetic heart rhythm to replicate the
color changes caused by real heart rhythm.

To be specific, we first use a sine function to represent
the basic periodic part of the synthetic signal, and limit the
frequency to [0.7, 4] Hz, corresponding to an HR range of [42,
240] bpm. Since the HR signal from a stable subjects face
is caused by the entire cardiac cycle, which is a four-stage
physical activity, a twice frequency of the basic HR signal
will be introduced. This phenomenon can also be observed
when we apply Fourier transform to the ECG signal, and a
twice frequency of the HR frequency can be clearly seen as
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Fig. 4. (a) An ECG signal (top) recorded by an ECG machine, and its
corresponding spectral distribution map in the frequency domain (bottom). (b)
A temporal HR signal (top) computed from a real face video when a person
keeps still, and a temporal HR signal (bottom) computed from a synthetic
rhythm sequence.

a peak magnitude in the frequency domain (see Fig. 4(a)).
Based on this observation, we overlay a twice-periodic signal
to the original signal to simulate the cardiac cycle. At the
same time, breathing rhythm will also introduce a periodic
signal to the HR signal in a face video sequence. Therefore,
we further add a periodic signal range from 5 bpm to 20
bpm (the typical range of the respiratory rhythm). Finally, in
order to overcome the noise introduced by facial movement
or illumination changes, a random step signal and a random
Gaussian noise are added to the original signal. The final
formulation of the generated signal S can be presented as
follow,

S =M, sin(wit + @)+
0.5M; sin(2w1t + @)+
M; sin(wat + 0)+
Py Step(t — t1) + PaStep(t — t2) + N(t);

where M; and M, are the magnitudes randomly sampled from
[0, 1]; wy; and wy are the frequencies of cardiac cycle and
breath activity; ¢ and 6 are the corresponding phases which
are randomly sampled from [0, 27]. Step(t) is a step signal
and ¢, and to are randomly chosen in the range of [0, 7.
P, and P, are the probabilities from a Bernoulli distribution.
N donates the Gaussian noise function. From Fig. 4(b), we
can see that the synthetic signals generated by the proposed
approach are able to replicate the real signals when the subject
is stable.

As shown in Fig. 2, after generating a large-scale synthetic
rhythm database (each sequence has a length of 7" frames), the
spatial-temporal representation maps are calculated from these
synthetic signals following the algorithm in Section III-A.

C. General to Specific Deep Transfer Learning

As shown in Fig. 2, in order to avoid the risk of over-
fitting, we calculated from the large-scale synthetic spatial-
temporal maps to learn a prior knowledge of transforming a

RGB video sequence into a HR value in an end-to-end fashion.
Specifically, our training strategy could be divided into three
stages. Firstly, we train our model using the large-scale image
database ImageNet [21] for image classification task in order
to obtain network parameter initialization. Then we use the
synthetic spatial-temporal maps to further guide the network to
learn the prior knowledge of mapping a RGB video sequence
into a HR value. With this prior knowledge, we can further
fine-tune the neural network for the final HR estimation task
using only a limited number of face videos.

IV. EXPERIMENTAL EVALUATION

In this section, we provide evaluations of proposed approach
from the following perspectives: (i) average HR estimation
accuracy per video on the public-domain MAHNOB-HCI
database [14] and MMSE-HR database [6] and (ii) the ef-
fectiveness of the key components in our method.

A. Experimental Settings

Different measures have been proposed for evaluating the
performance of HR estimation methods, such as the HR
error (H R.) between the estimated HR (H R.,;) and ground-
truth HR (HE), the mean and standard deviation of the
HR error (HR,,. and HRg4), the root mean squared HR
error (HR,,s¢), and the mean of error rate percentage
(HR.er) [5]. In this paper, we use HR,c, HRsq, HRmse
and H R, to report all the results.

In this paper, we conduct experiments on the public-domain
MAHNOB-HCI database [14] and MMSE-HR database [6],
which has been widely used for remote HR estimation [5], [6].
The MAHNOB-HCI database is a multi-modal database with
20 videos per subject and 27 subjects in total, and the MMSE-
HR database includes 102 videos and heart rate information
from 40 participants. All the subjects from these two databases
participated in the experiment of emotion elicitation and
implicit tagging, during which the HR may float because of
the change of subjects emotions. The ground-truth HRs are
calculated based on the ECG signal provided in the databases.

In order to test the effectiveness of the proposed method, we
randomly divide all the databases into three folds and perform
cross-validation for training and test. For each 30-second
video, we randomly sample 100 sequences of short video clips,
each containing 300 frames. We totally get 52,700 spatial-
temporal maps for MAHNOB-HCI database and 10,000 maps
for MMSE-HR database. The HR estimation of each video is
calculated as the average of the prediction results of the 100
sequences of video clips.

For the proposed approach, we use a rectangle ROI of 100 x
200, and divide it into 200 blocks (10 x 20 grids). We choose
ResNet-18 [23] for feature learning in our regression model.
For each fold of the experiment, our network is trained with a
learning rate of 0.001 and a maximum of 30 epochs. L1 loss
is used as the regression loss function in our experiments.

B. HR Estimation Results

1) Average HR Estimation per Video: In these experi-
ments, following the test protocol in [5], [6], we compare the



TABLE I
THE RESULTS OF ESTIMATING AVERAGE HR PER VIDEO USING DIFFERENT
METHODS ON THE MAHNOB-HCI DATABASE (BEST PERFORMANCE IN

BOLD).
HRme Hde Herse

Method (bpm) (bpm)  (bpm)  Rmer
Poh2010 [1] -895 243 25.9 25.0%
Poh2011 [3] 2.04 13.5 13.6 13.2%
Balakrishnan2013 [2] -144  15.2 21.0 20.7%
Li2014 [5] -3.30 6.88 7.62 6.87%
Haan2013 [4] -2.89  13.67 10.7 12.9%
Niu2017 [7] -0.38  10.81 8.72 11.5%
Tulyakov2016 [6] 3.19 5.81 6.23 5.93%
Hus2014 [11] -0.20 11.32 11.31 12.8%
Proposed method 0.30 4.48 4.49 4.37%

TABLE 11

THE RESULTS OF ESTIMATING AVERAGE HR PER VIDEO USING DIFFERENT
METHODS ON THE MMSE-HR DATABASE (BEST PERFORMANCE IN BOLD).

HRye HRgq HRypmse

Method (bpm) (bpm)  (bpm) TRmer
Li2014 [5] 11.56  20.02 19.95 14.64%
Haan2013 [4] 941 14.08 1397  12.22%
Tulyakov2016 [6] 7.61  12.24 11.37  10.84%
Proposed method  -0.01  6.86 6.83 6.21%

proposed HR estimation method with several state-of-the-art
methods for estimating the average HR given a video clip with
30 seconds. The baseline methods we use for comparisons are
describe in [1], [3], [2], [4], [5], [6], [7]. The performances
of [1], [3], [2], [5] are taken from [5], and the results of [4],
[6], [7] are from [7]. At the same time, we re-implement the
method in [11], which is a state-of-the-art learning-based HR
estimation method, and report its performance under the same
protocol. The results of MAHNOB-HCI and MMSE-HR are
listed in Table I and II.

It can be seen from the results that our method achieves very
promising results with an HR,.,;,s. of 4.49 bpm in MAHNOB-
HCI and 6.83 bpm in MMSE-HR, which are much smaller
than previous methods. At the same time, in order to evaluate
the consistency between the ground truth HR and the estimated
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Fig. 5. The Bland-Altman plots demonstrating the agreement of the H Res¢
and HRg¢ for (a) Hus2014 [11] and (b) the proposed method. The lines
represent the mean and 95% limits of agreement.

TABLE III
EFFECTIVENESS OF THE INDIVIDUAL STAGES IN THE PROPOSED TRAINING
VIA DEEP TRANSFER LEARNING (BEST PERFORMANCE IN BOLD).

. e HRme Hde Herse
Training Stage (bpm)  (bpm) (bpm) HRer
Stage-1 0.14 4.72 4.72 4.51 %
Stage-11 0.27 4.53 4.53 4.45 %
Stage-I11 0.30 4.48 4.49 4.37 %

6 | (Ilw/o transfer learning
[ with transfer learning

o

HR
rmse
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All training data 0.5 training data  0.25 training data

Fig. 6. The changes of the HR estimation accuracy (in terms of H Rymse)
with reduced video clips in the training set.

HR, we draw a Bland-Altman plot [24] for the result of
MAHNOB-HCI database in Fig. 5. The Bland-Altman plot for
another state-of-the-art learning-based method Hus2014 [11]
is also given for comparison in Fig. 5. It can be seen that our
method has a much smaller standard deviation and a better
consistency.

2) Effectiveness of Individual Parts in Our Method: We
further analyze the effectiveness of our approach from differ-
ent aspects on the MAHNOB-HCI database. We first test the
performance of our three-stage training strategy step-by step
and report the results of each stage in Table III. Specifical-
ly, Stage-I denotes training the HR estimator directly using
the face videos; Stage-II denotes training the HR estimator
with a model pre-trained on ImageNet [21], and Stage-III
denotes training the HR estimator using the proposed general-
to-specific training strategy. From the results, we can see
that each stage in our training strategy could improve the
performance, and after all the three training stages, our method
achieves the best performance.

In order to further validate the effectiveness of the transfer
learning in our method, we reduce the number of video clips
used for training by one-half and three quarters, and report
the changes in HR estimation accuracy using and not using
our deep transfer learning strategy. The results are shown in
Fig. 6. It could be seen that with reduced training data, the
HR, s tises for both methods, but using the proposed deep
transfer learning leads consistently lower HR estimation error
than not using transfer learning.

We then perform three-fold cross-validation using the pro-
tocol by dividing the database both randomly and subject-
exclusively, and the results are given in Table IV. From the
results, we can see that different partition of the database does
lead to different HR estimation accuracy. This is because that



TABLE IV
THE RESULTS OF THE PROPOSED APPROACH USING A
SUBJECT-EXCLUSIVE PROTOCOL AND A RANDOM-SPLIT PROTOCOL.

HRme HRsqg HRrmse
Protocol (bpm)  (bpm) (bpm) HRer
Subject-exclusive  2.16  10.88 11.08 12.26 %
Random split 0.30 448 4.49 4.37 %
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Fig. 7. (a) The HR distributions of the training and test sets in one fold of
data. (b) The error distributions of the outliers testing samples which have
large HR differences with respect to the ground truth HRs appeared in the
training set.

different partition method will lead to different gaps between
the data distributions of training and test databases (see
Fig. 7(a)). We further analyze whether the network gets over-
fitting with respect to individual subject (i.e., remembers indi-
vidual subjects) under the random-split protocol. We calculate
the H R, for each subject and analysis the clips whose ground
truth HR are the most far away from the subject’s average
HR in the training set. The results are shown in Fig. 7(b),
and we can see that for most of these ‘outlier’ testing video
sequences, the proposed approach still give very promising
HR estimation. These studies indicate that the proposed deep
HR estimator has a good generalization ability.

V. CONCLUSION AND FURTHER WORK

Remote HR estimation from a face video sequence using
a learning-based model could be challenging because of the
lack of training data and various face appearance in motion,
illumination, etc. In this paper, to address these limitations, we
propose an end-to-end deep learning method for HR estima-
tion, which consists of a novel spatial-temporal representation
for HR estimation and a transfer learning strategy leveraging
the prior knowledge from the synthetic thythm data. Extensive
evaluations of the proposed approach and comparisons with
the state-of-the-art methods show the effectiveness of the
proposed approach.

We notice that a large-scale training database is still very
important for learning a robust deep HR estimator. In addition,
new representations for the HR signals in the RGB face video
sequences could benefit the training of a deep learning based
HR estimator.
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