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Abstract—Facial expression recognition in the wild is challeng-
ing due to various un-constrained conditions. Although existing
facial expression classifiers have been almost perfect on analyzing
constrained frontal faces, they fail to perform well on partially
occluded faces that are common in the wild. In this paper,
we propose an end-to-end trainable Patch-Gated Convolution
Neutral Network (PG-CNN) that can automatically percept the
occluded region of the face and focus on the most discriminative
un-occluded regions. To determine the possible regions of interest
on the face, PG-CNN decomposes an intermediate feature map
into several patches according to the positions of related facial
landmarks. Then, via a proposed Patch-Gated Unit, PG-CNN
reweighs each patch by the unobstructed-ness or importance that
is computed from the patch itself. The proposed PG-CNN is eval-
uated on two largest in-the-wild facial expression datasets (RAF-
DB and AffectNet) and their modifications with synthesized facial
occlusions. Experimental results show that PG-CNN improves the
recognition accuracy on both the original faces and faces with
synthesized occlusions. Visualization results demonstrate that,
compared with the CNN without Patch-Gated Unit, PG-CNN
is capable of shifting the attention from the occluded patch to
other related but unobstructed ones. Experiments also show that
PG-CNN outperforms other state-of-the-art methods on several
widely used in-the-lab facial expression datasets under the cross-
dataset evaluation protocol.

I. INTRODUCTION

Facial expression recognition (FER) has received significant
interest from computer scientists and psychologists over recent
decades, as it holds promise to an abundance of applications,
such as human computer interaction, affect analysis, and
mental health assessment. Although many facial expression
recognition systems have been proposed and implemented,
majority of them are builded on images captured in controlled
environment, such as on CK+ [1], MMI [2], Oulu-CASIA
[3], and other lab-collected datasets. The controlled faces are
frontal and without any occlusions. The FER systems that
perform perfectly on the lab-collected datasets, is highly pos-
sible to perform poorly when recognizing human’s expressions
under natural and un-controlled conditions.

To fill the gap between the recognition accuracy on the
controlled faces and un-controlled faces, researchers make
efforts on collecting large-scale facial expression datasets in
the wild ( [4], [5]). Despite the usage of data from the wild,
facial expression recognition is still challenging due to the
existence of partially occluded faces. It it non-trivial to address
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Fig. 1. Illustration of the proposed PG-CNN for occlusion-aware facial
expression recognition. During Part 3, PG-CNN extracts 24 regions of interest
from the intermediate feature maps. For each region, a specific Patch Gated
Unit (PG-Unit) is learnt to reweigh the local representation according to the
region’s “unobstructed-ness” (to what extent the patch is occluded). Then,
the weighted representations are concatenated and passed to the classification
part.

the occlusion issue because occlusion varies in the occluders
and their positions. The occlusion may caused by hair, glasses,
scarf, breathing mask, hands, arms, food, and other objects that
could be placed in front of the face in daily life. These objects
may block the eyes, mouth, part of the cheek, and any other
part of the face. The variability of occlusion cannot be fully
covered by restricted amounts of data and will inevitably lead
the recognition accuracy to decrease.

To address the issue of occlusion, we propose a Patch-
Gated Convolution Neutral Network (PG-CNN), mimicing the
way that human recognize the facial expression. Intuitively,
human recognize the facial expression based on certain patches
of the face. When some regions of the face are blocked
(e.g., the lower left cheek), human may judge the expression
according to the symmetric part of face (e.g., the lower right
cheek), or other highly related facial region (e.g., region
around the eyes or mouth). Inspired by the intuition, PG-
CNN automatically percepts the blocked facial patch and pays
attentions mainly to the unblocked and informative patches.
Fig. 1 illustrates the main idea of PG-CNN. The patches of
interest are cropped from the last convolution feature maps
according to the positions of the related facial landmarks. For
each patch, a Patch-Gated Unit (PG-Unit) is learned to reweigh
the patch’s local representation by its unobstructed-ness that is
computed from the patch itself. As can be seen in Fig. 1, the
last four visualized patches are blocked and thus they have low
unobstructed-ness (c,). Then, the weighted representations are



concatenated and used in the classification part.
The contributions of this work are summarized as follows:

1) We propose a PG-CNN to recognize facial expressions
with partially occluded faces. PG-CNN can automati-
cally percept the occluded region of the face and focus
on the most informative and un-blocked regions. To the
best of our knowledge, PG-CNN is the first end-to-end
trainable framework that addresses occlusions in facial
expression recognition.

2) Visualized results show that PG-Unit (the crucial part of
PG-CNN) is effective in perceiving the occluded facial
patch. PG-Unit is capable to learn a low weight for the
blocked patch and a high weight for an unblocked and
informative one.

3) Experimental results demonstrate the advantages of the
proposed PG-CNN over other state-of-the-art methods
on two large in-the-wild facial expression datasets and
several popular in-the-lab datasets, under settings with
either partially occluded or non-occluded faces.

II. RELATED WORK

We review the previous work considering two aspects that
are related to ours, i.e., the similar tasks (facial analysis with
occluded faces) and related techniques (attention mechanism).

A. Methods towards facial occlusions

For facial analysis tasks, occlusion is one of the inherent
challenges in the real world FER and other facial analysis
tasks, e.g., facial recognition, age estimate, gender classifica-
tion, etc. Previous approaches that address facial occlusions
can be classified into two categories: holistic-based or part-
based methods.

Holistic-based approaches treat the face as a whole and do
not explicitly divide the face into sub-regions. They usually
improve the robustness of the features through designated
regularization, e.g., L1-norm [6]. This idea is also suitable for
non-facial occlusions, for example, Elad et al. [7] proposed to
mutually re-weight L, regularization in an end-to-end frame-
work to deal with arbitrary occlusion in object recognition.
Another holistic way is to reconstruct a complete face from the
occluded one( [8], [9]). These reconstruction based methods
rely on the training data with varied occlusion conditions.
Specially, Irene et al. [10] analysed how partial occlusion
affects FER performance in detail.

Part-based methods explicitly divide the face into several
overlapped or non-overlapped segmentations. To determine the
patches on the face, existing works either divide the facial
image into several uniform parts( [11], [12]), or get the patches
around the facial landmarks( [13], [14]), or get the patches by a
sampling strategy [15], or explicitly detect the occluders( [16],
[17]). Then, the part-based methods detect and compensate
the missing part ( [18], [19]), or re-weight the occluded and
non-occluded patches differently( [13], [17]), or ignore the
occluded part( [15], [16]). We adopt the way of the part-
based methods because they successfully incorporate the priors
information of the structure of human faces and have a better

interpretation. The proposed PG-CNN is end-to-end trainable.
It learns occlusion patterns from data and encodes them with
model weights. Therefore, it is preferable to handle arbitrary
kind of occluder at any position in front of the face.

B. CNN with attention

Recently, attention models have been successfully applied
in many computer vision tasks, including fine-grained image
recognition [20], image caption [21], visual question answer-
ing [22], person re-identification [23], etc. Usually attention
can be modeled as a region sequence in an image. An
RNN/LSTM model is adopted to predict the next attention
region based on current attention region’s location with visual
features.

Moreover, zheng et al. [20] adopted channel grouping sub-
network to cluster convolutional feature maps into groups ac-
cording to peak responses of maps, which do not need part an-
notations but is not suitable for FER under occlusion. For false
responses caused by occluders will inevitably disturb channels
clustering. Zhao et al. [23] estimated multiple 2-dimensional
attention maps, they have equal spatial size of convolutional
feature maps to weight. This approach is straightforward but
do not take occlusion patterns into consideration.

Attention models allow for salient features to dynamically
come to forefront as needed. This is especially beneficial when
there is some occlusion or clutter in an image. They also help
interpret the results by visualizing where the model attends to
for certain tasks. Compare with existing attention models, Our
approach adopts facial landmarks for region decomposition,
which is straightforward and easily implemented. Meanwhile,
PG-CNN adopts CNN based Patch-Gated Unit for occlusion
perception, guiding the model to shift attention to informative
as well as unblocked facial patches.

III. PROPOSED METHOD
A. Method overview

We propose a Patch-Gated CNN (PG-CNN) for facial
expression recognition with partially occlusions. To address
the occlusion issue, PG-CNN is end-to-end trainable with two
key schemes: region decomposition and occlusion perception.

Figure 2 illustrates the framework of the proposed PG-CNN.
As can be seen in Fig. 2 , the network takes input as a facial
image. The image is fed into VGG net and is represented as
some feature maps. Then, PG-CNN decomposes the feature
maps of the whole face to 24 sub-feature-maps for 24 local
patches. Each local patch is encoded as a weighted vector
of local feature by a Patch-Gated Unit (PG-Unit). PG-Unit
computes the weight of each patch by an Attention Net,
considering its obstructed-ness (to what extent the patch is oc-
cluded). Finally, the weighted local features are concatenated
and serve as a representation of the occluded face. Three fully
connected layers are followed to assign the face to one of the
emotional categories. PG-CNN is optimized by minimizing
the soft-max loss.

Below, we present the details of the two key schemes, region
decomposition and occlusion perception, in PG-CNN.
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Fig. 2. Framework of the proposed PG-CNN. PG-CNN takes a facial image as input and encodes the image with VGG-16 Net. The feature maps from the
last convolution layer ( conv4_2 in VGG [24]) are cropped into 24 local patches through a region decomposition scheme. Each patch is then processed by a
Patch-Gated Unit (PG-Unit). PG-Unit encodes a patch by a vector-shaped feature and estimates how informative the patch is through an Attention net. The
soft-max loss is attached at the end. Parameters in the overall network are learned by minimizing the soft-max loss.
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Fig. 3. Region decomposition of the face. The left figure shows the selected
landmarks (green dots with numbers), around which the patches in right figure
are cropped. We select 24 points in total, covering the region on or around
each subject’s eyebrows, eyes, nose, mouth, and cheek.

B. Region decomposition

Facial expression is distinguished in specific facial regions,
because the expressions are facial activities invoked by sets
of muscle motions. Localizing and encoding the expression-
related parts is of benefit to recognize facial expression [12].
Additionally, dividing the face into multiple local patches
helps to find the position of occlusions [13].

To find the typical facial parts that related to expression, we
extract the patches according to the positions of each subject’s
facial landmarks. Fig. 3 shows the selection of facial patches.
We first detect 68 facial landmark points by the method in
[25] and then, based on the detected 68 points, we select or
re-compute 24 points that cover the informative region of the
face, including the two eyes, nose, mouth, cheek, and dimple.
The selected patches are defined as the regions taking each of
the 24 points as the center. It is noteworthy that face alignment
method in [25] is robust to occlusions, which is important for
precise region decomposition.

As can be seen in the overall framework (Fig. 2), the patch
decomposition operation is conducted on the feature map from
convolution layers rather than from the original image. This is
because sharing some convolutional operations can decrease
the model size and enlarge the receptive fields of subsequent
neurons. Based on the 512 x 28 x 28 feature maps as well as

the 24 local region centers, we get a total of 24 local regions,
each with a size of 512 x 6 x 6.

C. Occlusion perception with PG-Unit

We embed the PG-Unit in the PG-CNN to automatically
percept the blocked facial patch and pay attentions mainly to
the unblocked and informative patches. The detailed structure
of PG-Unit is illustrated in the blue dashed rectangle in Fig. 2.
In each patch-specific PG-Unit, the cropped local feature maps
are fed to two convolution layers without decreasing the spatial
resolution, so as to preserve more information when learning
region specific patterns. Then, the last 512 x 6 x 6 feature
maps are processed in two branches. The first branch encodes
the input feature maps as the vector-shaped local feature. The
second branch consist an attention net that estimates a scaler
weight to denote the importance of the local patch. The local
feature is then weighted by the computed weight.

Mathematically speaking, let us suppose p; the input 512 x
6 x 6 feature map of the i-th patch. Therefore, the i-th PG-Unit
takes the feature map p; as the input and outputs its weighted
feature ¢;. We formulate PG-Unit as:

¢i = Li(p:i) © ¥ (Pi)s (D

where p; = ¢(p;) is the last 512 x 6 x 6 feature maps ahead
of the two branches. PG-Unit estimates patch 7’s importance
or ‘unobstructed-ness’ as «; = Z;(p;) and then uses o
to weight the local feature 1; = ¥ (p;). ¥(pP;) is a vector
that represents the un-weighted feature. ® denotes production.
a; = Z;(p;) is a scaler that represent the patch ¢’s importance
or ‘unobstructed-ness’ (to what extent the patch is occluded).
Z(-) means the operations in the attention net, consisting
a pooling operation, one convolution operations, two inner
productions, and a sigmoid activation. The sigmoid activation
forces the output «; ranges in [0, 1], where 1 indicates the
most salient unobstructed patch and 0 indicates the completely
blocked patch.

In PG-Unit, each patch is weighted differently according to
its occlusion conditions or importance. Through the end-to-end



Fig. 4. Examples of the synthesized occluded facial images from RAF-DB
dataset. The occluders are various in color, shape, and positions.

training of the overall PG-CNN, PG-Units can automatically
learn low weights for the occluded parts and high weights for
the unblocked and discriminative parts.

IV. EXPERIMENT

In this section, we present the experimental evaluations of
PG-CNN. Then, we compared our method with the state-of-
the-art FER methods and methods with attention mechanism.
Finally, we provide an ablation analysis of the proposed PG-
CNN.

A. Experimental setup

1) Datasets: We evaluated the methods on both in-the-
wild datasets (RAF-DB [4] and AffectNet [5]) and in-the-
lab datasets(CK+ [1], MMI [2], and Oulu-CASIA [3]). RAF-
DB contains 30,000 facial images annotated with basic or
compound expressions by 40 trained human coders. In our
experiment, only images with basic emotions were used,
including 12,271 images as training data and 3,068 images
as test data. AffectNet is the largest database with annotated
facial emotions. It contains about 400,000 images manually
annotated for the presence of seven discrete facial expressions
and the intensity of valence and arousal. We only used the ones
with neutral and 6 basic emotions, containing 280,000 training
samples and 3,500 test samples. The Extended Cohn-Kanade
database (CK+) contains 593 video sequences recorded from
123 subjects. we selected the first and final frame of each
sequence as neutral and target expressions, which results in
634 images. MMI database includes more than 30 subjects
of both genders (44% female), ranging in age from 19 to 62.
There are 79 sequences of each subject. Each begin and end
with neutral facial expression. We extracted the neutral and
peak frames from each sequence, resulting in 7348 images.
Oulu-CASIA dataset contains six prototypic expressions from
80 people between 23 to 58 years old. We selected peak and
neutral frames from sequences captured in normal illumina-
tion, which results in 9431 images.

2) Synthesis of occluded images: It seems unlikely that
any reasonable sized set of training images would serve to
densely probe the space of possible occlusions. We tackle the
problem by manually collecting about 4k images as masks
for generating occluders. These mask images were collected

TABLE 1
TEST ACCURACY (%) ON RAF-DB AND AFFECTNET. (clean: ORIGINAL
IMAGES. occ.: SYNTHETICALLY OCCLUDED IMAGES.)

Methods RAF-DB(clean/occ.)  AffectNet(clean/occ.)
VGG-16 [24] 80.96/75.26 51.11/46.48
DLP-CNN [23] 80.89/76.29 54.47/51.07
P-CNN 81.64/76.09 53.9/50.32
PG-CNN (proposed) 83.27/78.05 55.33/52.47

from search engine using more than 50 keywords, such as
beer, bread, wall, hand, hair, hat, book, cabinet, computer,
cup et al. All the items were selected due to their high
frequency of occurence as obstructions in facial images. Since
Benitez et al. [26] verified that small local occluders take no
affects on current FER algorithms, we heuristically restrain
occluder size S satisfying S € [96,128], which is smaller
or equal to half size of expression images. Fig. 4 shows
some occluded examples derived from RAF-DB dataset. These
artificial synthesised images are various in occlusion patterns
and can better reflect occluder distribution in wild condition.
3) Implementation details: We implemented PG-CNN us-
ing Caffe deep learning framework [27]. We adopted VGG-
16 [24] as base for PG-CNN due to its simple structure
and excellent performance in object classification. We only
choose the first nine convolution layers as the feature map
for region decomposition then attached 24 PG-Units. The
pre-trained model based on ImageNet dataset was used for
initializing the model. For each dataset, Both train and test
corpus are mixed with occluded images with a ratio of 1:1.
We adopt a batch-based stochastic gradient descent method to
optimize the model. The base learning rate was set as 0.001
and was reduced by polynomial policy with gamma of 0.1.
The momentum was set as 0.9 and the weight decay was set
as 0.0005. The training of models was completed on a Titan-X
GPU with 12GB memory. During the training stage, we set
the actual batch size as 128 and the maximum iterations as
50K. It took about 1.5 days to finish optimizing the model.
4) Evaluation metric: All the datasets are mixed with
their modifications with synthesized facial occlusions with 1:1
ratio. We report FER performance on both non-occluded and
occluded images. For both occluded and non-occluded FER
scenarios we use the overall accuracy on seven facial expres-
sion categories(i e. six prototypical plus neutral category) as a
performance metric. Both cross-dataset evaluation and 10-fold
evaluation within dataset are used in our experiments.

B. Comparison with state of arts

1) Comparison with other attention models: We compare
PG-CNN with DLP-CNN [23]. DLP-CNN estimates K spatial
maps for attention parts generation. The hyper-parameter K is
fine-tuned to the best in out experiments. Table I reports the
results of PG-CNN and DLP-CNN on RAF-DB and AffectNet
databases. PG-CNN outperforms DLP-CNN on non-occluded
images because the patch-based model can better reflect subtle
muscle motions than the model with global attention. PG-CNN
exceeds DLP-CNN on occluded datasets with the help of PG-
Unit, which encodes occlusion patterns in model weights and
enable model attend to unblocked & distinctive patches. From



TABLE 11
10-FOLD TEST ACCURACY (%) ON CK+ DATASET WITH SYNTHETIC
OCCLUSIONS. (R8, R16, R24 DENOTE THE SIZE OF THE OCCLUSION AS
8 x 8,16 x 16, 24 x 24. THE FULL-IMAGE SIZE IS 48 X 48.)

Occlusion ‘ PG-CNN* PG-CNN ‘ WLS-RF [28] RGBT [15]
non-occlusion 90.37 97.03 94.3 94.4
R8 89.74 96.58 92.2 92.0
R16 87.22 95.70 86.4 82.0
R24 83.91 92.86 74.8 62.5
eyes occluded 85.02 96.50 87.9 88.0
mouth occluded 82.96 93.92 72.7 30.3

* denotes cross-dataset test accuracy on CK+ by the PG-CNN trained on

AffectNet.

RAF-DB to AffectNet database, the performance gap becomes
narrowed because significant increase in training data.

2) Comparison with other methods handling FER with oc-
clusion: We compare PG-CNN with state-of-the-arts methods
WLS-RF [28] and RGBT [15]. WLS-RF adopted multiply
weighted random forests and RGBT converted a set of Gabor
based part-face templates into template match distance features
for FER with occlusion. We followed the same occlusion
protocol of WLS-RF and RGBT and evaluated performance
on model trained by AffectNet dataset.

Table II show the comparisons. The overall performance
of PG-CNN is significantly better than that of WLS-RF
and RGBT. Specially, PG-CNN suffers 4.30% performance
degradation under random occlusion with R24 pattern, while
eyes or mouth occlusion has little impact on PG-CNN. The
proceeds of PG-CNN are due to PG-Unit as well as large
amount of training data in AffectNet database.

PG-CNN* in Table II shows that without training on CK+
dataset, PG-CNN™ can achieve comparable performance com-
pared with WLS-RF and RGBT.

3) Cross database evaluation: We evaluated the general-
ization ability of PG-CNN under the cross-dataset evaluation
protocol. In our experiments, PG-CNN was trained on RAF-
DB or AffectNet dataset and evaluated on CK+, MMI, Oulu-
CASIA dataset with or without synthetic occlusions. Table III
shows the results compared with other FER methods. Among
the compared experiments, [29] adopted an inception based
CNN and provided the average cross-database recognition
accuracy. [30] and [31] reported the highest cross-database
results, which were both trained on MMI and evaluated on
CK+ or vice versa. PG-CNN(A) exceeds [29]-[31] by at least
40.7% and 3.02% on CK+ and MMI dataset respectively.
It suggests that PG-CNN(A) can generalize better than PG-
CNN(R) due to a larger amount of training data.

C. Ablation analysis

We conducted ablation analysis to figure out how PG-CNN
boosts performance on FER with occlusion task.

1) CNN VS P-CNN: We compared VGG-16 and P-CNN
(PG-CNN without PG-Unit) to verify benefit of region de-
composition. As listed in Table I, P-CNN exceeds VGG-16
on both original and occluded images. The promotions of P-
CNN suggest that globally encoded representation has fallen
behind in reflecting subtle muscle motions compared with
locally learned patterns.

TABLE III
CROSS DATASET EVALUATION (ACCURACY %) ON IN-THE-LAB DATASETS
(clean: ORIGINAL IMAGES. occ.: SYNTHESIZED OCCLUDED IMAGES.)

method \ CK+(clean/occ.) MMI(clean/occ.) Oulu-CASIA(clean/occ.)

[29] 642/ — 55.6 / — -/ -

[30] 60.8 / — 60.3 / — -/ —

[31] 612/ — 66.9 / — -/ =
P-CNN(R) 79.81/76.02  57.02/53.70 49.83 / 46.98
P-CNN(A) 89.27 /8533  66.94/61.26 54.77 /1 51.05
PG-CNN(R) | 80.28 /79.49  55.61 /53.44 50.04 / 47.15
PG-CNN(A) | 90.38 / 86.27 68.92 / 63.94 57.93 / 54.18

A denotes models trained on AffectNet dataset.
R denotes models trained on RAF-DB dataset.
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Left: maps of original images.

Right: maps of occluded images

(c) Attention maps of (a),

derived from PG-CNN.
Left: maps of original images.
Right: maps of occluded images
Fig. 5. Attention maps of several test images and their modifications with
artificial facial occlusions. Each image denotes one of seven basic expressions.
A deep white corresponds to high attention and a deep dark to no attention
at all. Better viewed in color and zoom in.

2) P-CNN VS PG-CNN: We compared P-CNN and PG-
CNN to verify benefit of PG-Unit. As displayed in Table I,
total improvements of PG-CNN on RAF-DB and AffectNet
datasets are 1.99%, 2.58% and 3.65%, 4.27% respectively.
This is because PG-Unit enables the model to attend to most
related local patches, and shift attention to other related local
parts when original ones are occluded. Similar performance
improvements can be found in Table III, where PG-CNN
outperforms P-CNN on nearly all datasets except for MML.

We visualized the attention map of PG-CNN and P-CNN
using the method in [32]. Simonyan et al. [32] derives a
attention map by computing the gradient of the class score
with respect to the input image. As can be seen in Fig. 5, P-
CNN relies on almost the whole face region, while PG-CNN
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Fig. 6. Attention maps of several test images results of test images with real
occlusion in RAF-DB. Better viewed in color and zoom in.

attends to local discriminative patches. This can decrease the
probability that an occluder take effect in PG-CNN. Moreover,
PG-CNN responses weakly to an occluder and shifts attention
from the occluded patch(e.g., right eye in the subfigures for
disgust) to other related but unobstructed one(e.g., left eye).
Fig. 6 displays images with real occluders picked from test
set in RAF-DB and AffectNet corpus. PG-CNN performs as
consistently as on artificial occluders. Take angry category for
instance, we observe only PG-CNN attends to subjects’ nose,
which is a strongly discriminative patch for anger.

V. CONCLUSION

This work presents a Patch-Gated CNN for facial expres-
sion recognition under occlusion. PG-CNN consists of region
decomposition, Patch Gated Unit for robust facial expres-
sion recognition. Experiments under intra and cross database
evaluation protocols demonstrated PG-CNN outperforms other
state-of-the-art methods. Ablation analyses show PG-CNN is
capable of shifting attention from occluded patch to other
related ones. For future work, we will study how to generate
attention parts in face without landmarks, as PG-CNN relies on
robust face detection and facial landmark localization modules.
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