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Abstract

Weakly supervised object detection aims at learning pre-

cise object detectors, given image category labels. In recent

prevailing works, this problem is generally formulated as a

multiple instance learning module guided by an image clas-

sification loss. The object bounding box is assumed to be the

one contributing most to the classification among all pro-

posals. However, the region contributing most is also likely

to be a crucial part or the supporting context of an object.

To obtain a more accurate detector, in this work we propose

a novel end-to-end weakly supervised detection approach,

where a newly introduced generative adversarial segmenta-

tion module interacts with the conventional detection mod-

ule in a collaborative loop. The collaboration mechanism

takes full advantages of the complementary interpretations

of the weakly supervised localization task, namely detec-

tion and segmentation tasks, forming a more comprehensive

solution. Consequently, our method obtains more precise

object bounding boxes, rather than parts or irrelevant sur-

roundings. Expectedly, the proposed method achieves an

accuracy of 53.7% on the PASCAL VOC 2007 dataset, out-

performing the state-of-the-arts and demonstrating its su-

periority for weakly supervised object detection.

1. Introduction

As the data-driven approaches prevail on object detection

task in both academia and industry, the amount of data in

an object detection benchmark is expected to be larger and

larger. However, annotating object bounding boxes is both

costly and time-consuming. In order to reduce the labeling

workload, researchers hope to make object detectors work

in a weakly-supervised fashion, e.g. learning a detector with

only category labels rather than bounding boxes.

Recently, the most high-profile works on weakly super-

vised object detection all exploit the multiple instance learn-
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Figure 1: The schematic diagram of the previous works with

segmentation utilization [7, 32] and our proposed collabo-

ration approach. In [7, 32], a two-stage paradigm is used, in

which proposals are first filtered and then detection is per-

formed on these remaining boxes ([7] shares the backbone

between two modules). In our approach, detection and seg-

mentation modules instruct each other in a dynamic collab-

oration loop in the training process.

ing (MIL) paradigm [3, 5, 22, 21, 18, 14, 1, 23, 24, 2, 7].

Based on the assumption that the object bounding box

should be the one contributing most to image classifica-

tion among all proposals, the MIL based approaches work

in an attention-like mechanism: automatically assign larger

weights to the proposals consistent with the classification

labels. Several promising works combining MIL with deep

learning [2, 25, 32] have greatly pushed the boundaries of

weakly supervised object detection. However, as noted in

[25, 32], these methods are easy to over-fit on object parts,

because the most discriminative classification evidence may

derive from the entire object region, but may also from the

crucial parts. The attention mechanism is effective in se-

lecting the discriminative boxes, but does not guarantee the

completeness of a detected object. For a more reasonable

inference, a further elaborative mechanism is necessary.

Meanwhile, the completeness of a detected region is eas-

ier to ensure in weakly supervised segmentation. One com-

mon way to outline whole class-related segmentation re-
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Task Recall Precision

Weakly supervised detection 62.9% 46.3%

Weakly supervised segmentation 69.7% 35.4%

Table 1: Pixel-wise recall and precision of detection and

segmentation results on the VOC 2007 test set, following

the same setting in Sec. 4.2. For a comparable pixel-level

metric, the detection results are converted to the equivalent

segmentation maps in a similar way described in Sec. 3.3.

gions is recurrently discovering and masking these regions

in several forward passes [31]. These segmentation maps

can potentially constrain the weakly supervised object de-

tection, given that a proposal having low intersection over

union (IoU) with the corresponding segmentation map is

not likely to be an object bounding box. In [7, 32], weakly

supervised segmentation maps are used to filter object pro-

posals and reduce the difficulty of detection, as shown in

Fig. 1a. However, these approaches adopt cascaded or inde-

pendent models with relatively coarse segmentations to do

“hard” delete on the proposals, inevitably resulting in a drop

of the proposal recall. In a word, these methods underutilize

the segmentation and limit the improvements.

The MIL based object detection approaches and seman-

tic segmentation approaches focus on restraining different

aspects of the weakly supervised localization and have op-

posite strengths and shortcomings. The MIL based object

detection approaches are precise in distinguishing object-

related regions and irrelevant surroundings, but incline to

confuse entire objects with parts due to its excessive atten-

tion to the significant regions. Meanwhile, the weakly su-

pervised segmentation is able to cover the entire instances,

but tends to mix irreverent surroundings with real objects.

This complementary property is verified in Table 1, that

the segmentation can achieve a higher pixel-wise recall but

lower precision, while the detection can achieve a higher

pixel-level precision but lower recall. Rather than work-

ing independently, the two are naturally cooperative and can

work together to overcome their intrinsic weaknesses.

In this work, we propose a segmentation-detection col-

laborative network (SDCN) for more precise object detec-

tion under weak supervision, as shown in Fig. 1b. In the

proposed SDCN, the detection and segmentation branches

work in a collaborative manner to boost each other. Specifi-

cally, the segmentation branch is designed as a generative

adversarial localization structure to sketch the object re-

gion. The detection module is optimized in an MIL man-

ner with the obtained segmentation map serving as spatial

prior probabilities of the object proposals. Besides, the ob-

ject detection branch also provides supervision back to the

segmentation branch by a synthetic heatmap generated from

all proposal boxes and their classification scores. Therefore,

these two branches tightly interact with each other and form

a dynamic cooperating loop. Overall, the entire network is

optimized under weak supervision of the classification loss

in an end-to-end manner, which is superior to the cascaded

or independent architectures in previous works [7, 32].

In summary, we make three contributions in this paper:

1) the segmentation-detection collaborative mechanism en-

forces deep cooperation between two complementary tasks

and boosts valuable supervision to each other under the

weakly supervised setting; 2) for the segmentation branch,

the novel generative adversarial localization strategy en-

ables our approach to produce more complete segmentation

maps, which is crucial for improving both the segmentation

and the detection branches; 3) as demonstrated in Section 4,

we achieve the best performance on PASCAL VOC 2007

and 2012 datasets, surpassing the previous state-of-the-arts.

2. Related Works

Multiple Instance Learning (MIL). MIL [8] is a con-

cept in machine learning, illustrating the essence of inexact

supervision problem, where only coarse-grained labels are

available [34]. Formally, given a training image I, all in-

stances in some form constitute a “bag”. E.g. object pro-

posals (in detection task) or image pixels (in segmentation

task) can be different forms of instances. If the image I is

labeled with class c, then the “bag” of I is positive with re-

gard to c, meaning that there is at least one positive instance

of class c in this bag. If I is not labeled with class c, the cor-

responding “bag” is negative to c and there is no instance of

class c in this image. The MIL models aim at predicting the

label of an input bag, and more importantly, finding positive

instances in positive bags.

Weakly Supervised Object Detection. Recently, deep

neural networks and MIL are incorporated and significantly

improve the previous state-of-the-arts. Bilen et al. [2] pro-

posed a Weakly Supervised Deep Detection Network (WS-

DDN) composing of two branches acting as a proposal se-

lector and a proposal classifier, respectively. The idea, de-

tecting objects by the attention-based selection, is proved to

be so effective that most of the latter works follow it. E.g.,

WSDDN is further improved by adding recursive refine-

ment branches in [25]. [30, 28, 29] took advantage of the

continuation optimization and progressively learned mod-

els from easy to difficult, which are very promising and ef-

fective. Besides these single-stage approaches, researchers

have also considered the multiple-stage methods in which

fully-supervised detectors are trained with the boxes de-

tected by the single-stage methods as pseudo-labels. Zhang

et al. [33] proposed a metric to estimate image difficulty

with the proposal classification scores of WSDDN, and

trained a Fast R-CNN with curriculum learning strategy. To

speed up the weakly supervised object detectors, Shen et

al. [19] used WSDDN as an instructor which guides a fast

generator to produce similar detection results.

Weakly Supervised Object Segmentation. Another
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Figure 2: The overall architecture. The SDCN is composed of three modules: the feature extractor, the segmentation branch,

and the detection branch. The segmentation branch is instructed by a classification network in a generative adversarial

learning manner, while the detection branch employs a conventional weakly supervised detector OICR [25], guided by an

MIL objective. These two branches further supervise each other in a collaboration loop. The solid ellipses denote the loss

functions. The operations are denoted as blue arrows, while the collaboration loop is shown with orange ones.

route for localizing objects is semantic segmentation.

To obtain weakly supervised segmentation map, in [17],

Kolesnikov et al. took segmentation map as an output of

the network and then aggregated it to a global classification

prediction to learn with category labels. In [9], the aggrega-

tion function is improved to incorporate both negative and

positive evidence, representing both the absence and pres-

ence of the target class. In [31], a recurrent adversarial eras-

ing strategy is proposed to mask the response region of the

previous forward passes and force to generate responses on

other undetected parts during the current forward pass.

Utilization of Segmentation in Weakly Supervised

Detection. Researchers have found that there are inher-

ent relations between the weakly supervised segmentation

and detection tasks. In [7], a segmentation branch gener-

ating coarse response maps is used to eliminate proposals

unlikely to cover objects. In [32], the proposal filtering step

is based on a new objectness rating TS2C defined with the

weakly supervised segmentation map. Ge et al. [12] pro-

posed a complex framework for both object segmentation

and detection, where results from the weakly supervised

segmentation models are used as both object proposal gen-

erator and filter for the latter detection models. These meth-

ods incorporate the segmentation to improve weakly super-

vised object detection, which are reasonable and promising

given their superiorities over their baseline models. How-

ever, they ignore the mentioned complementarity of these

tasks and only exploit one-way cooperation, as shown in

Fig. 1a. The suboptimal manners in using the segmentation

information limit the performance of their methods.

3. Method

The overall architecture of the proposed segmentation-

detection collaborative network (SDCN) is shown in Fig. 2.

The network is mainly composed of three components: a

backbone feature extractor fE , a segmentation branch fS ,

and a detection branch fD. For an input image I , its feature

x = fE(I) is extracted by the extractor fE , and then feeds

into fS and fD for segmentation and detection, respec-

tively. The entire network is guided by the classification

labels y = [y1, y2, · · · , yN ] ∈ {0, 1}N , (where N is the

number of object classes), which is formatted as an adver-

sarial classification loss and an MIL objective. Additional

collaboration loss is designed for improving the accuracy of

both branches in a manner of collaborative loop.

In 3.1, we first briefly introduce our detection branch,

which follows the Online Instance Classifier Refinement

(OICR) [25]. The proposed segmentation branch and col-

laboration mechanism are described in detail in 3.2 and 3.3.

3.1. Detection Branch

The detection branch fD aims at detecting object in-

stances in an input image, given only image category labels.

The design of fD follows the OICR [25], which works in

a similar fashion to the Fast RCNN [13]. Specifically, fD

takes the feature x from the backbone fE and object pro-

posals B = {b1,b2, . . . ,bB} (where B is the number of

proposals) from Selective Search [27] as input, and detects

by classifying each proposal, formulated as below:

D = fD(x,B), D ∈ [0, 1]B×(N+1), (1)

where N denotes the number of classes with the (N + 1)th

class as the background. Each element D(i, j) indicates the

probability of the ith proposal bi belonging to the jth class.

The detection branch fD consists of two sub-modules,

a multiple instance detection network (MIDN) fDm

and

an online instance classifier refinement module fDr

. The
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MIDN fDm

serves as an instructor of the refinement mod-

ule fDr

, while fDr

produces the final detection output.

The MIDN is the same as the mentioned WSDDN [2],

which computes the probability of each proposal belong-

ing to each class under the supervision of category label,

with an MIL objective (in Eq. (1) of [25]) formulated as

follows:

Dm = fDm

(x,B), Dm ∈ [0, 1]B×N , (2)

LD
mil =

∑N

j=1
LBCE

(∑B

i=1
Dm(i, j),y(j)

)
, (3)

where
∑B

i=1 D
m(i, j) (denoted as φc in [25]) shows the

probability of an input image belonging to the jth category

by summing up that of all proposals, and LBCE denotes the

standard multi-class binary cross entropy loss.

Then, the resulting probability Dm from minimizing Eq.

(3) is used to generate pseudo instance classification labels

for the refinement module. This process is denoted as:

Yr = κ(Dm), Yr ∈ {0, 1}B×(N+1). (4)

Each binary element Yr(i, j) indicates if the ith proposal is

labeled as the jth class. κ denotes the conversion from the

soft probability matrix Dm to discrete instance labels Yr,

where the top-scoring proposal and its highly overlapped

ones are labeled as the image label and the rest are labeled

as the background. Details are referred to Sec. 3.2 in [25].

The online instance classifier refinement module fDr

performs detection proposal by proposal and further con-

strains the spatial consistency of the detection results with

the generated labels Yr, which is formulated as below:

Dr(i, :) = fDr

(x,bi), Dr ∈ [0, 1]B×(N+1), (5)

LD
ref =

∑N+1

j=1

∑B

i=1
LCE (Dr(i, j),Yr(i, j)) , (6)

where Dr(i, :) ∈ [0, 1]N+1 is a row of Dr, indicating

the classification scores for proposal bi. LCE denotes the

weighted cross entropy (CE) loss function in Eq. (4) of [25].

Here, LCE is employed instead of LBCE considering that

each proposal has one and only one positive category label.

Eventually, the detection results are given by the refine-

ment module, i.e. D = Dr, and the overall objective for the

detection module is a combination of Eq. (3) and Eq. (6):

LD = λD
milL

D
mil + λD

refL
D
ref , (7)

where λD
mil and λD

ref are balancing factors for the loss.

After optimization according to Eq. (7), the refinement

module fDr

can do object detection independently by dis-

carding the MIDN in testing.

3.2. Segmentation Branch

Generally, the MIL weakly supervised object detection

module is subject to over-fitting on discriminative parts,

since smaller regions with less variation are more likely

to have high consistency across the whole training set. To

overcome this issue, the completeness of a detected object

needs to be measured and adjusted, e.g. by comparing with

a segmentation map. Therefore, a weakly supervised seg-

mentation branch is proposed to cover the complete object

regions with generative adversarial localization strategy.

In detail, the segmentation branch fS takes the feature x

as input and predicts a segmentation map, as below,

S = fS(x), S ∈ [0, 1](N+1)×h×w, (8)

sk � S(k, :, :), k ∈ {1, . . . , N + 1}, sk ∈ [0, 1]h×w (9)

where S has N + 1 channels. Each channel sk corresponds

to a segmentation map for the kth class with a size of h×w.

To ensure that the segmentation map S covers the com-

plete object regions precisely, a novel generative adversarial

localization strategy is designed as adversarial training be-

tween the segmentation predictor fS and an independent

image classifier fC , severing as generator and discrimina-

tor respectively, as shown in Fig. 2. The training target of

the generator fS is to fool fC into misclassifying by mask-

ing out the object regions, and the discriminator fC aims

to eliminate the effect of the erased regions and correctly

predict the category labels. The fS and fC are optimized

alternatively, given the other one fixed.

Here, we first introduce the optimization of the segmen-

tation branch fS , given the classifier fC fixed. Overall, the

objective of the segmentation branch fS can be formulated

as a sum of losses for each class,

LS(S) = LS(s1) + LS(s2) + · · ·+ LS(sN+1). (10)

LS(sk) is the loss for the ith channel of the segmentation

map, consisting of an adversarial loss LS
adv and a classifica-

tion loss LS
cls, described in detail as following.

If the kth class is a positive foreground class 1, the seg-

mentation map sk should fully cover the region of the kth

class, but does not overlap with the regions of the other

classes. In other words, for an accurate sk, only the ob-

ject region masked out by sk should be classified as the kth

class, while its complementary region should not. Formally,

this expectation can be satisfied by minimizing the function

LS
adv(sk) =LBCE(f

C(I ∗ sk), ỹ)+

LBCE(f
C(I ∗ (1− sk)), ŷ),

(11)

where ∗ denotes pixel-wise product. The first term repre-

sents that the object region covered by the generated seg-

mentation map, i.e. I ∗ sk, should be recognized as the kth

class by the classifier fC , but does not respond to any other

classes with the label ỹ ∈ {0, 1}N , where ỹ(k) = 1 and

ỹ(i �= k) = 0. The second term means that when the

1A positive foreground class means that the foreground class presents

in the current image, while a negative one means that it does not appear.
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region related to the kth class is masked out from the in-

put, i.e. I ∗ (1 − sk), the classifier fC should not recog-

nize the kth class anymore without influence on the other

classes, with the label ŷ ∈ {0, 1}N , where ŷ(k) = 0 and

ŷ(i �= k) = y(i �= k). Here, we note that generally the

mask can be applied to the image I or the input of any layer

of the classifier fC , and since fC is fixed, the loss function

in Eq. (11) only penalizes the segmentation branch fS .

If the kth class is a negative foreground class, the sk
should be all-zero, as no instance of this foreground class

presents. This is restrained with a response constraint term.

In this term, the top 20% response pixels of each map sk
are pooled and averaged for a classification predication op-

timized with a binary cross entropy loss as below,

LS
cls(sk) = LBCE (avgpool20%sk,y(k)) . (12)

If the kth class is labeled as negative, avgpool20%sk is en-

forced to be close to 0, i.e. all elements of the map sk should

approximately be 0. However, the above loss is also appli-

cable when the kth class is positive, avgpool20%sk should

be close to 1, agreeing with the constraint in Eq. (11).

The background is taken as a special case. In Eq. (11),

though the labels ỹ and ŷ do not involve the background

class, the background segmentation map sN+1 is also appli-

cable same as the other classes. When sN+1 is multiplied as

the first term in Eq. (11), the target label should be all-zero

ỹ = 0; when 1 − sN+1 is used as the mask in the second

term of Eq. (11), the target label should be exactly the same

as the original label ŷ = y. For Eq. (12), we assume that a

background region always appears in any input image, i.e.

y(N + 1) = 1 for all images.

Overall, the total loss of the segmentation branch in Eq.

(10) can be summarized and rewritten as follows,

LS = λS
adv

∑
k if y(k)=1

LS
adv(sk) + λS

cls

N+1∑
k=1

LS
cls(sk), (13)

where λ S
adv and λ S

cls denote balance weights.

After optimizing Eq. (13), following the adversarial

manner, the segmentation branch fS is fixed, and the clas-

sifier fC is further optimized with the following objective,

LC
adv(sk) = LBCE(f

C(I ∗ (1− sk)),y), (14)

LC = LBCE(f
C(I),y) +

∑
k if y(k)=1

LC
adv(sk). (15)

The objective LC consists of a classification loss and an ad-

versarial loss LC
adv . The target of the classifier fC should

always be y, since it aims at digging out the remaining ob-

ject regions, even if sk is masked out.

Our idea for designing the segmentation branch shares

the same adversarial spirit with [31], but our design is more

efficient compared with [31] that recurrently performs sev-

eral forward passes for one segmentation map. Besides, we

do not have the trouble of deciding number recurrent steps

as [31], which may vary with different objects.

3.3. Collaboration Mechanism

A dynamic collaboration loop is designed to complement

both detection and segmentation for more accurate predic-

tions, namely neither so large that cover the background nor

so small that degenerate to object parts.

Segmentation Instructs Detection. As mentioned, the

detection branch is easy to over-fit to discriminative parts,

while the segmentation can cover the whole object region.

So naturally, the segmentation map can be used to refine

the detection results by making the proposal having a larger

IoU with the corresponding segmentation map have a higher

score. This is achieved by re-weighting the instance classi-

fication probability matrix Dm in Eq. (2) in the detection

branch by using a prior probability matrix Dseg stemming

from the segmentation map as follows,

D̂m = Dm �Dseg, (16)

where Dseg(i, k) denotes the overlap degree between the

ith object proposal and the connected regions from the kth

segmentation map. Dseg is generated as below:

Dseg(i, k) = maxj IoU(ŝkj ,bi) + τ0. (17)

Here, ŝkj denotes the jth connected component under

threshold Tc in the segmentation map sk, and IoU(ŝkj ,bi)
denotes the intersection over union between ŝkj and the ob-

ject proposal bi. The constant τ0 adds a fault-tolerance for

the segmentation branch. Each column of Dseg is normal-

ized by its maximum value, to make it range within [0, 1].

With the re-weighting in Eq. (16), the object propos-

als only focusing on local parts are assigned with lower

weights, while those proposals precisely covering the ob-

ject stand out. The connected components are employed to

alleviate the issue of multiple instance occurrences, which

is a hard case for weakly supervised object detection. The

recent TS2C [32] objectness rating designed for solving this

issue is also tested in place of IoU with connected compo-

nents, but no superiority shows in our case.

The re-weighted probability matrix D̂m replaces Dm in

Eq. (3) and further instructs the MIDN as in Eq. (18) and

the refinement module as in Eq. (19):

LD←S
mil =

∑
j
LBCE

(∑
i
D̂m(i, j),y(j)

)
, (18)

LD←S
ref =

∑
j

∑
i
LCE

(
Dr(i, j), Ŷr(i, j)

)
, (19)

where Ŷr denotes the pseudo labels deriving from D̂m as

that in Eq. (4). Finally, the overall objective of the detection

branch in Eq. (7) is reformulated as below,

LD←S = λD
milL

D←S
mil + λD

refL
D←S
ref . (20)

Detection Instructs Segmentation. Though the detec-
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tion boxes may not cover the whole object, they are effec-

tive for distinguishing an object from the background. To

guide the segmentation branch, a detection heatmap Sdet ∈
[0, 1](N+1)×h×w is generated, which can be seen as an ana-

log of the segmentation map. Each channel sdetk � Sdet(k, :
, :) corresponds to a heatmap for the kth class. Specifically,

for the positive class k, each proposal box contributes its

classification score to all pixels within this proposal and

thus generates the sdetk by

sdetk (p, q) =
∑

i if (p,q)∈bi

D(i, k), (21)

while the other sdetk corresponding to negative classes are

set to zero. Then, sdetk is normalized by its maximum re-

sponse and the background heatmap sdetN+1 can be simply

calculated as the complementary set of the foreground, i.e.

sdetN+1 = 1−maxk∈{1,...,N} s
det
k . (22)

To generate pseudo category label for each pixel, the soft

segmentation map Sdet is first discretized by taking the ar-

guments of the maxima at each pixel and then the top 10%

pixels for each class are kept, while other ambiguous ones

are ignored. The generated label is denoted by ψ(Sdet), and

the instructive loss is formulated as below:

LS←D
seg = LCE(S, ψ(S

det)). (23)

Therefore, the loss function of the whole segmentation

branch in Eq. (13) is now updated to

LS←D = LS + λS
segL

S←D
seg . (24)

Overall Objective. With the updates in Eq. (20) and Eq.

(24), the final objective for the entire network is

argminfE ,fS ,fDL = LS←D + LD←S . (25)

Briefly, the above objective is optimized in an end-to-end

manner. The image classifier fC is optimized with the loss

LC alternatively, as most adversarial methods. The opti-

mization can be easily conducted using gradient descent.

For clarity, the training and the testing of our SDCN are

summarized in Algorithm 1.

In the testing stage, as shown in Algorithm 1, only the

feature extractor fE and the refinement module fDr

are

needed, which make our method as efficient as [25].

4. Experiments

We evaluate the proposed segmentation-detection col-

laborative network (SDCN) for weakly supervised object

detection to prove its advantages over the state-of-the-arts.

4.1. Experimental Setup

Datasets. The evaluation is conducted on two commonly

used datasets for weakly supervised detection, including the

PASCAL VOC 2007 [11] and 2012 [10]. The VOC 2007

Algorithm 1 Training and Testing SDCN

Input: training set with category labels T1 = {(I,y)}.

1: procedure TRAINING

2: forward SDCN fE(I)→x, fD(x)→D, fS(x)→S,

3: forward the classifier fC(sk∗I) and fC((1−sk)∗I),
4: generate variables Dseg and Sdet with S and D,

5: compute LD←S in Eq.(20) and LS←D in Eq.(24),

6: backward the loss L = LD←S +LS←D for SDCN,

7: compute and backward the loss LC for fC ,

8: continue until convergence.

Output: the optimized SDCN (fE and fD) for detection.

Input: test set T2 = {I}.

1: procedure TESTING

2: forward SDCN fE(I) → x, fDr

(x) → D,

3: post-process for detected bounding boxes with D.

Output: the detected object bounding boxes for T2.

dataset includes 9,963 images with total 24,640 objects in

20 classes. It is divided into a trainval set with 5,011 images

and a test set with 4,952 images. The more challenging

VOC 2012 dataset consists of 11,540 images with 27,450

objects in trainval set and 10,991 images for test. In our

experiments, the trainval split is used for training and the

test set is for testing. The performance is reported in terms

of two metrics: 1) correct localization (CorLoc) [6] on the

trainval spilt and 2) average precision (AP) on the test set.

Implementation. For the backbone network fE , we use

the VGG-16 [20]. For fD, the same architecture as that

in OICR [32] is employed. For fS , similar segmentation

header to the CPN [4] is adopted. For the adversarial clas-

sifier fC , ResNet-101 [15] is used and the segmentation

masking operation is applied after the res4b22 layer.

We follow a three-step training strategy: 1) the classifier

fC is trained with a fixed learning rate 5 × 10−4 until its

convergence; 2) the segmentation branch fS and detection

branch fD are pre-trained without collaboration; 3) the en-

tire architecture is trained following the end-to-end manner.

The SDCN runs for 40k iterations with learning rate 10−3,

following 30k iterations with learning rate 10−4. The same

multi-scale training and testing strategies in OICR [25] are

adopted. To achieve balanced impacts between detection

and segmentation branches, the weights of the losses are

simply set to make the gradients have similar scales, i.e.

λS
adv = 1, λS

cls = 0.1, λS
seg = 0.1, λD

mil = 1 and λD
ref = 1,

respectively. The constant τ0 in Eq. (17) and the threshold

Tc is empirically set to 0.5 and 0.1, respectively.

4.2. Ablation Studies

Our ablation study is conducted on VOC 2007 dataset.

Five weakly supervised strategies are compared and the

results are shown in Table 2. The baseline detection

method without the segmentation branch is the same as
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Input image Without collaboration With collaboration

(a) Segmentation (b) Detection

Figure 3: Visualization of the segmentation and the detection results without and with collaboration. In (a), the columns

from left to right are the original images, the segmentation map obtained without and with the collaboration loop. In (b), the

detection results of OICR[25] without consideration of collaboration, and the proposed method with collaboration loop are

shown with red and green boxes, respectively. (Absence of boxes means no detected object given the detection threshold.)

the OICR[32]. Another naive consideration is directly in-

cluding the detection and segmentation modules in a multi-

task manner without any collaboration between them. The

model where only segmentation branch instructs detection

branch is also tested. Its mAP is the lowest, since the mean

intersection over union (mIoU) between the segmentation

results and the ground-truth drops from 37% to 25.1% with-

out the guidance of detection branch, which proves that

these two branches should not collaborate in one-way. The

model can also be trained without the generative adversar-

ial localization strategy, but its performance drops. Our full

method achieves the highest mAP. It can be observed that

the proposed method improves all baseline models by large

margins, demonstrating the effectiveness and necessity of

the generative adversarial localization strategy and the col-

laboration loop.

The segmentation masks and detection results without

and with the collaboration are visualized in Fig. 3. As ob-

served in Fig. 3a, with the instruction from the detection

branch, the segmentation map becomes much more pre-

cise with fewer confusions between the background and the

class-related region. Similarly, as shown in Fig. 3b, the

baseline approach inclines to mix discriminative parts with

target object bounding boxes, while with the guidance from

segmentation the more complete objects are detected. The

visualization clearly illustrates the benefits to each other.

4.3. Comparisons With State-of-the-Arts

All comparison methods are first evaluated on VOC 2007

as shown in Table 3 and Table 4 in terms of mAP and Cor-

Loc. Among single-stage methods, our method outperforms

others on the most categories, leading to a notable improve-

ment on average. Especially, our method performs much

better than the state-of-the-arts on “boat”, “cat”, “dog”, as

Det. branch Seg. branch Seg. → Det. Det. → Seg. Adv. Loc. mAP
√

41.2√ √ √
41.3√ √ √ √
36.8√ √ √ √
46.0√ √ √ √ √
50.2

Table 2: mAP (in %) of different weakly supervised strate-

gies with the same backbone on the VOC 2007 dataset.

our approach leans to detect more complete objects, though

in most cases instances of these categories can be identified

by parts. Moreover, our method produces significant im-

provements compared with the OICR[25] with exactly the

same architecture. The most competitive method [26] is de-

signed for weakly supervised object proposal, which is not

really competing but complementary to our method, and re-

placing the fixed object proposal in our method with [26]

potentially improves the performance. Besides, the perfor-

mance of our single-stage method is even comparable with

the multiple-stage methods [25, 32, 33, 30], illustrating the

effectiveness of the proposed dynamic collaboration loop.

Furthermore, all methods can be enhanced by training

with multiple stages, as shown at the bottom of Table 3. Fol-

lowing [32], the top scoring detection bounding boxes from

SDCN is used as the labels for training a Fast RCNN [13]

with the backbone of VGG16, denoted as SDCN+FRCNN.

By this simple multi-stage training strategy, the perfor-

mance can be further boosted to 53.7%, which surpasses all

the state-of-the-art multiple-stage methods, though [25, 26]

use more complex ensemble models. It is noted that the ap-

proaches, e.g. HCP+DSD+OSSH3[16] and ZLDN-L[33],

attempt to design more elaborate training mechanism by us-

ing self-paced or curriculum learning. We believe that the

performance of our model SDCN+FRCNN can be further
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Methods aero bike bird boat bottle bus car cat chair cow table dog horse mbike person plant sheep sofa train tv mAP

Single-stage

WSDDN-VGG16 [2] 39.4 50.1 31.5 16.3 12.6 64.5 42.8 42.6 10.1 35.7 24.9 38.2 34.4 55.6 9.4 14.7 30.2 40.7 54.7 46.9 34.8

OICR-VGG 16 [25] 58.0 62.4 31.1 19.4 13.0 65.1 62.2 28.4 24.8 44.7 30.6 25.3 37.8 65.5 15.7 24.1 41.7 46.9 64.3 62.6 41.2

MELM-L+RL[30] 50.4 57.6 37.7 23.2 13.9 60.2 63.1 44.4 24.3 52.0 42.3 42.7 43.7 66.6 2.9 21.4 45.1 45.2 59.1 56.2 42.6

TS2C [32] 59.3 57.5 43.7 27.3 13.5 63.9 61.7 59.9 24.1 46.9 36.7 45.6 39.9 62.6 10.3 23.6 41.7 52.4 58.7 56.6 44.3

[26] 57.9 70.5 37.8 5.7 21.0 66.1 69.2 59.4 3.4 57.1 57.3 35.2 64.2 68.6 32.8 28.6 50.8 49.5 41.1 30.0 45.3

SDCN (ours) 59.4 71.5 38.9 32.2 21.5 67.7 64.5 68.9 20.4 49.2 47.6 60.9 55.9 67.4 31.2 22.9 45.0 53.2 60.9 64.4 50.2

Multiple-stage

WSDDN-Ens. [2] 46.4 58.3 35.5 25.9 14.0 66.7 53.0 39.2 8.9 41.8 26.6 38.6 44.7 59.0 10.8 17.3 40.7 49.6 56.9 50.8 39.3

HCP+DSD+OSSH3[16] 52.2 47.1 35.0 26.7 15.4 61.3 66.0 54.3 3.0 53.6 24.7 43.6 48.4 65.8 6.6 18.8 51.9 43.6 53.6 62.4 41.7

OICR-Ens.+FRCNN[25] 65.5 67.2 47.2 21.6 22.1 68.0 68.5 35.9 5.7 63.1 49.5 30.3 64.7 66.1 13.0 25.6 50.0 57.1 60.2 59.0 47.0

MELM-L2+ARL[30] 55.6 66.9 34.2 29.1 16.4 68.8 68.1 43.0 25.0 65.6 45.3 53.2 49.6 68.6 2.0 25.4 52.5 56.8 62.1 57.1 47.3

ZLDN-L[33] 55.4 68.5 50.1 16.8 20.8 62.7 66.8 56.5 2.1 57.8 47.5 40.1 69.7 68.2 21.6 27.2 53.4 56.1 52.5 58.2 47.6

TS2C+FRCNN [32] – – – – – – – – – – – – – – – – – – – – 48.0

Ens.+FRCNN[26] 63.0 69.7 40.8 11.6 27.7 70.5 74.1 58.5 10.0 66.7 60.6 34.7 75.7 70.3 25.7 26.5 55.4 56.4 55.5 54.9 50.4

SDCN+FRCNN (ours) 59.8 75.1 43.3 31.7 22.8 69.1 71.0 72.9 21.0 61.1 53.9 73.1 54.1 68.3 37.6 20.1 48.2 62.3 67.2 61.1 53.7

Table 3: Average precision (in %) for our method and the state-of-the-arts on VOC 2007 test split.

Methods aero bike bird boat bottle bus car cat chair cow table dog horse mbike person plant sheep sofa train tv CorLoc

Single-stage

WSDDN-VGG16 [2] 65.1 58.8 58.5 33.1 39.8 68.3 60.2 59.6 34.8 64.5 30.5 43.0 56.8 82.4 25.5 41.6 61.5 55.9 65.9 63.7 53.5

OICR-VGG16 [25] 81.7 80.4 48.7 49.5 32.8 81.7 85.4 40.1 40.6 79.5 35.7 33.7 60.5 88.8 21.8 57.9 76.3 59.9 75.3 81.4 60.6

TS2C [32] 84.2 74.1 61.3 52.1 32.1 76.7 82.9 66.6 42.3 70.6 39.5 57.0 61.2 88.4 9.3 54.6 72.2 60.0 65.0 70.3 61.0

[26] 77.5 81.2 55.3 19.7 44.3 80.2 86.6 69.5 10.1 87.7 68.4 52.1 84.4 91.6 57.4 63.4 77.3 58.1 57.0 53.8 63.8

SDCN (ours) 85.0 83.9 58.9 59.6 43.1 79.7 85.2 77.9 31.3 78.1 50.6 75.6 76.2 88.4 49.7 56.4 73.2 62.6 77.2 79.9 68.6

Multiple-stage

HCP+DSD+OSSH3[16] 72.7 55.3 53.0 27.8 35.2 68.6 81.9 60.7 11.6 71.6 29.7 54.3 64.3 88.2 22.2 53.7 72.2 52.6 68.9 75.5 56.1

WSDDN-Ens. [2] 68.9 68.7 65.2 42.5 40.6 72.6 75.2 53.7 29.7 68.1 33.5 45.6 65.9 86.1 27.5 44.9 76.0 62.4 66.3 66.8 58.0

MELM-L2+ARL[30] – – – – – – – – – – – – – – – – – – – – 61.4

ZLDN-L[33] 74.0 77.8 65.2 37.0 46.7 75.8 83.7 58.8 17.5 73.1 49.0 51.3 76.7 87.4 30.6 47.8 75.0 62.5 64.8 68.8 61.2

OICR-Ens.+FRCNN[25] 85.8 82.7 62.8 45.2 43.5 84.8 87.0 46.8 15.7 82.2 51.0 45.6 83.7 91.2 22.2 59.7 75.3 65.1 76.8 78.1 64.3

Ens.+FRCNN[26] 83.8 82.7 60.7 35.1 53.8 82.7 88.6 67.4 22.0 86.3 68.8 50.9 90.8 93.6 44.0 61.2 82.5 65.9 71.1 76.7 68.4

SDCN+FRCNN (ours) 85.0 86.7 60.7 62.8 46.6 83.2 87.8 81.7 35.8 80.8 57.4 81.6 79.9 92.4 59.3 57.5 79.4 68.5 81.7 81.4 72.5

Table 4: CorLoc (in %) for our method and the state-of-the-arts on VOC 2007 trainval split.

Methods mAP CorLoc

Single-stage

OICR-VGG16 [25] 37.9 62.1

TS2C [32] 40.0 64.4

[26] 40.8 64.9

SDCN (ours) 43.5 67.9

Multiple-stage

MELM-L2+ARL[30] 42.4 –

OICR-Ens.+FRCNN [25] 42.5 65.6

ZLDN-L[33] 42.9 61.5

TS2C+FRCNN [32] 44.4 –

Ens.+FRCNN[26] 45.7 69.3

SDCN+FRCNN (ours) 46.7 69.5

Table 5: mAP and CorLoc (in %) for our method and the

state-of-the-arts on VOC 2012 trainval split.

improved by adopting such algorithms. The comparison

methods are further evaluated on the more challenging VOC

2012 dataset, as shown in Table 5. As expected, the pro-

posed method achieves significant improvements with the

same architecture as [25, 32], demonstrating its superiority.

Overall, our SDCN significantly improves the perfor-

mance of weakly supervised object detection on average,

benefitting from the deep collaboration of segmentation and

detection. However, there are still several classes on which

the performance is relatively lower as shown in Table 3, e.g.

“chair” and “bottle”. The main reason is the large portion of

occluded and overlapped samples for these classes, which

leads to incomplete or connected responses on the segmen-

tation map and bad interaction with the detection branch,

leaving room for further improvements.

Time Cost. Our training speed is roughly 2× slower

than that of the baseline OICR [25], but the testing time

costs of our method and OICR are the same, since they

share exactly the same architecture of the detection branch.

5. Conclusions and Future Work

In this paper, we present a novel segmentation-detection

collaborative network (SDCN) for weakly supervised

object detection. Different from the previous works, our

method exploits a collaboration loop between segmentation

task and detection task to combine the merits of both.

Extensive experimental results safely reach the conclusion

that our method successfully exceeds the previous state-

of-the-arts, while it keeps efficiency in the inference stage.

The design of SDCN may be more elaborate for densely

overlapped or partially occluded objects, which is more

challenging and left as future work.
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