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MUCH: MUtual Coupling enHancement of scene recognition
and dense captioning

ID: 254

ABSTRACT

Due to the abstraction of scenes, comprehensive scene understand-
ing requires semantic modeling in both global and local aspects.
Scene recognition is usually researched from a global point of view,
while dense captioning is typically studied for local regions. Previ-
ous works separately research on the modeling of scene recogni-
tion and dense captioning. In contrast, we propose a joint learning
framework that benefits from the mutual coupling of scene recog-
nition and dense captioning models. Generally, these two tasks are
coupled through two steps, 1) fusing the supervision by consid-
ering the contexts between scene labels and local captions, and
2) jointly optimizing semantically symmetric LSTM models. Par-
ticularly, in order to balance bias between dense captioning and
scene recognition, a scene adaptive non-maximum suppression
(NMS) method is proposed to emphasize the scene related regions
in region proposal procedure, and a region-wise and category-wise
weighted pooling method is proposed to avoid over attention on
particular regions in local to global pooling procedure. For the
model training and evaluation, scene labels are manually annotated
for Visual Genome database. The experimental results on Visual
Genome show the effectiveness of the proposed method. Moreover,
the proposed method also can improve previous CNN based works
on public scene databases, such as MIT67 and SUN397.
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1 INTRODUCTION

Typically, the scenes (e.g., coast, bedroom, and street) are abstract
entities that consist of many less abstract regions such as objects
(e.g., tables, chairs, and cars) or themes (e.g., water, and rock). The
representations of scenes are essentially studied with local features.
Classical approaches [16, 30, 34] exploit the handcrafted features
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Scene: parking lot Scene: highway

(a) (b)
Scene: train station Scene: railroad track

(c) (d)

Figure 1: Some examples of understanding scene imagewith

both scene labels and local annotations. Figure (a-b) illus-

trate that how scene labels can guide dense captioning, for

instance cars usually stop in parking lot, but run onhighway.

And Figure (c-d) show that some particular local captions

may be helpful to distinguish similar scenes, such as train

station and railroad track, with co-occurrence of trains.

(e.g., SIFT [21]), while recent works [5, 6, 11] exploit local (multi-
scale) features of convolutional neural networks (CNN). In addition,
some studies [13, 22] have shown that the object presences can be
used as representations (such as object banks[18], topic models[8,
19], and discriminative parts [14]), which are particularly effective
when the objects consistently appear in the related scenes. However,
due to the limited category number of the common objects, object
co-occurrences in different scenes are unavoidable in real world.
Representing scenes with object presence may easily lead to the
inter-class similarity to scenes with object co-occurrences, suffering
the limitation of lacking discrimination. Thus in contrast to object
presence, learning image representations with less information
co-occurring between scenes is an important research to scene
recognition.

On one hand, representing images with local captions provides
the desired local information for (global) scene recognition. In ad-
dition to objects, local captions contain detailed contexts, such as
themes, relatively relations, and attributes, which are more helpful
to distinguish those scenes that are confused by the object co-
occurrences. For instance in Fig. 1 (c-d), not only object (“train”) is
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detected, but also attributes, such as “Three car train”, “Two red train
tracks” and “Waiting area for passengers”, and relatively relation,
such as “Door parked at platform” are detected. Although such
two images (of different scenes) contain co-occurrence of “train”,
other components of local captions like “platform” (in Fig. 1 (c))
and “tracks” in (in Fig. 1 (d)) are helpful to distinguish the scenes
of those images. Thus, integrating scene labels after local captions
like that in Fig. 1 (c-d) can benefit scene recognition from taking
local captions as richer context information.

However, current caption decoding models [12, 37] focus more
on describing regional objects or themes, which may lead to bias
to scene recognition. For instance the duplicate annotations (of
local captions) of regions is one limitation for scene recognition. In
contrast to recognition task where one region usually corresponds
to one exact category without heavily overlapping with other re-
gions, some (spatially) closed regions may be multiply annotated
as local captions from different aspects, such as attributes, rela-
tions and actions. This is caused by the bias between the goals
of recognition and captioning. The former requires discriminative
representations and classifiers, while the latter is more friendly
to human understanding. Particularly, this duplicate problem may
limit scene recognition in the following aspects: 1) multiple cap-
tions of the closed regions with semantic gap may confuse the
scene classifiers; 2) too many duplicates may lead to over attention
on some particular regions rather than the whole images. These
limitations motivate us to propose region-wise and category-wise
pooling method to address such bias problem.

On the other hand, recognizing scene labels provides global
context for dense captioning.. For instance in Fig. 1 (a-b), when
integrating the scene labels parking lot or highway before the local
captions “A blue jeep stops in spot” or “a silver car runs on the road”,
the scene labels can be regarded as (globally) guiding information
for training dense captioning model. Generally, in parking lot, a
jeep probably stops there (see Fig. 1 (a)), but in highway, a car
may run on road (see Fig. 1 (b)). Scene labels are the most abstract
description of images, which may be used as global context to guide
the selection of local captions (regions). Moreover, one limitation
of current dense captioning is the lack of category label for region
filtering, while object labels are included into the the process of
non-maximum suppression (NMS) in object detection framework
such as Faster R-CNN [28]. Thus, inspiring by category-wise NMS
in Faster R-CNN and the semantically contextual relations between
scene labels and local captions, a scene adaptive NMS is required
for the dense captioning of scene images.

Scene recognition and dense captioning have potentials to com-
plement each other. However, previous works separately model
these two tasks, have not made attempts to simultaneously inte-
grate them in a joint architecture. In this paper, we propose a joint
framework with mutual coupling of both scene recognition and
dense captioning (see Fig. 2), where two semantically symmetric
long short termmemory (LSTM) models are jointly trained with the
supervision obtained by the contextual fusion of local captions and
scene labels. Particularly, a scene adaptive NMS and a region- and
category-wise weighted pooling are proposed to balance the bias
between dense captioning and scene recognition. Scene recognition
is to predict scene labels of the global images, requiring category

discrimination to distinguish scenes, while dense captioning usu-
ally focuses on particular regions, mostly requiring understandable
descriptions for regions. The scene adaptive NMS is proposed to re-
order the regions proposals to emphasize the scene related regions,
while filtering the unrelated and overlapped ones. Region-wise
pooling is proposed to weighted regions with the area size, and
category-wise pooling is proposed to measure category-wise union
area, avoiding over attentions on the particular regions with dupli-
cate proposals. For model training and evaluations, the scene labels
are manually annotated for Visual Genome [15]. Besides Visual
Genome, we also adapt our model to improve the performances of
other public scene recognition databases, such as MIT67 [25] and
SUN397 [36].

In addition, research on jointly training models of scene recogni-
tion and dense captioning requires annotations of both scene labels
and local captions. Current databases either only contain scene la-
bels, such as MIT67 indoor [25], SUN397 [36] and Places365 [39], or
only contains annotation of local captions, such as Visual Genome
[15]. Since scene labels are easier to be annotated, we organize the
scene annotation on Visual Genome database, obtaining both scene
labels and local captions with over 30K images, making it capable of
training joint models of scene recognition and dense captioning. In
addition to separately using two types of annotations, we particu-
larly propose to integrate scene labels and local captions into more
complete annotations. Particularly, scene labels and local captions
are integrated in semantically symmetric ways. On one hand, for
instance, the scene label such as coast is integrated into the start
of local caption such as “An orange car on the sand”, resulting in
the new caption “In coast an orange car on the sand”, where scene
label can be used as (globally) guiding information for training
dense captioning model. On the other hand, the scene label also
can be integrated into the end of local caption, resulting in the new
caption “An orange car on the sand in coast” , where local captions
can be decoded as (locally) contextual features for training scene
recognition model.

2 RELATEDWORKS

2.1 Scene recognition

Conventional works [16, 30, 34] extract the handcrafted features
(e.g., SIFT [21]) for scene recognition. Due to the semantic gap
between the high-level (abstract) scenes and low-level visual fea-
tures, a number of methods [4, 17, 18, 31, 33] try to use mid-level
representations to shrink such gap. Vogel and Schiele [33] propose
to use a vocabulary with nine mid-level categories to represent
natural scenes. Object-bank [17, 38] is proposed as a type of mid-
level representation that encodes the response of object classifiers
at different positions in the images. Classemes [4, 31] are the in-
termediate representations that are extracted with a set of 2659
classifiers of mid-level categories. These methods require explic-
itly training corresponding mid-level classifiers with large scale
preciously annotations of mid-level concepts. However, the low
quality of annotations and classifiers limits the performance of
those methods. More recent variants exploit discriminative parts,
which are unknown and discovered during learning [2, 7, 14, 25].
The complexity of mining unknown patterns limits those methods
from implementing on large scale databases.
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Figure 2: The framework of joint scene recognition and dense captioning.

With the exciting performance on object detection and recog-
nition, CNN models are also exploited in recent works [5, 6, 11]
to extract local (multi-scale) features. More recently, some works
[3, 9, 35] also implement object detection techniques, including
R-CNN [10] and Faster R-CNN [28] for scene recognition. George
et al. [9] propose to represent scene images with the distributions
of object presences (obtained by object detection technique), which
are optimized to distinguish fine-grained scenes by semantic clus-
tering. Bappy et al. [3] combine automatic object detection and
manual annotation of objects in a framework of active learning,
which is trained for scene recognition. Wang et al. [35] extract local
features with R-CNN, and local features are embedded with Fisher
Vector. Some studies [13, 22] have shown that consistent object
presences are more helpful to facilitate scene recognition, however,
which can hardly be guaranteed in real world.

2.2 Image captioning

The goal of image captioning is to generate descriptions for images.
With the development of deep learning architectures, recent works
of image captioning [23, 32] essentially follow the similar CNN-
RNN pipeline, which is inspired from the frameworks of machine
translation [1], where the sentence in the source language can
be translated to a new sentence in the target language through
a cascade of encoding and decoding processes. While in image
captioning, the visual (CNN) features are particularly considered
as the source language.

Recently, dense captioning models [12, 37] are proposed to gen-
erate local captions. The framework of dense captioning is inspired
by object detection framework of Faster R-CNN [28], which first
apply the region proposal network (RPN) to obtain dense proposals.
Then a multi-loss layer, consisting of a loss layer of the coordinates
of bounding boxes and a loss layer of object labels, is included for
the further detection. In the framework of Densecap [12], the loss
layer of object labels is replaced with the long short term memory
(LSTM) model. Then Yang et al. propose to improve Densecap with

Table 1: Evaluation of NMS (of dense captioning model) on

Visual Genome V1.4

NMS
mAP (%)

Order IoU

None
1 0.45
0.4 1.12

Yes
1 5.39
0.4 8.75

context features, which are the hidden CNN features extracted from
the global image.

In addition to the implicitly semantic context of features, we
propose to include the scene labels as the explicitly semantic context
in this paper. And the proposed framework can also be used for
scene recognition task.

3 JOINT MODEL OF SCENE RECOGNITION
AND DENSE CAPTIONING

The proposed framework (see Fig. 2) is designed for simultane-
ously captioning regions of images and recognizing scenes, which
is inspired by [37]. In addition to [37], the scene information is par-
ticularly included from different aspects in the proposed framework.
First, the scene labels are manually integrated into the annotations
of captions. Second, the proposed framework consists of two de-
coding (i.e., LSTM) models, one of them is guided by the scene
information, and another is designed to predict local scenes by
decoding the captions. Particularly for dense captioning, we also
propose scene adaptive NMS to filter overlapped proposals.

3.1 Dense captioning guided by scenes

One branch of the decoder is designed for captioning regions with
the guiding of scene information. Previously, captions of Visual
Genome [15] are annotated to describe all salient components of
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images without constraint nor guiding information. While with
the context features as guiding information, the dense captioning
model of [37] outperforms Densecap [12] in a large margin. In
order to represent scenes, we propose to use explicit scene labels as
guiding information, which are manually included at the beginning
of each annotation of captions. For instance, “An orange car on the
sand” is extended to “In coast an orange car on the sand ”. Note that
the first two words are constrained to be “in scene” with a separated
vocabulary that is particularly designed for scenes.

Since LSTM model decodes features in a sequential order, includ-
ing scene labels in the beginning of the annotations can maximize
the influence of scenes, which is equivalent to guiding the process
of decoding with scenes. For each image, guiding with such unified
semantic information brings two types of benefits. On one hand,
scenes can be regarded as the global context, which implicitly build
the correlations between captions of each image, or captions of
different images but annotated with the same scene category. On
the other hand, scene labels increase the variety and richness of the
local captions. For convenience, we denote this model as LSTM-C
for the rest of paper.

3.2 Decoding captions for scene recognition

Another branch of the decoder is designed for scene recognition
of regions. In contrast to the captioning branch, scene labels are
included at the end of each annotations of captions. For instance,
“An orange car on the sand” is extended to “An orange car on the
sand in coast”. Since the LSTM model decodes features to captions
sequentially, the former captions (before the appearance of scene
labels) are decoded as the obtained contexts for predicting scene
labels (in the end). During training, all the annotated captions are
integrated with “in scene”. In order to emphasize the scenes, the last
two words are constrained to be “in scene” by using a vocabulary
that is separated from other captions. For convenience, we denote
this model as LSTM-S for the rest of paper.

3.3 Semantic adaptive NMS

In previous works [12, 37], the overlapped regions are filtered by
the non-maximum suppression (NMS) algorithm, which is inspired
by the object detection framework of Faster R-CNN [28]. In the
process of NMS, all the proposals are first ranked by the confidence
score. Then the proposals with higher confidence score are used
as references to filter the overlapped proposals with lower scores.
Particularly, there are two stages of NMS, including the first NMS
after region proposal network (RPN) and the second NMS after
semantic regression (such as the regression of object labels in Faster
R-CNN, and the LSTM decoding in dense captioning). Since LSTM
decoding does not provide any confidence score, previous dense
captioning frameworks lack of semantic driven NMS.

Note that NMS is key to obtaining good performance of dense
captioning, particularly, a reasonable order is also important. The
comparisons in Table 1 can illustrate the effective of NMS in dense
captioning framework. NMS with “none order” means that all the
proposals are in a random order, NMS with order means ranking
proposals by the confidence score of RPN. Intersection-over-Union
(IoU) is used to drop overlapped proposals with IoU larger than
a threshold. IoU = 1 means not dropping anyone. Both ordering

and dropping overlapped impact the performances. It can be ob-
served in Table 1, even without dropping any overlapped proposals,
only ordering the proposals with the RPN scores obtains the mAP
of 5.39%, outperforming the strategy that includes dropping with
“none order” (obtaining the mAP of 1.12%) in a large margin. Thus,
a suitable order is more necessary in NMS.

We propose scene adaptive NMS for dense captioning, where
scene labels (predicted by scene classifiers) are used as guiding in-
formation. First, the proposals of LSTM-C and LSTM-S are merged
together, then a mixed score function is defined for ordering. The
score function is as follow: σ (pi ) = R (pi )+λM (s,k), where R (pi )is
the RPN score of proposal pi , s = [w1,w2, ...,wK ] is the correspond-
ing softmax output (probability distribution) of scene label of each
proposal pi , K is the number of scene categories,M () is matching
score of scenes, k is the scene label predicted by using global CNN

features. M (s,k) =

{
wk , wk = max (s)

0, wk < max (s)
. All proposals are first

ranked with σ (pi ), then the overlapped proposals with lower score
are dropped during NMS.

4 REGION-WISE AND CATEGORY-WISE
WEIGHTED POOLING

The outputs of LSTM-S and LSTM-C in the proposed framework
can be used for scene recognition. However, due to the bias between
the goal of dense captioning and scene recognition, it requires some
methods to balance them. Dense captioning model usually focuses
on some salient objects or themes, and generates descriptions of
them in high density. While over focusing on some particular re-
gionsmaymislead the scene classifiers, since scene classifiers finally
require a global point of view of the scene. In this section we first
analysis the feasibility of recognizing scenes with local captions.
In order to exclude the factors out of captions, the analysis is first
evaluated with the annotation (groundtruth) of local captions with
a joint model of LSTM and Multi-layer Perceptron (MLP). Then the
weighted pooling methods are proposed to address the problem
caused by the duplicate bounding boxes, aiming to balance the bias
between dense captioning and scene recognition. Also, a compari-
son of using different types of caption based features are discussed,
such as decoding hidden states, encoding hidden states or softmax
output of the corresponding scene labels.

4.1 Analysis of local caption

Since Visual Genome database is proposed to describe the rich infor-
mation of images, many local captions are annotated for the salient
objects or regions. Particularly, some salient regions are annotated
with duplicated bounding boxes of various content of captions.
However, the recognition of scene labels are more reasonable to be
predicted from a balanced view of the global images. Thus, there
is a semantic bias between the tasks of annotating local captions
(basically for salient regions) and scene recognition (mainly for
global images). For instance, we illustrate several examples from
Visual Genome database in Fig. 3 (best view in color). Note that
Visual Genome does not contain scene labels of images, we organize
the annotation of scene labels for the images from Visual Genome,
the details of the annotated database are introduced in following
subsection.
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(a) scene: canal / bridge (c) scene: car_interior / bakery (e) scene: highway / airfield

(b) scene: campsite / pizzeria (d) scene: downtown / tower (f) scene:mountain / parking_lot

Figure 3: Some examples of Visual Genome. The local captions are shown on the top of bounding boxes. The bounding boxes in

red color are correctly predicted (for scene labels), while the blue ones are wrongly predicted (best view in color version). The

annotated and predicted scene labels are shown below the images (the annotated labels are in left and red color, the predicted

ones are in right and blue color). Prediction is implemented by the joint model of LSTM and scene classifier. We organize the

annotation of scene labels on this database.

The illustrated images in Fig. 3 (a-c) are some of the failed sam-
ples, i.e., the predicted labels are different to the manually anno-
tated ones. It can be observed that the failure of the prediction is
mainly caused by some particular regions (with wrong predictions),
suggesting that the local results can affect the global results. For
instance, the regions of bridge in Fig. 3 (a) confuses the classifier,
misleading the classifier to make wrong predictions to bridge (the
groundtruth is canal). Recognizing scenes depends on the global
view of images, which requires to avoid the over attention on some
particular regions that may bring the ambiguity. One intuitive way
is to weight the regions with the size of area (region-wise) during
the pooling from local to global. While for the more difficult situa-
tions, e.g., the samples in Fig. 3 (b-c), which consist many duplicate
bounding boxes of the captions about some particular objects. Par-
ticularly the objects are not that discriminative to the scenes. In
such situations, only including the region-wise weight may be not
enough to address this confusing problem. An alternative way is
to include the category-wise weight, which is based on the union
area (of regions) of each scene category. Calculating the union area
can also avoid the impacts of the duplicate bounding boxes.

4.2 Multiple types of weights in pooling

4.2.1 Region-level semantic descriptor. Each caption is encoded to
obtain a probability vector s = [w1,w2, ...wK ] with a joint model

of LSTM and scene classifier (MLP), wherewk is the probability of
corresponding category, s is the softmax output of scene classifier.
The probability vector s is also denoted as semantic multinomial
(SMN) [26, 27]. Note that the feature encoding model can be LSTM,
also can be conventional models, such as term frequency/ inverse
document frequency (TF/IDF) and word to vector (Word2Vec).

4.2.2 Region-wise weights. Since scene recognition requires mak-
ing prediction from the global view of the images, we take the
area size of the bounding boxes (of local captions) as a factor,
which is used as region-wise weights during pooling. With such
weighted pooling, the local captions describing large regions (more
closed to the global images in size) are more important than the
small ones, which may over focus on some particularly local ob-
jects. For each image I , the region-wise weights are defined as

Gr =
[
дr1 ,д

r

2 , ...,д
r

N

]
, N is number of local regions, дrn =

√
an/aI is

the region-wise weight. an , aI are the areas of region n and image
I , respectively.

4.2.3 Category-wise weights. In order to avoid the over attention
on some particular regions with duplicate bounding boxes, we
introduce the category-wise weights, which are decided by calcu-
lating the size of union area (of regions) of each scene category.
In one image, we first predict a scene label pn ∈ [1, 2, ...K] for
local caption capn with the SMNs sn = [w1,w2, ...wK ] obtained
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Table 2: Comparisons of different adaptivemethods of scene

recognition (the local caption are from the ground truth) in

accuracy (%) on VG-13K (defined in subsection 5.1)

Embedding Pooling
Accuracy (%)
SMN SVM

TF/IDF Ave 18.4 27.2
Word2Vec. Ave 22.7 35.4

LSTM

Ave 37.3 46.6
Region-wise 39.3 47.8
Category-wise 38.5 47.3

Category-region-wise 40.0 48.7

Weighted voting 29.6 38.2

Table 3: Comparisons of dense captioning on VG-108K and

VG-13K in mAP (%), * indicates our re-implementation

Method
mAP (%)

VG-108K VG-13K
Baseline [37]* 8.75 8.84

Proposed
LSTM-C 8.70 12.33
LSTM-N 8.71 13.06

LSTM-N: LSTM-C with scene adaptive NMS

by softmax of scene classifier, i.e. pn = argmaxk [w1,w2, ...wK ].
Then for each category k ∈ [1, 2, ...K], the category-wise area ak is
calculated by taking the union of all the regions that are predicted
to the corresponding scene categories. The category-wise weight
Gc =

[
дc1 ,д

c

2 ...д
c

K

]
is represented as the normalization of area ak ,

i.e.,дc
k
= ak/

∑
k ak . The category-wise weightG

c can be used to re-

weight the the local SMNs, i.e., scn = [w1,w2, ...wK ] �
[
дc1 ,д

c

2 ...д
c

K

]
.

Also note that, this weight G can be used as the features to feed
the classifier, which is equivalent to the weighted voting method.
Note that the region-wise and category-wise weights can be used
together, which is denoted as category-region-wise weights.

4.3 Comparisons of weighted pooling

With the manually annotated local captions of Visual Genome, we
compare different types of encoding and weighted pooling methods.
The results of comparison are illustrated in Table 2. The local fea-
tures are obtained with different embedding methods, e.g. TF/IDF,
Word2Vector [24] and LSTM. Then the local features are fed to
scene classifier (MLP model) to obtain local SMNs. And the local
SMNs are aggregated with different pooling methods, including
average pooling, multiple types of weighted pooling, including
region-wise, category-wise and regional-category-wise weighted
pooling, and weighted voting. Compared to different embedding
methods, the LSTM model outperforms TF/IDF and Word2Vector
with a large margin. Comparing with different pooling methods,
pooling with category-region-wise weights obtains the best per-
formances of 40.0%/48.7% with SMN/SVM. We take the scene with
maximum probability of SMNs for prediction. The results of SVM
are obtained by training SVM with SMNs.

5 EXPERIMENTS

5.1 Databases

In order to conduct experiments of scene recognition with local cap-
tions, we organize the annotation of scene labels on Visual Genome
database1. We invite more than 20 workers to take part in anno-
tating all the 108077 images of Visual Genome, which costs more
than 300 man-hours. The vocabulary of scene categories follows
the 365 scene categories of Places365 [39], which contains relatively
complete vocabulary of scenes for recognition. In our setting, 100
categories with (relatively) more images are selected, ensuring that
all the categories contains enough images (at least 130). Note that
about 20K images are not scene-centric, which are ignored in our
task. However, the long tail (unbalance distribution of the amount
of images) problem may heavily affect the evaluation. The distri-
bution of the annotated images of each category are illustrated in
Fig. 4, where top 100 categories with (relatively) more images are
selected. In our setting, we randomly select 26 images as test and
104 images as training for each category, i.e., the training/test split
is 10400/2600. Note that we exclude these test images to train the
dense captioning model. In order to separate our annotated dataset
from the original one, we denote Visual Genome as VG-108K, and
denote our dataset with scene labels as VG-13K. Scene labels are
appended to local captions in VG-13K.

We also evaluate the proposed method with the scene datasets
MIT67 indoor [25] and SUN397 [36]. MIT67 contains 15620 images
of 67 indoor scene classes. SUN397 consists of 397 categories, with
108762 images in total. In the case of MIT67 Indoor and SUN397, the
training/test configurations are provided by the original authors.

5.2 Evaluation for dense captioning

Our LSTM-C is extended from the dense captioning framework
[37], which is compared as the baseline in Table 3. On VG-13K, the
proposed methods outperform the baseline [37] in a large margin,
illustrating the effectiveness of integrating scene labels for dense
captioning. Note that for a fairer comparison on VG-13K, scene
labels are removed for the evaluation of [37] (obtains 8.84% in mAP),
otherwise, this method obtains even lower mAP 6.97% (not listed
in table). Comparing to LSTM-C, LSTM-N (LSTM-C with scene
adaptive NMS (λ = 0.2)) obtains better result of 0.73% in mAP,
which suggests that the proposed scene NMS is more helpful to
select desired regions.

5.3 Some insights of scene recognition with
local captions

In contrast to using the annotated local captions (groundtruth) in
Table 2, we also evaluate using decoded captions with LSTM-S
model on VG-13K. The amount of the local captions used for evalu-
ations are first evaluated. The evaluation of the caption amount is
illustrated in Fig. 5, where Fig. 5 (a-b) show the region level accuracy
and image level accuracy that are obtained by different models. EC
represents encoding features with local captions generated by using
[37]. EC-C represents encoding features with local captions gener-
ated by our LSTM-C. In each figure, the x axis represents the amount
(#) of generated local captions that are used for scene recognition,

1We will release the scene annotation after the reviewing period.
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Figure 4: Number (#) of image of different categories.

(a)

(b)

Figure 5: Accuracy (%) of scene recognition with different

amount of local captions on VG-13K. EC: encoded features

of local captions generated by [37] (without scene labels),

EC-C: encoded features of local captions generated by LSTM-

C (with scene labels).

actuallymore than 500 local captions can be generated from each im-
age. The resulted local captions (generated by the dense captioning
model) are in order. Then the local regions, whose confidence score

Table 4: Accuracy (%) of scene recognition on VG-13K

Caption source
Method Acc.

Places(CNN) 58.2

Annotated
EC (Ave.) 46.6
EC (CRW) 48.7

Generated

EC (Ave.) 47.3
EC (CRW) 48.8

LSTM-S (CRW) 49.6
LSTM-S (CRW) + Places (CNN) 60.2

EC: encoded feature of local caption, Ave.: average pooling
CRW: category-region-wise weighted pooling

of captions are in top L = [20, 30, 40, 50, 100, 200, 300, 400, 500] are
selected for the evaluation of scene recognition.

5.3.1 Consistent vs inconsistent trends of region and image level

accuracy. Observing from both Fig. 5 (a) and Fig. 5 (b), the two
accuracy lines (caption and image level accuracy) of EC are in
inconsistent trend, while the ones of the proposed LSTM-S are in
consistent trend. Region and image level accuracy are measured
over all the predictions (of scene labels) of local captions and images,
respectively. The region level accuracy of EC obviously drops with
the increasing amount of local captions, since the front captions are
more confident. However, the image level accuracy improves with
the increasing amount of local captions, which suggests that EC
requires more information to make a correct prediction. Compared
to EC, the proposed LSTM-S and EC-C obtain consistent results
in both region and image level accuracy, outperform EC in a large
margin in region level accuracy, and outperform EC (in image level
accuracy) even with smaller number of local captions.

5.3.2 Generated vs annotated local captions (with EC). The results
of encoding generated local captions (with LSTM-S) are shown in
Table 4. Compared to using annotated local captions, using gener-
ated ones even works better (with a gain of 0.9% in accuracy). In
order to further emphasize the differences between using annotated
and generated local captions, we include another detailed analysis
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y
e front c



Un
pu
bl
ish
ed
wo
rk
in
g
dr
af
t.

No
t f
or
di
str
ib
ut
io
n.

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

Conference’19, October 2019, Nice, France

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

Table 5: Comparisons of scene recognition on MIT67 and SUN397 in accuracy (%)

Method
Accuracy (%)

MIT67 SUN397

Baseline
Places (CNN) 81.3 67.6

ImageNet (MS-CNN) 75.8 60.8

Proposed

EC (CRW) 63.8 44.8
LSTM-S (CRW) 64.9 45.8

LSTM-S (CRW) + Places (CNN) 82.8 68.4
LSTM-S (CRW) + Places (CNN) + ImageNet (MS-CNN) 87.4 72.6

State-of-the-art

Semantic-FV[5] 79.0 61.7
Hybrid-CNN [39] 79.5 61.8

Places (CNN) + ImageNet (MS-CNN)[6] 87.2 71.1
Dual CNN-DL [20] 86.4 70.1

EC: encoded features of local caption, CRW: category-region-wise weighted pooling
MS-CNN: multi-scale CNN

Figure 6: Accuracy (%, obtained by using EC) with annotated

local captions VG-108K, distinguished by the number of lo-

cal captions (e.g., the first bar represents the accuracy of im-

ages that contain 40 to 50 local captions).

of accuracy distribution (obtained by using EC) of using annotated
captions that is categorized by the amount of local captions in
Fig. 6. The results of Fig. 6 represent the accuracy of images that
exactly contain corresponding number of local captions, e.g., the
first bar represents the accuracy of images that contain 40 to 50
local captions. It can be observed that accuracy improves with the
increasing of the number of local captions, where the accuracy of
images with most local captions (last bar) is more than 30% higher
the accuracy of images with least local captions. Thus, the lack of
captions also limits the performance of using EC. Although the
generated local captions seems not as confident as the annotated
ones, after integrating scene labels into the annotations of local
captions, the proposed LSTM-S model outperforms EC (with an-
notated captions). This may be caused by two reasons, one reason
is that scene labels particularly adapt the training of LSTM-S to
scene recognition (benefits LSMT-S); another reason is the lack of
annotated local captions (in number) limits the performance of EC,
compared to EC-C.

5.4 Comparison of the scene recognition

Wealso evaluate the proposedmethods on the public scene databases
MIT67 and SUN397, the results are illustrated in Table 5. By chang-
ing the scene vocabulary, LSTM-S can be directly used for those
databases. The proposed LSTM-S is used to decode captions, where
the hidden states are used as features to feed the scene classifiers.
The proposed LSTM-S (CRW) outperforms EC (CRW)with about 1%
in accuracy. Combining Places-CNN [40] features with the hidden
state (features) of LSTM-S, i.e. LSTM-S (CRW) + Places (CNN), im-
proves the Places-CNN models with 1.5%/0.8% on MIT67/SUN397.
Note that state-of-the-art approaches [5, 6] also include the multi-
scale features extracted from CNN pretrained with ImageNet [29]
database. Combining the proposed features with Places (CNN) and
ImageNet (MS-CNN), i.e., LSTM-S (CRW) + Places (CNN) + Ima-
geNet (MS-CNN), outperforms [6]with 0.2% and 1.5% onMIT67/SUN397,
and outperforms more recent works [20, 39] in larger margin.

6 CONCLUSION

Scene recognition and dense captioning are two types of image un-
derstand tasks, focusing on different scale of understanding. Scene
recognition predicts scene labels from a global view of images, yet
it also depends on local features, such as local visual features or in-
termediate representations. While dense captioning generates local
descriptions of image regions, which also requires global features
as contextual information. In contrast to separately researching
these two types of tasks, in this paper, we propose a joint model of
scene recognition and dense captioning, where the mutual effects
are beneficial to enhancing each task simultaneously. Two tasks
are integrated in two aspects, including the contextual fusion of
annotations and the semantically symmetric fusion of the models.
For annotation fusion, scene labels are integrated in the start of the
annotations of local captions as the globally guided information
for the training of dense captioning LSTM model, in contrast, local
caption are integrated before scene labels for scene recognition. In
the aspect of model fusion, two LSTMmodels are jointly trained for
both tasks, where scene adaptive NMS and region- and category-
wise weighted pooling are proposed to balance the bias between
dense captioning and scene recognition.
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