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ABSTRACT
In image-text matching task, the key to good matching quality is
to capture the rich contextual dependencies between fragments
of image and text. However, previous works either simply aggre-
gate the similarity of all possible pairs of image regions and words,
or take multi-step cross attention to attend to image regions and
words with each other as context, which requires exhaustive sim-
ilarity computation between all image region and word pairs. In
this paper, we propose Self-Attention Embeddings (SAEM) to ex-
ploit fragment relations in images or texts by self-attention mech-
anism, and aggregate fragment information into visual and tex-
tual embeddings. Specifically, SAEM extracts salient image regions
based on bottom-up attention, and takes WordPiece tokens as sen-
tence fragments. The self-attention layers are built to model sub-
tle and fine-grained fragment relation in image and text respec-
tively, which consists of multi-head self-attention sub-layer and
position-wise feed-forward network sub-layer. Consequently, the
fragment self-attention mechanism can discover the fragment re-
lations and identify the semantically salient regions in images or
words in sentences, and capture their interaction more accurately.
By simultaneously exploiting the fine-grained fragment relation
in both visual and textual modalities, our method produces more
semantically consistent embeddings for representing images and
texts, and demonstrates promising image-text matching accuracy
and high efficiency on Flickr30K and MSCOCO datasets.

CCS CONCEPTS
• Computing methodologies → Learning latent representa-
tions; Neural networks; • Information systems → Information
retrieval.
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1 INTRODUCTION
Cross-modal retrieval (CMR) [31] has attracted much more atten-
tion in multimedia research in recent years. Given queries in one
modality, CMR aims to retrieve documents from another modal-
ity. Among various cross-modal retrieval tasks, image-text match-
ing is one of the most important tasks which involves visual and
linguistic understanding, which enables users to find images that
best illustrate the topic of textual query, or textual descriptions
that best explain the content of visual query. However, data in dif-
ferent modalities are represented in heterogeneous feature spaces,
and thus they have distinguished statistical properties. The modal-
ity heterogeneity leads to great challenge in measuring the seman-
tic relevance among massive cross-modal data objects.

There has been a surge of research interests in tackling the chal-
lenging image-text matching problem.The simplest way is to learn
a pair of linear projection functions to map visual and textual data
into a unified latent space [8, 31]. Driven by the success of deep
learning, the main stream has been changed to modality-specific
deep feature learning, e.g., learning CNN for image and RNN for
text. Most existing solutions are towards learning global represen-
tations for image and sentence by enforcing constraints encoded as
triplet ranking loss [38] or correlation maximization [3, 46]. How-
ever, for global feature representation, the important parts, i.e.,
the image regions delivering salient semantics, cannot be well fo-
cused on. For example, it has been widely recognized that objects
in an image tend to be more semantically correlated to its matched
sentence, while the visual background contains less information
in describing semantic image-text correlation. Some other works
[10, 25, 39, 45] use feature representation from the last pooling
layer of CNNs to preserve the spatial information of the original
image, thus the pixel-level attention [40, 42] or co-attention can be
learned for consequent processing. These approaches cannot guar-
antee to find all the salient pixels containing meaningful informa-
tion, and suffer from over-fitting.
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We first address the issue of how to extract fine-grained seman-
tically salient image patches and words in sentences for model-
ing image-text relation. Specifically, owning to the success of ob-
ject detection [32], we use salient regions in the image at task-
independent object/stuff level in a way analogous to the sponta-
neous bottom-up attention associated with unexpected, novel or
salient stimuli in human vision system [2]. We use WordPiece to-
kens of each sentence as the fragment in textual modality. The vi-
sual and textual fragments should be correctly organized to model
the image-text matching relation. One simple way is to utilize the
aggregate similarity of all fragments of image and text [12]. Cross
attention or co-attention which involves multi-step of attending
to image regions based on text or attending to words based on im-
age [17, 18] can also be applied. However, existing strategies re-
quire computational demanding pairwise similarity computation
between all image-text pairs with complex methods at test stage,
which lack efficiency in real-world application scenarios. Instead
of exhaustively computing similarities of all pairs of image regions
and words in sentence, we consider learning embeddings for im-
ages and texts which independently project the two heterogeneous
data modalities into a joint space. Thus, similarity between image
and text can be directed compared on the learned embeddings.

Considering that regions in an image are usually correlated, e.g.,
plates usually co-occur with tables in an indoor scene, we discover
the relations between image object regions based on self-attention
mechanism [36]. Specifically, we build a self-attention layer to cal-
culate the similarities between all fragments and compute aweighted
fragment combination according to the central query fragment.
With self-attention mechanism, the distance between each frag-
ment is one constantly. Different from previous works [27, 48] us-
ing LSTM to organize image fragments, the fragments do not need
to be organized into a linear sequence, which can avoid consider-
ing the complex but ambiguous long-range/high-order fragment
dependencies. Since self-attention mechanism lets each fragment
see other fragments in the same image, we get a set of region-
centered image embeddings after the self-attention layer. Simple
average pooling operation is then used to aggregate the fragment
representations, which resembles the bag-of-visual-words model.

For textual modality, we adopt the well pre-trained BERT [4]
which consists of multiple self-attention layers to extract a set of
context sensitive word representations. Different from Word2Vec
[24] andGloVe [28]which give the same embedding to awordwith-
out considering the context, the word embeddings given by BERT
encode semantic context more accurately. After getting word rep-
resentations, 1d-convolution neural network is adopted to exploit
phrase-level information, and fully connected layer is then applied
to get the global embedding of text. Based on the visual and tex-
tual fragment self-attention, we use inner product to calculate the
similarity of image embeddings and text embeddings, so that per-
forming average pooling on region-centered image embeddings is
equivalent to aggregating the similarities between multiple region-
centered image embeddings and a text embedding.

To learn a joint low-dimensional embedding space for image
and text, we minimize a combination of bi-directional triplet loss
[43, 44] and bi-directional angular loss [37] with hard negativemin-
ing for training. Since images and sentences are independently em-
bedded into the joint spacewithout being paired as in co-attention [39]

or cross-attention [17], efficient retrieval can be performed at test
stage. To evaluate the performance of our approach in compari-
son to other architectures, we conduct experiments on Flickr30K
dataset [47], and MSCOCO dataset [20]. Promising results have
been achieved by our approach on image-sentence retrieval tasks
on MSCOCO and Flickr30K datasets, which demonstrates the re-
markable accuracy and high efficiency of our SAEM in embedding
sentences and images for image-sentence retrieval.

2 RELATEDWORK
2.1 Cross-modal Matching
There aremainly two paradigms of cross-modalmatchingmethods:
1) embedding learning [1, 6, 30, 38, 46, 50] and 2) pairwise similarity
learning [17, 22, 23, 39, 43].

Embedding learning paradigm focuses on embedding images
and texts into a latent space so that they can be compared directly
using simple distance metric. The canonical correlation analysis
(CCA) [8] learns a latent space by maximizing the correlation be-
tween the projected data of two modalities. As labels contain rich
semantic information, CCA is extended by using label information
[1, 6, 30], constructing non-parametric mappings [35] and non-
linear cross-modal projections [9]. With the achievement in deep
learning, the performance of cross-modal retrieval has been sig-
nificantly improved in recent years. Kiros et al. [15] use CNNs to
encode images and RNNs to encode sentences, and learn image
and text embeddings with a hinge-based triplet ranking loss for bi-
directional ranking. Wang et al. [38] propose to match images and
texts using hinge-based triplet ranking objective that combines
cross-view ranking constraintswithwithin-viewneighborhood struc-
ture preservation constraints. Yan et al. [46] propose to match im-
ages and texts in a joint latent space learned with deep canonical
correlation analysis (DCCA) [3]. Nam et al. [25] propose dual atten-
tion networks (DANs) which attend to specific regions in images
and words in text through multiple steps and capture the shared
concepts between both modalities, but separate them to provide
representations in the embedding space at inference time. Zhang
et al. [50] propose a cross-modal projection matching (CMPM) loss
and a cross-modal projection classification (CMPC) loss to learn
cross-modal embeddings.

Pairwise similarity learning paradigm focuses on learning a sim-
ilarity measure which takes a pair of text description and image as
input and outputs their matching score. Traditional methods learn
linear similarity measure. Wu et al. [43, 44] propose to learn bilin-
ear similarity measure by preserving bi-directional relative seman-
tic similarity. Deep models generate similarity measure by com-
plex variants of CNNs [22] or variants of LSTMs [10, 18], or aggre-
gate similarities of fragments of images and texts [12]. Karpathy
et al. [12] propose to detect and encode image regions at object
level with R-CNN, and then infer the image-text similarity by ag-
gregating the similarity scores of all possible region-word pairs.
Ma et al. [22] propose to use one image CNN to encode the image
content, and one matching CNN to learn the joint representation
of image and sentence. Li et al. [18] propose a latent co-attention
mechanism in which the spatial attention relates each word with
corresponding image regions while the latent semantic attention
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aligns image-word features. Lee et al. [17] propose stacked cross at-
tention (SCAN) to align image regions and text words. It first calcu-
lates cosine similarity between all image regions and words of sen-
tence to get attended sentence vectors which are weighted combi-
nation of word representations, then it calculates cosine similarity
between all attended sentence vectors and image region features
and uses LogSumExp pooling or average pooling to obtain the fi-
nal image-sentence similarity. This paradigm requires the prepa-
ration of all image-text pairs for similarity score prediction at the
test stage, thus it is computationally demanding and prohibitive
for large-scale data.

2.2 Attention Mechanisms
Attention mechanisms, derived from human intuition, allow mod-
els to focus on necessary parts of an input where the most relevant
information is concentrated.They are usually done by encoding in-
put data based on the importance score assigned to each element.
Visual attention models have been successfully applied to various
tasks including image classification [42], object detection [42], im-
age generation [49], image captioning [45], etc. The textual atten-
tion approaches also benefit sentiment classification [41], neural
machine translation [21, 36], sentence summarization [33], etc.

Recently, attention-based models have been proposed for the
image-text matching problem. For textual part, sentences are usu-
ally divided into words and phrases [39]. For visual part, one line
of work selects the feature from the last pooling layer to preserve
the spatial information of the original image [10, 25, 39, 45]. An-
other line detects and encodes image regions at object level with
detector [12, 17]. After obtaining fragments of images and texts,
attention mechanisms are explored to relate images and texts frag-
ments [12, 17, 25, 39].

3 PROPOSED METHOD
3.1 Problem Formulation
Assume we have a set of images V = {v(1), · · · ,v(Nv )} and a
set of texts T = {t(1), · · · , t(Nt )}. The image-text pair informa-
tion is provided so that we can access the association relations be-
tween images and texts. The goal of this paper is to independently
embed images and texts into a d-dim common space to facilitate
efficient image-text matching and retrieval. In the common space,
images and texts can be compared directly using simple distance
metric, e.g., the cosine distance. To exploit the fine-grained relation
in images and texts, we first represent each image as a set of im-
age features v(i) = {xv1 (i), · · · ,x

v
nv (i)},x

v
j (i) ∈ Rdv , and repre-

sent each text as a set of token features t(i) = {xt1(i), · · · ,x
t
nt (i)},

xtj (i) ∈ R
dt . Then we exploit the local fragments to obtain global

embeddings of images and texts, respectively. The framework of
our proposedmethod is shown in Figure.1. For clarity, we will omit
the number of image and text in the rest of this section.

Since both of image and text branches use self-attention mecha-
nism, we first introduce the self attention model. Then we present
the embedding network for image and text respectively. Finally,
we describe the loss function which we adopt to learn the model.

3.2 Self-Attention
Attention, which is very close to its literal meaning, tells where
exactly to attend to. The essence of attention mechanism is that
they imitate the human visual perception mechanism. When we
humans see a scene, typically we do not scan the entire scene, but
always focus on a specific portion according to our needs. In ma-
chine learning, an attention function can be described as mapping
a query and a set of key-value pairs to an output. The output of at-
tention function is a weighted sum of the value, where the weight
matrix, or affinity matrix, is determined by query and its corre-
sponding key.

Since we process a set of image region features, or a set of word
features, and expect to embed images and sentences into the joint
space without being paired, we can use self-attention which is a
special case of the attention mechanism to encode the interaction
between fragments of images or texts. In self-attention, queries,
keys and values are equal. The self-attention mechanism we apply
is similar in spirit to Transformer [36]. The self-attention layer has
two sub-layers, i.e.multi-head self-attention sub-layer and position-
wise feed-forward network sub-layer.

In multi-head self-attention sub-layer, attention is calculated h
times, making it to be multi-headed. This is done by respectively
projecting the queries (Q), keys (K ) and values (V ) h times with
different learned linear projections. Assume we have a set of frag-
ments { f1, · · · , fnf }, fi ∈ R1×df , where nf is the number of frag-
ments, anddf is the dimensionality of fragments. Packing together
theses fragments, we obtain matrix F = [f1; · · · ; fnf ] ∈ Rnf ×df .
The multi-head self-attention sub-layer is computed by:

MultiHead(F ) = concat(head1, . . . , headh)WO , (1)
headi = attention(FWQ

i , FW
K
i , FW

V
i ), (2)

attention(Q,K ,V ) = softmax(QK
⊤√

dk
)V , (3)

where parameter matricesWQ
i ∈ Rdf ×dk ,W K

i ∈ Rdf ×dk ,WV
i ∈

Rdf ×dva ,WO ∈ Rhdva×df , Q ∈ Rnf ×dk , K ∈ Rnf ×dk and V ∈
Rnf ×dva . The attention adopted here is the so called “Scaled Dot-
Product Attention” that utilizes scaled dot-product to calculate sim-
ilarity between queries and keys. Note that the parameters are dif-
ferent each time queries, keys and values undergo a linear trans-
formation. Multi-head attention allows the model to jointly attend
to information from different representation subspaces at different
positions.

After the multi-head self-attention sub-layer, to further adjust
the fragment representations, the position-wise feed-forward net-
work is applied to each fragment separately and identically:

FFN(x) = max(0,xW1 + b1)W2 + b2, (4)

where x ∈ R1×dx ,W1 ∈ Rdx×dx ,W2 ∈ Rdx×dx , b1 ∈ R1×dx and
b2 ∈ R1×dx . Similar to the Transformer structure, residual connec-
tions followed by layer normalization are also applied around each
of the two sub-layers to propagate position information to higher
layers.
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Figure 1: The framework of our method. SAEM consists of two branches, one for image and one for text.

3.3 Image Embeddings
To get visual fragments, one simple solution is selecting the fea-
ture from the last pooling layer of CNNs to preserve the spatial
information of the original image [10, 25, 39, 45]. However, these
approaches just divide image equally in spatial level and do not
consider any semantics. Besides, it is very likely to get a lot of
fragments containing unimportant background if we divide an im-
age equally, even though these fragments can be filtered out by
additional mechanism, they cause unnecessary computation and
increase the demands upon algorithm design. Therefore, following
[12, 17], we consider to extract objects and other salient image re-
gions using pre-trained detector. Specifically, we employ bottom-
up attention [2] analogous to the spontaneous bottom-up attention
in human vision system. The bottom-up attention mechanism pro-
poses a set of salient image regions, with each region represented
by a pooled convolutional feature vector.

The bottom-up attention mechanism is implemented by Faster
R-CNN [32], a two-stage object detection algorithm. In the first
stage, region proposals are generated by Region Proposal Network
(RPN) which is a fully convolutional network that simultaneously
predicts object bounds and objectness scores at each position. In
the second stage, the predicted region proposals are further re-
shaped using an RoI pooling layer which is then used to classify
the image within the proposed region and predict the offset values
for the bounding boxes.

In this paper, beyond the original Faster R-CNNmodel which in-
cludes classification and bounding box regression outputs for both
the RPN and the final object class proposals, we employ the Faster
R-CNN model with ResNet-101 [7] pre-trained by Anderson et al.
[2] on Visual Genomes [16]. Anderson et al. [2] add an additional
multi-class loss component to train an attribute predictor to pro-
vide more semantic information of image patches.

After performing bottom-up attention, an image is represented
as a set of image features v = {xv1 , · · · ,x

v
nv },x

v
j ∈ R1×dv , where

nv is the number of regions, dv is the dimension of image features,

and each image feature encodes a salient region in the correspond-
ing image. We then add a position-wise fully connected layer to
transform image features to d-dim vectors {yv1 , · · · ,y

v
nv },y

v
j ∈

R1×d . Packing together image regions, we obtain the matrix Yv =

[yv1 ; . . . ;y
v
nv ] ∈ R

nv×d .
In order to facilitate similarity calculation at inference time, we

need to learn embeddings of images by itself, instead of using com-
plex network which involves text to predict pairwise similarity
score. To achieve this, we first exploit an effective mechanism to
learn the relation of image regions. Considering that the regions
detected by Faster R-CNN in an image do not have a fixed order,
previous works [27, 48] usually coarsely organize fragments into
a linear sequence and feed into LSTM or biLSTM. Different from
these methods, we use the self-attention layer introduced in sub-
section 3.2 to encode the complex relations of image regions.

With self-attention mechanism, each output fragment can at-
tend to all input fragments, and the distance between each frag-
ment is just one. Thus, our model does not consider any specific
order of image regions. After the multi-head self-attention sub-
layer followed by the layer normalization, we get the outputOv =

[ov1 ; . . . ;o
v
nv ] ∈ R

nv×d :

Ov = LayerNorm(Yv + (MultiHead(Yv ))). (5)

Then, the position-wise feed-forward network and layer normal-
ization are applied, and the respective output is:

zvi = LayerNorm(ovi + FFN(ovi )), i = 1 · · · ,nv . (6)

After self-attention layer, we get a set of continuous represen-
tations {zv1 , . . . , z

v
nv }. Then simple average pooling operation [19]

is used to aggregate the representations, resembling bag of visual
words model which has shown success in content based image in-
dexing and retrieval [29] in early ages. Thus the image regions are
summarized into a compact embedding by average pooling:

ev =
1

nv

∑
i
zvi , i = 1 · · · ,nv . (7)
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Finally, L2 normalization is applied to normalize the image embed-
dings.

3.4 Sentence Embeddings
Following Devlin et al. [4], in our model, sentences are tokenized
by WordPiece tokenizer, so a sentence t is represented as a se-
quence of WordPiece tokens {xt1, . . . ,x

t
nt }, where x

t
k is 1-hot en-

coding representation of the k-th token. We progressively obtain
sentence embeddings from low-level tokens.

Motivated by [36] and [4], we adopt Transformer encoder to
map an input sequence of tokens {x j1, . . . ,x

j
nt } to a sequence of

continuous representations {z j1, . . . , z
j
nt }. Specifically, Transformer

has an encoder-decoder structure and is based solely on attention
mechanism. In our work, we aim to encode sentences to embed-
dings, thus we only use Transformer encoder that consists of multi-
layer of self-attention layers introduced in subsection 3.2.

For instantiation, we use the architecture of BERT (Bidirectional
Encoder Representations fromTransformers) [4], which is designed
to pre-train deep bi-directional representations by jointly condi-
tioning on both left and right context in all layers. BERT is pre-
trained with two unsupervised prediction tasks: the “masked lan-
guagemodel” (MLM) and the “next sentence prediction”.Themasked
language model randomly masks some percentage of the input to-
kens at random, and then predicts only those masked tokens. The
next sentence prediction is to predict whether sentence A is the
next sentence of B. For the pre-training corpus, BERT uses the con-
catenation of BooksCorpus and English Wikipedia.

The sequence of continuous representations {z j1, . . . , z
j
nt } can

also be seen as word embeddings. UnlikeWord2Vec [24] and GloVe
[28] which are context insensitive, the word embeddings produced
by Transformer are context sensitive representations. Context sen-
sitivity means giving different representations according to the
sentences. For example, “bank” in the context of rivers or any wa-
ter body and in the context of finance would not have the same
representation.

Since sentence has nature order, after getting the sequence of
word representations Z = [z

j
1; . . . ; z

j
nt ], we apply 1-dim convolu-

tion neural networks [13] to fully exploit the local context infor-
mation of the sequential features. Specifically, three window sizes,
i.e., uni-gram, bi-gram and tri-gram, are used to capture the phrase
level information. At each word location, we compute the inner
product of the word vectors with filters of three window sizes. The
convolutional output using window size s for the k-th word is:

ps,k = relu(Wszk :k+s−1 + bs ), s ∈ {1, 2, 3} (8)

whereWs is the convolution filter matrix, and bs is the bias. Before
feeding into bi-gram and tri-gram convolutions, theword represen-
tations Z are appropriately 0-padded to maintain the length of the
sequence after convolution. After obtaining the convolution out-
puts, we apply max-pooling operation across all word locations:

qs = max{ps,1, · · · ,ps,nt } (9)

We have described the process by which one feature is extracted
from one filter. Actually, multiple filters are used in our model. The
multiple features are concatenated into a vector and are passed to a

fully connected layer followed by L2 normalization to get the final
text embedding et ∈ R1×d .

3.5 Hard-Negative-Based Loss Function
Let ev denote the embedding of imagev , and et denote the embed-
ding of text t . We define the scoring function with inner product,
i.e., s(ev , et ) = ev (et )⊤. Since the learned embeddings are scaled
to have unit norm, the scoring function is equivalent to cosine sim-
ilarity.

The network is trained with bi-directional triplet ranking loss,
which encourages thematching scores of the trulymatched images
and sentences to be larger than those of mismatched ones. For a
positive pair (v, t), the triplet loss we adopt is:

Ltr iplet (v, t) = max[0,m − s(ev , et ) + s(ev , e t̂ )]

+max[0,m − s(ev , et ) + s(ev̂ , et )]
(10)

wherem denotes the margin parameter in triplet loss, t̂ denotes a
negative sentence for the image v , and v̂ a negative image for the
text t . Here we consider the hard negatives in a mini-batch, i.e.,
v̂ = argmaxh,v s(eh , et ) and t̂ = argmaxh,t s(ev , eh). Instead
of summing over all the negative samples, in practice, using only
the hard negatives in a mini-batch leads to better retrieval perfor-
mance and better computational efficiency.

In addition, we introduce an angular loss [37] which can cap-
ture additional local structure of triplet triangles than the triplet
loss by using a third-order geometric constraint. Specifically, an-
gular loss encodes the third-order relation inside triplet in terms
of constraining the angle at the negative point of triplet triangles.
In the original paper of angular loss, N -pair sampling [34] is used
to sample a batch containing multiple triplets and a log-sum-exp
angular loss is optimized for all the samples in the batch. In this pa-
per, we propose to optimize a bi-directional angular loss and apply
the hard negative mining on angular loss, leading to the following
formulation:

Lanдular (v, t) = log[1 + exp(f (ev , et , e t̃ ))]

+ log[1 + exp(f (et , ev , eṽ ))]
(11)

where f (a,p,n) = 4 tan2 α(a+p)n⊤−2(1+ tan2 α)ap⊤, where a,
p, and n indicate embeddings of image or text, and α denotes the
angular margin parameter which constrains the angle of the triplet
triangle in the angular loss. ṽ = argmaxh,v f (et , ev , eh) and t̃ =
argmaxh,t f (ev , et , eh) are the hard negatives for angular loss in
a mini-batch.

By combining hard-negative-based triplet loss with angular loss,
we obtain the overall loss:

L(v, t) = Ltr iplet (v, t) + θLanдular (v, t), (12)
where the weight θ controls the importance of angular loss.

In experiment, we observe that angular loss can effectively ac-
celerate the training process. However, it is the scoring function
that is used in the final retrieval phase, so triplet loss still plays a
more important role than angular loss in practice. Therefore, we
propose to change θ as a function of epoch number. We set a large
value forθ and then reduce it as the training process goes on,which
is similar to the manner of learning rate decay. A further analysis
of the loss function can be found in section 4.
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3.6 Discussion
As we apply average pooling to get the final image embeddings,
our method can be seen as learning nv individual image embed-
dings {zv1 , . . . , z

v
nv } and calculating the similarities between these

individual image embeddings and text embedding to get nv simi-
larities. Then these similarities are aggregated to get the final sim-
ilarity, which is analogous to the bagging method. In fact, since
we use self-attention mechanism to learn individual image embed-
dings, each individual image embedding takes a region as a key
and contains the information of the whole image. Therefore, we
call the individual image embeddings as region-centered image em-
beddings.

4 EXPERIMENTS
4.1 Datasets and Evaluation Metrics

Flickr30K [47] consists of 31,783 images collected from the Flickr
website. Each image is accompanied with 5 human annotated sen-
tences. We follow the public splits by [12, 17], using 1,000 images
for validation and 1,000 images for testing and the rest for training.

Microsoft COCO [20] consists of 123,287 images, and each im-
age is annotatedwith five text descriptions. In [12], there are 82,783
training images, 5,000 validation images and 5,000 test images. We
follow [17] to add 30,504 images that were originally in the valida-
tion set of MSCOCO into the training set. The testing results are
reported by averaging over 5 folds of 1,000 test images.

We report the performance of bi-directional cross-modal retrieval
tasks: (1) image query versus text database (image-to-text), (2) text
query versus image database (text-to-image).We use the commonly
used metric Recall@K (K=1, 5, 10), which represents the percent-
age of the queries where at least one ground-truth is retrieved
among the top K results.

4.2 Implementation Details
We implement our architecture in PyTorch framework [26] with
an NVIDIA GeForce GTX 1080Ti GPU. We use the Adam [14] op-
timizer. For the learning rate, we use a small learning rate starting
with 0.0001 and decay the learning rate by 0.1 after every 10 epochs.
The batch-size is set to 64.

For image branch, we use only 1 self-attention layer which has
16 heads. The image region feature vector extracted by bottom-up
attention [2] is 2048-dimensional, so we add a fully-connect layer
to transform it to a d-dimensional vector before feeding into the
self-attention layer. For the Transformer encoder in text branch,
we use the pre-trained weights of BERT model [4] which has 12
self-attention layers, 12 heads, 768 hidden units for each token
and 110M parameters in total. For efficient optimization, we fix
the weights of Transformer encoder in text branch. In 1-dim con-
volution neural networks, we use 256 filters for each filter size. For
the loss function, we set marginm to 0.2 and angular margin α to
45◦. For the combining weight θ , we set it to 0.5 at the beginning,
and decay the combining weight by 0.1 after every 5 epochs. Inner
product is used to measure similarity on the latent space, which is
equivalent to the Euclidean distance since the outputs of the two
branches are L2-normalized.

4.3 Performance Comparison
We compare our method with several state-of-the-art methods on
Flickr30K and MSCOCO datasets in Tables 1 and 2, respectively.

From Table 1, we can see that our method SAEM achieves the
best results on most of the metrics except R@10 on image-to-text
task. The promising results confirm the effectiveness of the pro-
posed SAEM. Particularly, when measured by R@1, SAEM outper-
forms the best baselines by 1.7 and 3.8 on image-to-text task and
text-to-image task respectively. The superiority of SAEM can be
attributed to its ability to exploit the fine-grained image regions
and words in sentence, and to relate fragments using multi-head
self attention mechanism.

The performance on the MSCOCO dataset is shown in Table 2.
It can be seen from the table that our method is comparable to the
best competitor SCAN, and outperforms other compared methods.
However, even though SCAN achieves better results on MSCOCO
dataset, our SAEM is more efficient and more suitable for the re-
trieval applications. Considering that the complexity of perform-
ing retrieval with N queries and M documents is O(NM), it is
important to decrease the time consumed by calculating similar-
ity between data instances. Note that our method embeds image
and text into hidden space, and uses inner product to calculate the
semantic similarity between image and text, which can facilitate
large-scale retrieval at inference time. In comparison, SCAN uses
complex cross-attention to derive the similarity of all image-text
pairs which needs exhaustive similarity calculation for all image
regions and words. Actually, when calculating the similarity be-
tween 1,000 testing images and 1,000 testing texts, SCAN takes
467.03s, while our method only takes 0.71s.

Moreover, comparing all methods, we find that methods that
introduce prediction of attribute when extracting image features,
i.e., SAEM, SCAN and SCO, outperform other methods, indicating
the importance of attribute in matching image and text.

4.4 Analysis of Hidden Space Dimension
Furthermore, we conduct experiments on Flickr30K dataset to ex-
amine the effect of dimensionality of the hidden space. We show
the image-text matching performance with varying dimensions in
Table 3. We can see from the table that as the dimension of hidden
space increases, the performance of SAEM first increases, then de-
creases. The best results are obtained by setting the dimension of
hidden space to 256 or 512. The experimental results show that
larger dimensions does not give better performance, which may
be because larger dimensions leads to larger model which is diffi-
cult to train. Combining with the common knowledge that lower
dimensionality leads to better efficiency, it is better to select an
appropriate middle-sized dimensionality of hidden space.

4.5 Analysis of Network Structure
We design some variants to analyze the behavior with different
structures.Their front ends are the same, i.e., they all have features
of image regions extracted by bottom-up attention and features of
tokens extracted by BERT.
• img-fc. We apply linear transformation on features of image re-
gions without self-attention and perform average pooling to get
the final embeddings.
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Table 1: Bidirectional retrieval results on the Flickr30K dataset compared with state-of-the-art methods.

Method Image-to-Text Text-to-Image
R@1 R@5 R@10 R@1 R@5 R@10

DVSA (R-CNN, AlexNet) [12] 22.2 48.2 61.4 15.2 37.7 50.5
DCCA (AlexNet, TF-IDF)[46] 27.9 56.9 68.2 26.8 52.9 66.9
DSPE(VGG, Fisher vector) [38] 40.3 68.9 79.9 29.7 60.1 72.1

JGCAR(VGG) [39] 44.9 75.3 82.7 35.2 62.0 72.4
DAN (ResNet) [25] 55.0 81.8 89.0 39.4 69.2 79.1
VSE++ (ResNet) [5] 52.9 87.2 - 39.6 - 79.5
DPC (ResNet) [51] 55.6 81.9 89.5 39.1 69.2 80.9
SCO (ResNet) [11] 55.5 82.0 89.3 41.1 70.5 80.1

CMPM +CMPC (ResNet) [50] 49.6 76.8 86.1 37.3 65.7 75.5
SCAN (Faster R-CNN, ResNet) [17] 67.4 90.3 95.8 48.6 77.7 85.2

SAEM-256d 69.1 91.0 95.1 52.4 81.1 88.1

Table 2: Bidirectional retrieval results on the MSCOCO dataset compared with state-of-the-art methods.

Method Image-to-Text Text-to-Image
R@1 R@5 R@10 R@1 R@5 R@10

DVSA (R-CNN, AlexNet) [12] 22.2 48.2 61.4 15.2 37.7 50.5
DSPE(VGG, Fisher vector) [38] 50.1 79.7 89.2 39.6 75.2 86.9

JGCAR (VGG) [39] 52.7 82.6 90.5 40.2 74.8 85.7
VSE++ (ResNet) [5] 64.6 - 95.7 52.0 - 92.0
DPC (ResNet) [51] 65.6 89.8 95.5 47.1 79.9 90.0
SCO (ResNet) [11] 69.9 92.9 97.5 56.7 87.5 94.8

CMPM (ResNet) [50] 56.1 86.3 92.9 44.6 78.8 89.0
SCAN (Faster R-CNN, ResNet) [17] 72.7 94.8 98.4 58.8 88.4 94.8

SAEM-256d 71.2 94.1 97.7 57.8 88.6 94.9

Table 3: Effect of different hidden space dimensionality on
Flickr30K.

Method Image-to-Text Text-to-Image
R@1 R@5 R@10 R@1 R@5 R@10

SAEM-64d 62.1 88.0 93.9 47.0 76.3 85.2
SAEM-128d 67.6 89.0 93.8 50.2 78.6 86.8
SAEM-256d 69.1 91.0 95.1 52.4 81.1 88.1
SAEM-512d 69.5 90.6 95.0 52.2 80.1 87.2
SAEM-1024d 66.6 89.4 93.9 51.3 79.0 86.7

• img-cnn. We organize regions into a linear sequence at random,
and concatenate them as word embeddings and perform opera-
tions similar to 1d-CNN in text branch.

• img-rnn.We organize regions into a linear sequence and sequen-
tially feed all the image regions into biGRU at different time-
steps. Then we add the vectors of two directional hidden states
at the same time-step as the representation for the correspond-
ing input region. The final embeddings are calculated by aver-
aging all region representations.

• img-satt.This is the same as the image branch in original SAEM.
• txt-fc. We apply linear transformation on features of words, and
perform average pooling to get the final embeddings.

• txt-cnn. This is the same as the text branch in original SAEM.
• txt-rnn. Similar to img-rnn, we sequentially feed all tokens of
the sentence into biGRU.

• txt-satt. We add a self-attention layer after BERT and use the
representation of the beginning token, , i.e. <CLS>, as the em-
beddings of sentence.

The bi-directional retrieval performance of the above variants
on Flickr30K dataset is shown in Table 4. When modeling image
fragments and words with linear transformation and average pool-
ing, the performance is poor. The performance of SAEM under
(img-fc, txt-cnn) is worse than original SAEM (img-satt, txt-cnn),
indicating that self-attention mechanism can capture the complex
relations of image regions. Moreover, the results of SAEM under
(img-cnn, txt-cnn) and SAEM under (img-rnn, txt-cnn) are worse
than original SAEM. Note that image regions do not have a natural
order, but it needs to organize regions into a linear sequence for
CNNs or RNNs, while it is not needed by self-attention.Thus, CNN
which exploits local structure is not suitable for image regions,
and RNNwhich relates fragments with different distance performs
worse than self-attention. The performance of SAEM under (img-
satt, txt-fc) is even worse than SAEM (img-fc, txt-fc), which shows
that a good textual representation is important for learning self-
attention layer in image branch. The performance of SAEM (img-
satt, txt-rnn) is just slightlyworse than original SAEM,which shows
the power of RNN and 1d-CNN in modeling sequential data.
4.6 Analysis of Loss Function
The loss function in Eq. (12) consists of triplet loss and angular
loss. We conduct experiments to see how the two losses affect the
matching performance. Also, we show performance without hard
negative mining and use ‘no hnm’ to denote this situation. The
experimental results are shown in Table 5.

It can be seen from Table 5 that the performance of only using
triplet loss (θ = 0) or angular loss is not good. Specifically, the
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Table 4: Effect of different SAEM structures on Flickr30K.

Method Image-to-Text Text-to-Image
R@1 R@5 R@10 R@1 R@5 R@10

img-fc, txt-fc 54.1 80.4 87.5 39.3 69.8 79.7
img-fc, txt-cnn 64.1 88.3 93.4 45.4 75.3 83.6
img-cnn, txt-cnn 58.3 83.4 91.1 42.9 70.5 79.8
img-rnn, txt-cnn 66.5 88.9 94.0 48.7 77.2 85.4
img-satt, txt-fc 41.0 72.4 81.3 32.5 63.9 75.6
img-satt, txt-satt 59.4 86.1 92.1 46.7 76.8 85.3
img-satt, txt-rnn 69.1 89.8 94.2 51.5 79.5 87.1

Table 5: Effect of loss function on Flickr30K.

Method Image-to-Text Text-to-Image
R@1 R@5 R@10 R@1 R@5 R@10

only angular 58.2 83.6 89.3 40.9 69.1 76.9
θ = 0.1 68.5 90.9 95.2 51.4 79.2 86.6
θ = 0.5 68.9 89.3 94.8 48.3 76.4 84.1
θ = 0 65.6 88.6 93.8 48.3 76.4 84.1
no hnm 59.4 86.1 92.1 46.7 76.8 85.3

Figure 2: Retrieval performance as a function of iterations.

performance of only using angular loss is worse than only using
triplet loss. This may be due to the direct score optimization by
minimizing triplet loss that directly encourages scores of matched
images and sentences to be larger than those of mismatched ones.
From experiment, we observe that angular loss can accelerate the
training process.We show the sum of all retrieval metrics as a func-
tion of training iterations on two experiments respectively using
only triplet loss and using a combination of triplet loss and angular
loss, in Figure 2. We can see that with angular loss, our model can
achieve a good result very quickly.

4.7 Retrieval Examples
To intuitively show the ranking performance of our method, we
illustrate examples of the retrieved texts using image queries and
examples of the retrieved images using text queries by SAEM in
Figure 3 and Figure 4, respectively. Note that in our settings, an
image has five paired sentences, but a sentence only has one paired
image. From Figure 3, we can see that almost all of the paired sen-
tences have been retrieved by ourmethod. As can be observed from
the examples in Figure 4, besides the ground truth image, other
retrieved images also are semantically close to the sentence query.
For the first example, we can see that all the retrieved images share
the same semantic concept hat with the query, and for the second
example, the images all correspond to the same semantics grass.

Three men are working on a roof .
Two men sitting on the roof of a house while another one stands on a ladder .
People are fixing the roof of a house .
Two men on a rooftop while another man stands atop a ladder watching them
Three men , one on a ladder , work on a roof .

A photographer takes a picture of a group of one girl in a pink dress and 10 
boys in suits and hats .
A bride in a light pink dress poses for a picture with male relatives and is being 
photographed by a man in a cream shirt with white pants .
A man photographs a woman in a pink dress and a throng of men in suits .
Man taking a photograph of a well dressed group of teens .
A group of people taking shots at a restaurant .

A woman in a gray sweater and black baseball cap is standing in line at a shop .
A woman in a cap at a coffee shop .
A woman in a hat waits to be served at a store .
A woman standing with 3 other people in a store with two tables , some shelves 
with coffee and tea for sale , and a refrigerated drink case .
A woman with a black shirt and tan apron is standing behind a counter in a 
restaurant .

Figure 3: Examples of image queries and the top 5 texts re-
trieved by the proposed method on Flickr30K dataset. Blue
color indicates the paired sentences.

A man wears an orange hat and glasses .

A dog runs on the green grass near a wooden fence .

Figure 4: Examples of sentence queries and the top 5 images
retrieved by the proposedmethod onFlickr30Kdataset. Blue
color indicates the paired images.

Taken together, the results show that our method can ensure that
the top ranked results are semantically consistent to the queries.

5 CONCLUSION
In this paper, we propose a novel attention based method for learn-
ing image and text embeddings. We use bottom-up attention to ex-
tract salient image fragments and apply self-attention mechanism
on image fragments to exploit the complex fine-grained visual re-
lation. Then we propose to embed the self-attended visual and tex-
tual features into a joint low dimensional space by minimizing
the hard-negative-based triplet loss and angular loss. Experimen-
tal results on two popular datasets have demonstrated that the pro-
posed method outperforms state-of-the-art approaches with high
efficiency. In future work, we will study more advanced technique
for extracting and combining image regions and global image in-
formation to learn image embeddings.
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