
DFT-NET: DISENTANGLMENT OF FACE DEFORMATION AND TEXTURE SYNTHESIS
FOR EXPRESSION EDITING

Jinghui Wang?† Jie Zhang† Zijia Lu† Shiguang Shan†

?Beijing University of Posts and Telecommunications
†Key Lab of Intelligent Information Processing of Chinese Academy of Sciences (CAS), Institute of

Computing Technology, CAS, Beijing 100190, China

ABSTRACT
This paper presents a novel deep architecture DFT-Net that
combines the advantages of Generative Adversarial Networks
(GANs) and warp mechanism for expression editing. Recent
generative models leverage Action Units as annotations and
show more flexible expression manipulation than previous ap-
proaches using other guiding information. However, those
methods bring inevitable artifacts where facial components
deform (e.g. eyes from open to close), for the structural defect
in modeling shape variations without geometric guidance such
as facial landmarks. Our approach explicitly disentangles face
deformations and appearance details by constructing two paral-
lel networks, one that learns an appearance flow for 2D warps
and the other generates corresponding texture and hallucinates
hidden regions such as mouth interior. Experimental results
show our method outperforms the state-of-the-art on various
expression editing tasks.

Index Terms— Expression Editing, GANs, Action Units,
Flow Fields

1. INTRODUCTION AND RELATED WORKS

Over the years, a number of works have been devoted to ex-
pression editing or face animation in the field of computer
graphics, computer vision and pattern recognition. However,
synthesizing high quality facial expression images is still chal-
lenging because facial expression transformations are highly
non-linear.

Most of the computer graphics techniques resort to finding
correspondences between source facial features and target
images [1]. The correspondences are then utilized to warp face
images to the desired expression [2–5]. While these methods
can generate realistic images with high resolution, they cannot
transfer dynamic textures, such as self-shadowing in wrinkles
and creases, or hallucinate hidden regions like mouth interior.
With the development of Generative Adversarial Networks,
several approaches based on generative models have been
proposed. StarGAN [6] is able to edit other facial attributes
besides expressions such as gender, hair color or age. However,
it can only change expressions among discrete number of
expressions. [7,8] utilize facial landmarks as global geometric
guidance to control the process of expression synthesis, which

enable continuous manipulation of expressions and show that
such geometric cues could significantly boost the performance.
Despite their improvements, facial landmarks are essentially
not enough to represent fine-scale details such as wrinkles
and creases. Instead, [9, 10] leverage activated Action Units
(AUs) [11] to anatomically control the generation process.
Nevertheless, close inspections to the generated images usually
reveal blurriness or artifacts.

Since synthesizing faces by hallucinating RGB values
from scratch is very difficult, recently some works have been
proposed to combine the advantages of graphics techniques
and generative models. [12] hybridizes variational autoen-
coder [13] and the classical flow-based approach [4, 14] to get
higher perceptual quality. However, it cannot inpaint unseen
areas in the source image and often falls short in achieving
the realism at the shading induced by wrinkles or creases. For
animating a source portrait with a driving video, [15] build a
two-stages framework which first captures the landmark cor-
respondence between the source image and the driving video
for light-weighted 2D warping and then appends two GANs
to synthesize fine-scale details and mouth interiors. Although
it can generate compelling perceptual results, it requires both
expressions of the initial frame from the driving video and the
source image to be neutral.

To address those limitations, we introduce a purely data-
driving novel deep architecture, DFT-Net, conditioned on AUs
for image-to-image expression editing. Our method explic-
itly factorizes the generating process into face deformations
and texture hallucinations. Specifically, we build a two-path
network, one path performs 2D warping by predicting an ap-
pearance flow [16] to align the input image to the target ex-
pression; the other regresses a texture mask which contains
fine-scale textures and hallucinated hidden areas. Then we
leverage attention mechanism to combine the warped image
and the texture mask for the final synthesis. Different from
GANimation [9] where the generated attention mask is used
to guide the weighed addition between the source face im-
age and the generated texture mask, our model predicts the
attention mask to indicate the weights of the aligned face and
the texture mask. Experiments demonstrate that DFT-Net can
synthesis more photorealistic images than previous generative
approaches.



Fig. 1: The proposed DFT-Net framework. DFT-Net consists of a generator G and a discriminator D. G outputs flow fields for
face deformations, attention masks and texture masks. D is used to judge the reality of the generated images and predict their
AUs. The generated images are fed back to G to reconstruct the source images.

Fig. 2: The architecture of G. Each action unit is expanded as
the same height and width as the input image.

2. PROPOSED MODEL

As illustrated in Fig. 1 , the proposed DFT-Net consists of a
generator G and a discriminator D. G consists of an encoder
and two decoders: the flow decoder F and the texture decoder T.
The source image concatenated with AUs of the target expres-
sion is first encoded to a latent vector. Then the flow decoder
generates a flow field map to align the input face to the desired
shape by bilinear sampling. Parallelly, the texture decoder out-
puts a texture mask which contains fine-scale details and pixels
of the hidden regions on the input (e.g. mouth interior). To
determine to which extent each pixel of the texture mask will
contribute to the final result, an attention mask is generated
by the flow decoder along with the flow field map. Lastly, the
generated image is fed into the same generator with the AUs of
the source image to reconstruct the original expression, which
enables unsupervised training, i.e., no pairs of the images of
the same person under different expressions are needed.

2.1. Generator
The generator G generally adopts a variant structure of encoder-
decoder, whereas the decoder is bifurcated. The motivation
behind the design is that we found the original one-path gener-

ator in GANimation failed in some cases of geometric trans-
formation. As shown in Fig. 3 , it can be clearly observed
that the eyelids are generated by filling the color of the area
of the eyeballs, rather than reuse the pixels around the eyes.
Then we built a 2D warp model [16] and found it cannot carry
the richness of facial expressions but was able to simulate
facial deformations. As a result, we manage to combine their
advantages by incorporating the warping manipulation into
the generator. Besides, we find that adding skip connections
across the encoder and the texture decoder works well for
reducing the artifacts. The detailed structure of G is shown
in Fig.2 . Different from [15] that warps the source image
by graphic techniques to guide the following generation, we
propose an end-to-end framework to integrally consider the
two parts for joint training.

Specifically, we first encode the source image Xs ∈
RH×W×3 and the target AUs yt ∈ [0...1]

H×W×N into a
low-dimensional latent code c :

c = E(Xs, yt) , (1)

where E denotes the encoder. yt is a N-channel image with
the same size as the source image. Each channel represents a
single Action Unit, where the value of each pixel is the same
as the magnitude of the corresponding AU.

Secondly, we append two parallel decoders, flow decoder
F and texture decoder T . The former predicts an appearance
flow field [16] Φ ∈ RH×W×2 for warping and an attention
mask A ∈ {0, ..., 1}H×W×1 to merge the aligned image Xa

and the texture mask B ∈ RH×W×3 generated by T :

Φ, A = F (c) . (2)

With Φ, the aligned image is generated by the bilinear sam-
pling mechanism [17]. Note that the sampling operation is
differentiable. Here we simplify the sampling function as f :

Xa = f(Φ, Xs). (3)



Fig. 3: Results of eyelid synthesis on Multi-PIE and Emo-
tioNet. The leftmost column shows the source protraits. The
remaining columns are the eyes cropped from source protraits,
aligned images, our final results and GANimation’s results.

The texture decoder decodes the latent vector c to a texture
mask B ∈ RH×W×3 which contains self-shadows, creases
and hallucinated pixels of hidden areas:

B = T (c) . (4)

Lastly the final image X̂t ∈ RH×W×3 is governed by:

X̂t = (1−A) ·B +A ·Xa . (5)

2.2. Discriminator

This network is trained to detect the generator’s “fakes”. We
adopt the architecture from [18] that maps the source image
or the generated final image to a matrix M ∈ RH/26×W/26 ,
which may ignore the subtle structures of local image patches.
Similar to GANimation, we add an auxiliary regressor to esti-
mate the AUs’ magnitude ŷt of the generated image.

2.3. Model Objective

2.3.1. Adversarial Loss

We use WGAN-GP [19] to stabilize the training process. Let
Ps be the data distribution of the input image, PX̃ the random
interpolation distribution, the loss can be formulated as

Ladv = EXs∼Ps
[DA(G(Xs|yt))−DA(Xs)]+ (6)

λgpEX̃∼P
X̃

[
(‖∇X̃DA(X̃)‖2 − 1)2

]
,

where λgp denotes the penalty coefficient.

2.3.2. Conditional Loss

The discriminator also predicts the AUs’ magnitude of the
input images or the generated results. The conditional loss
Lc enforces the generator to learn to satisfy the target facial
expression:

Lcond = EXs∼Ps
[‖DC(G(Xs|yt)]− yt‖22]+

EXs∼Ps
[‖DC(Xs)− ys‖22].

(7)

Fig. 4: Details of the intermediate results. The aligned images,
texture masks, attention masks, our final results and GANima-
tion’s results are exhibited from left to right, Darker regions
in attention masks indicates those areas are more relevent to
texture masks. Our method performs better than GANimation
in terms of face artifacts.

2.3.3. Reconstruction Loss

To guarantee that the translated images preserve the identities
of the input portraits. As in [20], we apply a cycle consistency
loss to G, formulated as

Lrec = EXs∼Ps [‖Xs −G(G(Xs|yt)|ys)‖1], (8)

where G takes the translated image X̂t =G(Xs|yt) and source
AUs ys to reconstruct the original image Xs.

2.3.4. TV Loss
To facilitate the learning of the texture decoder T , it requires
the flow field Φ to be spatially smooth. We perform the TV
regularization on Φ:

Ltv = EXs∼Ps

H,W∑
i,j

(Φi+1,j − Φi,j)
2 + (Φi,j+1 − Φi,j)

2

 .
(9)

2.3.5. Attention Regularization Loss

As the flow field Φ can easily saturate to 0 which makes that
Xs = f(Φ, Xs), that is, the flow decoder has no effect. Thus,



we impose a L1 regularization on the attention mask:

Latt = −EXs∼Ps [‖A‖1]. (10)

3. EXPERIMENTS

In this section we first introduce our training settings and
then show some experimental results. We compared our
method with GANimation since it is currently the state-of-
the-art method using AUs for expression editing to our best
knowledge.

3.1. Training Settings

We use a subset of 200,000 samples of EmotioNet [21] dataset
for training. The images are cropped and resized to 128× 128,
where the faces are centered. The continuous AUs annotation
are extracted by the AU detector [22]. The target AUs are
firstly sampled from the whole training set and then normal-
ized between 0 and 1. During optimization, Adam [23] with
learning rate of 0.0001, beta1 = 0.5, beta2 = 0.999 is adopted
as the optimizer. We trained the model on a single GeForce
GTX 1080 Ti GPU for 30 epochs with linearly decay over the
last 10 epochs. Every 5 optimization steps of the discriminator
we perform a single optimization step of the generator. The
weight coefficients for the loss terms above are set to λgp = 10,
λadv = 1.0,λatt = 1.0, λtv = 0.0001, λcond = 4000, λcyc = 10.
Our model is implemented using Pytorch v4.0, CUDNN v7.0,
CUDA v9.0. The average inference times of GANimation and
DFT-NET are 12.11ms and 7.32 ms per sample respectively.

3.2. Discrete Emotions Editing

We first compare our model’s ability for discrete emotions
editing against GANimation. The target AUs of each discrete
emotion are extracted from RaFD dataset [24]. As it can
be seen in Fig. 4 , our method can significantly reduce the
blurriness around mouths and the checkerboard artifacts on
the bridges of noses.

3.3. Eyelid synthesis
Our model significantly improves the quality of eyelid synthe-
sis. By varying the specific AU (AU 45), we can controll the
status of eyelids flexibly. Previous generative methods tend to
simply add some color block to mask eyeballs, which lead to
obvious artifacts that eyeballs are still visible.
DFT-Net tackles the problem through simultaneously warping
faces and generating the target face appearance. As illustrated
in Fig. 3 , pixels of eyelids are sampled around eyes to generate
aligned image firstly. Based on the aligned image, we can get
more realistic final results than GANimation.

3.4. Expression interpolation
For this experiment, giving a source image and a target image,
we extract the AUs from the target image and increase the
levels of their values (0.5, 0.75, 1.0) to gradually transfer the

Fig. 5: Results of EmotioNet database for expression interpo-
lation. Thee leftmost column shows the source portraits and
the rightmost column shows the target portraits. From left to
right, the remainders present the gradually transferred results.
The last row shows one of the failure cases of DFT-NET.

expression of the source image to the target. Examples are
shown in Fig. 5 . We can see that DFT-Net generates much
more cleaner results. For some cases that the input face has
extreme expressions, generative models still struggle to handle
them. It is mainly because of the lack of those “hard cases” in
training data and the insufficient number of continuous AUs
extracted by existing methods.

4. CONCLUSION

We present a purely data-driven model, DFT-Net, trained in a
fully unsupervised manner for expression editing. It combines
2D warps, GANs and attention mechanism that ensures both
face deformations and fine-scale details synthesis. Experi-
ments demonstrate that DFT-Net performs better than previous
generative methods, especially for eyelid synthesis.
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