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Abstract

Recent researches attempt to improve the detection performance by adopting the idea
of cascade for single-stage detectors. In this paper, we analyze and discover that incon-
sistency is the major factor limiting the performance. The refined anchors are associated
with the feature extracted from the previous location and the classifier is confused by mis-
aligned classification and localization. Further, we point out two main designing rules
for the cascade manner: improving consistency between classification confidence and
localization performance, and maintaining feature consistency between different stages.
A multistage object detector named Cas-RetinaNet, is then proposed for reducing the
misalignments. It consists of sequential stages trained with increasing IoU thresholds for
improving the correlation, and a novel Feature Consistency Module for mitigating the
feature inconsistency. Experiments show that our proposed Cas-RetinaNet achieves sta-
ble performance gains across different models and input scales. Specifically, our method
improves RetinaNet from 39.1 AP to 41.1 AP on the challenging MS COCO dataset
without any bells or whistles.

1 Introduction
Object detection serves as a fundamental task in computer vision field which has made re-
markable progress by deep learning in recent years. Modern detection pipelines can be
divided into two major categories of one-stage detection and two-stage detection. Generally
speaking, two-stage methods (e.g.Faster R-CNN [29]) have been the leading paradigm with
top performance. As a comparison, one-stage approaches (e.g.YOLO [26] and SSD [22])
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which aim at achieving real-time speed while maintaining great performance are attracting
more and more attention.

Recent researches focus on improving detection performance from various perspectives [2,
17, 18, 30, 34]. A simple idea is adding new stages for additional classifications and re-
gressions which leads to more accurate confidence scores and higher localization perfor-
mance. Cascade R-CNN [1] improves two-stage methods by utilizing cascade sub-networks
for gradually increasing the quality of region proposals. As for one-stage methods, Re-
fineDet [35] adopts a refinement module to simulate the second regression as in two-stage
methods. Consistent Optimization [16] attaches subsequent classification targets for the
regressed anchors which reduce the gap between training and testing phases. However,
cascade-like single-stage methods ignore the feature consistency which limits their effec-
tiveness. For instance, RetinaNet [20], the state-of-the-art one-stage detection pipeline, gen-
erates anchors from feature pyramids and performs classification and regression for each
anchor using the feature extracted at the anchor’s center point. If we add cascade stages to
RetinaNet, the output anchors of the first stage will have shifted center points compared with
the original ones. Since most single-stage methods perform feature extraction via sliding
window based on the original location instead of the regressed location, feature inconsis-
tency inevitably occurs between different cascade stages.

In this paper, we discover that naively cascading more stages with the same setting as
the original one brings no gains for RetinaNet. The main reasons are two-fold: the mis-
matched correlation between classification confidence and localization performance, and the
feature inconsistency in different stages. In RetinaNet, anchors are regarded as positive if
its intersection-over-union (IoU) with a ground-truth is higher than a threshold (e.g.0.5). It
means that no matter the actual IoU is 0.55 or 0.95, the classification targets are the same.
So the classification confidence can not reflect the localization performance as mentioned in
IoU-Net [15]. We find that the mismatched correlation problem can be naturally addressed
in a cascade manner by gradually raising the IoU thresholds for the latter stages since the
targets are more consistent with the actual IoU. To deal with the feature misalignments, a
simple but effective Feature Consistency Module (FCM) is introduced for adapting the fea-
tures to the refined locations. Specifically, the offset for each location on the feature map is
predicted and a simple deformable convolution [3] layer is utilized to generate the refined
feature map for the following stage. In this cascade manner, a sequence of detectors adapted
to increasingly higher IoUs can be effectively trained and the detection results can be refined
gradually.

The main contributions of this work are summarized as follows:

• We revisit the feature inconsistency problem in recent researches and point out two
main designing rules for cascade single-stage object detection: improving the consis-
tency between classification confidence and localization performance, and maintain-
ing feature consistency between different stages.

• To improve the reliability of classification confidence, IoU thresholds are increased
gradually in the cascade manner. FCM is also introduced to mitigate the feature in-
consistency between different stages.

• Without any bells or whistles, our proposed Cas-RetinaNet achieves stable perfor-
mance gains over the state-of-the-art RetinaNet detector.
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2 Related Work
Classic object detectors. In advance of the wide development of deep convolutional net-
works, the sliding-window paradigm dominates the field of object detection for years. Most
progress is related to handcrafted image descriptors such as HOG [4] and SIFT [23]. Based
on these powerful features, DPMs [7] help to extend dense detectors to more general object
categories and achieves top results on PASCAL VOC [6].

Two-stage object detectors. In the modern era of object detection, Faster R-CNN [29],
on representative of two-stage approaches, has been the leading paradigm with top perfor-
mance on various benchmarks [6, 21, 24]. Several extensions to this framework have been
proposed to boost the performance, including adopting multi-task learning scheme [11],
building feature pyramid [19], and utilizing cascade manner [1].

One-stage object detectors. Compared with two-stage methods, one-stage approaches
aim at achieving real-time speed while maintaining great performance. OverFeat [31] is one
of the first modern single-stage object detectors based on deep networks. YOLO [26, 27]
and SSD [22] have renewed interest in one-stage approaches by skipping the region proposal
generation step and directly predicting classification scores and bounding box regression off-
sets. Recently, Lin et al. point out that the extreme foreground-background class imbalance
limits the performance and propose Focal Loss [20] to boost accuracy. Generally speaking,
most one-stage detectors follow the sliding window scheme and rely on the fully convolu-
tional networks to predict scores and offsets at each localization which is beneficial to reduce
the computational complexity.

Misaligned classification and localization accuracy. Non-maximum suppression (NMS)
has been an essential component for removing duplicated bounding boxes in most object de-
tectors since [4]. It works in an iterative manner. At each iteration, the bounding box with
the maximum classification confidence is selected and its neighboring boxes are suppressed
using a predefined IoU threshold. As mentioned in [15], the misalignment between classifi-
cation confidence and localization accuracy may lead to accurately localized bounding boxes
being suppressed by less accurate ones in the NMS procedure. So IoU-Net [15] predicts IoU
scores for the proposals to reduce this misalignment.

Cascaded classification and regression. Cascading multiple stages is a simple idea
to obtain more accurate confidence and higher localization performance. There have been
attempts [1, 9, 16, 25, 35, 36] that apply cascade-like manner to reject easy samples at
early stages, and perform bounding box regression iteratively. However, conventional meth-
ods (especially the one-stage ones) ignore the feature consistency between different cascade
stages since most of them extract features from the original position using a fully convo-
lutional manner. Two-stage detectors generate predictions based on the region features ex-
tracted by RoI-Pooling [10] or RoI-Align [11]. These operations reduce the misalignment
between stages since the feature does not correlate with the anchor centers strongly. As for
the one-stage approaches, sliding window scheme leads to well alignments between anchor
feature and anchor centers. Refined anchors for the next stage are associated with the feature
extracted from the previous location, which leads to limited detection performance.

3 Analysis in Cascade Manner
In this section, we mainly talk about a simple but vital question: what kind of stages can be
cascaded in single-stage architecture? From our perspective, there are two pivotal design-
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(a) First Stage (b) Second Stage

Figure 1: The correlation between the IoU of bounding boxes with the matched ground-
truth and the classification confidence for different cascade stages. The red line represents
the ideal situation. (a) Misalignment in the first stage, especially for the confidences near
IoU@0.5. (b) Improved consistency between classification and regression in the second
stage using increased IoU threshold.

ing rules: improving consistency between classification confidence and localization perfor-
mance, and maintaining feature consistency between stages.

3.1 Misaligned Classification and Localization
Generally speaking, performing classification and regression multiple times can gradually
improve the results especially the localization performance for two-stage detectors [1]. How-
ever, we find that simply adding extra stages with the same setting as the original one does
not work for single-stage detectors. During the analysis, we find that the reason for this phe-
nomenon mainly lies in the inconsistency between classification confidence and localization
performance. In cascade single-stage detector, pre-defined anchors are used as the input of
the first stage, and regression offsets are added to generate the refined anchors which are
viewed as the input of the second stage. As illustrated in Figure 1 (a), the bounding boxes
with higher IoU are not well associated with higher classification confidences in the first
stage, especially for the confidences near IoU@0.5. The misaligned confidences lead to
confused ranking which limits the overall performance.

In order to reduce this negative effect, we change the decision condition of positive sam-
ples for the following stages by increasing the IoU thresholds, such that samples with higher
quality are chosen as positive. However, excessively large IoU thresholds lead to expo-
nentially smaller numbers of positive training samples, which can degrade detection perfor-
mance [1]. From our experiments, we find that gradually increasing the IoU threshold leads
to boosted performances.

3.2 Feature Inconsistency
Most single-stage methods perform feature extraction via sliding window based on the an-
chor location. The sliding window schemes obtain well alignments between anchor feature
and anchor centers since the features are extracted in a fully convolutional manner. For
instance, RetinaNet attaches a small fully convolutional network which consists of four con-
volutions for feature extraction and a single convolution layer for prediction in different
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(a) Original image (b) Feature grid

Figure 2: Demonstrative case of the feature misalignment between the original anchor and
the refined anchor. (a) The green bounding box stands for the ground truth and the orange
one represents the original anchor. The refined anchor is shown as the red bounding box.
(b) Location of center points for original and refined anchors in the feature grid. Simply
extracting features from the previous location (orange point) is inaccurate.

branches. The prediction of each position on the feature map contains classification and
regression for various anchor shapes.

In cascade manner, anchors are transformed to different positions after applying the re-
gression offsets. As shown in Figure 2 (a), the original anchor (orange box) is regressed
to the red one as the result. From the perspective of the feature grid (b), anchor feature is
extracted from the orange point using a small fully convolutional network. If we simply add
new stages based on the same feature map, it means that the feature of the refined anchor
is still extracted from the orange point, leading to feature inconsistency. The misalignment
of anchor feature and anchor position will severely harm the detection performance. To
maintain the feature consistency between different stages, the features of the refined anchors
should be adapted to new locations.

4 Cascade RetinaNet
In this section, we first review the RetinaNet and then introduce the proposed Cas-RetinaNet,
which is a unified network with cascaded heads attached to RetinaNet. The overall architec-
ture is illustrated in Figure 3.

4.1 RetinaNet
RetinaNet [20] is a representative architecture of single-stage detection approaches with
state-of-the-art performance. It can be divided into the backbone network and two task-
specific subnetworks. Feature Pyramid Network (FPN) is adopted as the backbone network
for constructing a multi-scale feature pyramid efficiently. On top of the feature pyramid,
classification subnet and box regression subnet are utilized for predicting categories and re-
fining the anchor locations, respectively. Parameters of the two subnets are shared across all
pyramid levels for efficiency. Due to the extreme foreground-background class imbalance,
Focal Loss is adopted to prevent the vast number of easy negatives from overwhelming the
detector during training.
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Figure 3: Different architectures of single-stage detection frameworks. “I” is input image,
“conv” backbone convolutions, “H” fully convolutional network head, “B0” pre-defined an-
chor box, “C” classification, “B1, B2” the refined anchor for different stages. Adapted fea-
ture map (“FM”) is generated using FCM for feature consistency.

4.2 Cas-RetinaNet
Cascaded detection. The difficult detection task can be decomposed into a sequence of
simpler stages in a cascaded manner. Outputs from the previous stage are viewed as the
input of the following stage. Generally speaking, the loss function for the i-th stage can be
formulated as

Li = Lcls(ci(xi),yi)+λ
i
1[yi ≥ 1]Lloc(ri(xi,bi),g), (1)

where xi,ci and ri stand for the backbone features, classification head and regression head
for the i-th stage, respectively. bi and g represent the predicated and ground truth bounding
boxes, and b0 the pre-defined anchors. Anchor labels yi are determined by calculating the
IoU between bi and g. Specifically, bi are assigned to ground-truth object boxes using an IoU
threshold of T i

+; and to background if their IoU is in [0,T i
−). As each input box is assigned

to at most one object box, yi are obtained by turning the class label into the one-hot vector.
Unassigned samples are ignored during the training process. Based on this, original Focal
Loss and SmoothL1 loss [20] are adopted as Lcls and Lreg. The indicator function 1[yi ≥ 1]
equals to 1 when yi ≥ 1 and 0 otherwise. λ i is the trade-off coefficient and is set to 1 by
default. The overall loss function for cascade detection becomes

L= α1L1 +α2L2 + · · ·+αiLi + · · ·+αNLN . (2)

Trade-off coefficients α1, · · · ,αN are set to 1 by default.
Consistency between classification and localization. As analyzed in Section 3.1, there

is a huge gap between the classification confidence and localization performance in the first
stage. The main reason lies in the sampling method as it decides the training examples as
well as their weights. To be specific, y1 are set to the class label if IoU(b1,g)≥ T 1

+(0.5) no
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matter the actual IoU is 0.55 or 0.95. A simple idea is gradually increasing the foreground
IoU thresholds to constrain the classification confidence to be consistent with localization
performance. We empirically increase the IoU threshold for the following stages such as
T 2
+ = 0.6. As shown in Figure 1 (b), feature consistency between classification and localiza-

tion is improved. Note that the regression targets for bi−1 and bi can be different, we re-assign
the boxes to new ground truths at each different stage. Corresponding classification labels
and regression targets are generated using the specified thresholds.

Feature Consistency Module. From the formulation above, we predict the classification
scores and regression offsets based on the backbone feature xi. Current cascade detectors
usually adopt the same x in multiple stages, which introduces feature misalignment as the
location shifts are not considered. From our perspective, we hope to encode the current
localization into the features of next stage, just like transforming the location from the orange
point to the red one in Figure 2. We propose a novel FCM to adapt the feature to the latest
location. As illustrated in the right part of Figure 3 (c), a transformation offset from the
original position to the refined one is learned based on xi, and a deformable convolutional
layer is utilized to produce the adapted feature xi+1. FCM can be formulated as follows:

xi+1 = FCM(xi) = De f ormable(xi,o f f set(xi)). (3)

Specifically, a 1× 1 convolution layer if adopted on top of xi for generating offsets for the
3× 3 bins in deformable convolution [3]. Then a 3× 3 deformable convolution layer takes
xi and the offsets to produce a new feature map xi+1. It should be noted that Guided Anchor-
ing [33] also adopts deformable convolutions to align the features, but the main purpose is
to improve the inconsistent representation caused by the predicted irregular anchor shapes.
From the experiments, we prove that our proposed FCM can steadily improve the detection
performance in different settings.

5 Experiments

5.1 Experimental Setting

Dataset and evaluation metric. Experimental results are presented on the bounding box
detection track of the challenging MS COCO benchmark [21]. Following the common prac-
tice [20], we use the COCO trainval35k split (union of 80k images from train and
a random 35k subset of images from the 40k image val split) for training and report the
detection performance on the minival split (the remaining 5k images from val). The
COCO-style Average Precision (AP) is chosen as the evaluation metric which averages AP
across IoU thresholds from 0.5 to 0.95 with an interval of 0.05.

Implementation Details. We adopt RetineNet [20] with ResNet-50 [12] model pre-
trained on ImageNet [5] dataset as our baseline. All models are trained on the COCO
trainval35k and tested on minival with image short size at 600 pixels unless noted.
Original settings of RetinaNet such as hyper-parameters for anchors and Focal Loss are fol-
lowed for fairly comparison. For the additional stages, we follow the original architecture
of RetinaNet head, except for the changes in IoU thresholds and the proposed FCM. Classi-
fication loss and regression loss are found to be unbalanced in our experiments, so λ is set
to 2 for each stage. At inference time, regression offsets from different cascade stages are
applied sequentially to the original anchors. Classification scores from different stages are
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Method Scale IoU AP AP50 AP60 AP70 AP80 AP90

RetinaNet [20] 600 - 34.0 52.5 - - - -
RetinaNet [20] 800 - 35.4 53.9 - - - -
Cas-RetinaNet 600 0.5 33.8 52.3 48.1 41.5 29.8 11.2
Cas-RetinaNet 600 0.6 34.4 52.5 48.5 41.9 30.5 11.7
Cas-RetinaNet 600 0.7 34.4 52.0 48.1 41.7 31.3 12.5
Cas-RetinaNet 800 0.5 35.4 54.6 50.4 43.0 31.4 11.8
Cas-RetinaNet 800 0.6 36.1 55.0 50.8 43.9 32.5 12.5

Table 1: Ablation study for different IoU thresholds on COCO minival set. “IoU” means
the foreground IoU threshold for the second stage. “AP” stands for the primary challenge
metric for COCO dataset. “Scale” means the short side of input images.

Backbone Scale FCM AP AP50 AP60 AP70 AP80 AP90

ResNet-50 600 34.4 52.5 48.5 41.9 30.5 11.7
ResNet-50 600 X 35.5 54.0 49.7 43.3 32.0 12.6
ResNet-50 800 36.1 55.0 50.8 43.9 32.5 12.5
ResNet-50 800 X 37.1 56.3 52.2 45.3 33.5 12.8

ResNet-101 800 37.9 56.8 52.8 46.0 34.9 13.9
ResNet-101 800 X 38.9 58.1 53.9 47.1 36.2 14.3

Table 2: Ablation study for FCM on COCO minival set. Settings can be referred as
Table 1. Foreground IoU threshold is set to 0.6 for all experiments.

averaged as the final score to achieve more robust results. We conduct ablation studies and
analyze the impact of our proposed Cas-RetinaNet with various design choices.

5.2 Ablation Study
Comparison with Different IoU Thresholds. Detection performances are compared under
different IoU thresholds on COCO dataset in Table 1. We first prove that simply adding
a new stage with the same setting brings no gains for the detection accuracy. AP drops
slightly or keeps unchanged for the Cas-RetinaNet with IoU threshold 0.5. We argue that the
reason mainly lies in the misaligned classifications like the distribution shown in Figure 1
(a), due to the unchanged sampling method. When the foreground threshold is increased
to 0.6 for the second stage, we observe a reasonable improvement (33.8→ 34.4). Here we
also try a higher IoU threshold 0.7 for the second stage. It clearly shows that improvements
focus on higher IoU thresholds such as AP90, while the AP50 drops slightly. From our
perspective, higher foreground IoU threshold brings training samples with higher quality,
while the quantity becomes fewer. For simplicity and robustness, We choose 0.6 as the
foreground IoU threshold for the second stage. Further experiments with a different input
scale indicate a similar conclusion and show the effectiveness of our method.

Feature Consistency Module. We adopt various experiments under different backbone
capacities and input scales to validate the effectiveness of our proposed FCM in Table 2.
Misalignments are ubiquitous in cascaded single-stage detectors and limit the detection per-
formance. Benefit from the adapted feature map produced by FCM, the performances under
different settings are improved by ∼ 1 point steadily. Note that the deformable part in FCM
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#Stages Test stage AP AP50 AP60 AP70 AP80 AP90

1 1 34.0 52.5 - - - -
2 1∼ 2 35.5 54.0 49.7 43.3 32.0 12.6
3 1∼ 2 35.0 53.1 49.1 42.5 32.0 12.6
3 1∼ 3 34.9 52.9 49.0 42.4 31.9 12.7

Table 3: Ablation study for number of stages on COCO minival set. 1∼ 3 indicates the
ensemble result, which is the averaged score of the three classifiers with the 3rd stage boxes.

requires longer time to converge, we extend training time to 1.5×. It is a fair comparison
since little improvements are observed for RetinaNet when training with a 2× setting 1.
From the experiments, we show that our proposed FCM is simple but effective since it only
consists of a convolution for producing offsets and a convolution for capturing the effective
features considering the misalignments.

Number of stages. The impact of the number of stages is summarized in Table 3. Adding
a second detection stage improves the baseline detector by 1.5 points in AP. However, the
addition of the third stage (T 3

+ = 0.7) leads to a slight drop in the overall performance, while
it reaches the best performance for high IoU levels. Cascading two stages achieves the best
trade-off for Cas-RetinaNet.

Complexity and speed. The computational complexity of Cas-RetinaNet increases with
the number of cascade stages. For each new stage, the additional complexity comes from
both the FCM and the head part. Compared to the backbone, the increased computational
cost is really small. We evaluate the inference speed for both original RetinaNet and Cas-
RetinaNet with ResNet-50 on a single RTX 2080TI GPU. As for the majority setting (adding
one new stage with image short size at 800 pixels), Cas-RetinaNet achieves about 10 FPS and
the original RetinaNet is about 12.5 FPS. Note that we apply the same head part as RetinaNet
for the new stages to highlight the inconsistency problem, we believe that the complexity can
be reduced by simplifying the head design.

5.3 Comparison to State-of-the-Art
The proposed Cas-RetinaNet is compared to state-of-the-art object detectors (both one-stage
and two-stage) in Table 4. Standard COCO metrics are reported on the test-dev set. Cas-
RetinaNet improves detection performance on RetinaNet consistently by 1.5 ∼ 2 points,
independently of the backbone. Under ResNet-101 backbone, our model achieves state-of-
the-art performances and outperforms all other models without any bells or whistles.

5.4 Discussion
An interesting question is how to compare cascade single-stage detectors with two-stage
ones. Generally speaking, the main difference lies in whether using the region-crop layer.
Region features are powerful but add a lot of complexity as the number of region of interest
(RoIs) increases. In other words, cascade single-stage methods are more concise and flexible
due to the fully convolutional architecture. As for feature extraction, the deformable convo-
lution in Cas-RetinaNet aggregates features from other semantic points to generate “region
features”. Consequently, it will be a better framework for object detection.

1https://github.com/facebookresearch/detectron
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Method Backbone AP AP50 AP75 APS APM APL

Two-stage methods
Faster R-CNN+++ [12]* ResNet-101 34.9 55.7 37.4 15.6 38.7 50.9
Faster R-CNN by G-RMI [14] Inception-ResNet-v2 34.7 55.5 36.7 13.5 38.1 52.0
Faster R-CNN w FPN [19] ResNet-101 36.2 59.1 39.0 18.2 39.0 48.2
Faster R-CNN w TDM [32] Inception-ResNet-v2 36.8 57.7 39.2 16.2 39.8 52.1
Mask R-CNN [11] ResNet-101 38.2 60.3 41.7 20.1 41.1 50.2
Relation [13] DCN-101 39.0 58.6 42.9 - - -
One-stage methods
YOLOv2 [27] DarkNet-19 21.6 44.0 19.2 5.0 22.4 35.5
SSD513 [22] ResNet-101 31.2 50.4 33.3 10.2 34.5 49.8
YOLOv3 [28] Darknet-53 33.0 57.9 34.4 18.3 35.4 41.9
DSSD513 [8] ResNet-101 33.2 53.3 35.2 13.0 35.4 51.1
RetinaNet [20] ResNet-50 35.7 55.0 38.5 18.9 38.9 46.3
RefineDet512 [35] ResNet-101 36.4 57.5 39.5 16.6 39.9 51.4
GA-RetinaNet [33] ResNet-50 37.1 56.9 40.0 20.1 40.1 48.0
RetinaNet [20] ResNet-101 37.8 57.5 40.8 20.2 41.1 49.2
RetinaNet [20]† ResNet-101 39.1 59.1 42.3 21.8 42.7 50.2
ConRetinaNet [16]† ResNet-101 40.1 59.6 43.5 23.4 44.2 53.3
CornerNet511 [17] Hourglass-104 40.5 56.5 43.1 19.4 42.7 53.9
Ours
Cas-RetinaNet ResNet-50 37.4 56.6 40.7 20.9 40.3 47.5
Cas-RetinaNet ResNet-101 39.3 59.0 42.8 22.4 42.6 50.0
Cas-RetinaNet† ResNet-101 41.1 60.7 45.0 23.7 44.4 52.9

Table 4: Cas-RetinaNet vs. other state-of-the-art two-stage or one-stage detectors (single-
model and single-scale results). We show the results of our Cas-RetinaNet models based
on Resnet-50 and Resnet-101 with 800 input size. “†” indicates that model is trained with
scale jitter and for 1.5× longer than original ones. The entries denoted by “*” used bells and
whistles at inference.

6 Conclusion

In this paper, we take a thorough analysis of the single-stage detectors and point out two main
designing rules for the cascade manner which lies in maintaining the consistency. A multi-
stage object detector named Cas-RetinaNet is proposed to address these problems. Sequen-
tial stages trained with increasing IoU thresholds and a novel Feature Consistency Module
are adopted to improve the inconsistency. We conduct sufficient experiments and the sta-
ble detection improvements on the challenging COCO dataset prove the effectiveness of our
method. We believe that this work can benefit future object detection researches.
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