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Abstract— Human poses play important roles in action
analysis. However, most state-of-the-art approaches in action
recognition ignore the importance of human poses and rarely
leverage the pose information for further improving the recog-
nition performance. In this paper, we propose a novel network
architecture, which simultaneously considers the appearance
information and pose knowledge for robust action recognition.
We explore various architectures for fusing the appearance and
pose information rather than simply averaging scores at the
final layer. Moreover, a novel training strategy is proposed
to reduce the influence of overfitting for limited training
data. Extensive experiments show that our method achieves
competitive performance on the popular benchmarks, i.e., UCF-
101 and HMDB-51.

I. INTRODUCTION

Both human action analysis and pose estimation have

been receiving considerably more attention in computer

vision recently, on account of their wide and practical

applications in daily life, such as intelligent surveillance

and human-computer interaction. And human poses con-

vey crucial messages in action recognition, which helps to

eliminate the influence by clutters or non-human motions

from backgrounds and to handle appearance variations from

scale transformations, viewpoint changes, camera motions,

etc. [14], [39]. It has been shown that poses indeed provide

complementary information to appearance and motion for

action analysis [4], [17].

Action recognition benefits a lot from great progresses in

deep learning. In particular, the Two-stream ConvNets and

3D ConvNets architectures improve the performance in the

video classification task greatly [24], [26]. In spite of the

great potential of poses, most state-of-the-art approaches [3],

[28], [33] are built upon 3D ConvNets by utilizing appear-

ance information and usually also optical flows. However, the

optical flows typically need to be computed ahead of time,

which prevents assembling an end-to-end learning scheme.

Moreover the entire 3D CNNs bring heavy computation and

memory burden, e.g., Tran et al. [26] spend two months on

training them. There exist few pose-based approaches [5],

[37] using pose information as input modality for action

recognition. And several works convert pose features into

skeleton keypoints and model Graph Convolutional Net-

work(GCN) on skeleton sequences for classification [38],

which completely neglects the relationship between persons
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and objects or backgrounds. Several pose-based approaches

take pose information into account [20], [37], which simply

average scores at the softmax layer and few works [9]

are devoted to exploring different architectures for fusing

different input modalities.

In this paper, to make full use of pose information and

handle the above-mentioned issues, we propose a novel pose-

based and appearance-based spatiotemporal convolutional

network architecture (PAS-Net), which explores various fus-

ing methods to integrate pose and appearance information

for action recognition. We attempt to disentangle appearance

features (such as texture and color) and pose features (such

as shape and body articulation) before modeling temporal

features, which can simplify the complexity of classification

tasks caused by the superposition of different variable factors

in natural images [21]. Specifically, the proposed architec-

ture consists of four subnetworks as depicted in Fig. 1 :

Appearance ConvNet, Pose ConvNet, Fusing Network and

Spatiotemporal ConvNet. Appearance 2D ConvNet extracts

abundant multi-scale appearance features through effective

Inception architecture [15]. Pose 2D ConvNet acquires ample

pose information, including implicit pose feature, explicit

pose heatmap (keypoints) and part-affinity-fields (PAF) fea-

ture by introducing fast and efficient Openpose [2]. Then

appearance and pose features are aggregated in Fusing

Network. Finally, Spatiotemporal 3D ConvNet leverages

the integrated appearance and pose information to learn

spatiotemporal features for action recognition. The pose

information can be further improved to be more favorable

for action recognition under an end-to-end training manner.

Our PAS-Net does not need to compute optical flow [1],

trajectories [29] or other auxiliary information ahead of time

like those in Two-stream ConvNets. Furthermore, although

another pose stream is appended to our PAS-Net, the hybrid

2D/3D Convnet is computationally efficient at a low time and

memory cost. So our PAS-Net is an effective and efficient

end-to-end trainable architecture for action recognition by

only taking raw video as input.

Additionally, our network adopts a sparse temporal sam-

pling strategy [32], based on the observations that con-

secutive frames are highly redundant and the action of

video sequences can be straightway concluded from a single

frame. And this strategy helps to model long-range temporal

features at a low time and memory cost. Then, appearance

and pose features from each sampled frame are computed



Fig. 1. PAS-Net is an effective and efficient end-to-end trainable architecture. Appearance ConvNet extracts abundant multi-scale appearance features
by Inception architecture. Pose 2D ConvNet acquires ample pose information by fast and efficient Openpose. Then appearance and pose features are
aggregated in Fusing Network. Spatiotemporal 3D ConvNet leverages the integrated appearance and pose information to learn spatiotemporal features for
action recognition.

via feature extraction network, but one thing to note here

is that their temporal features still retain in the correlation

among sampled frames along the temporal dimension. So an

essential difference between simple mixed 2D/3D Convnet

[28] and our PAS-Net is that they process the whole stacked

frames as input rather than single frame like ours, which

collapses the temporal information of the video in single-

channel feature maps due to the limitation of 2D CNNs.

Moreover, we attempt to align the responses of appearance

and pose features at the same pixel position in Fusing Net-

work, and study how these evolve along time with different

input modalities and fusing architectures in Spatiotempo-

ral ConvNet. Complicated networks [33], [42] easily bring

the risk of severe overfitting to small datasets if training

from scratch, which is usually solved by pretraining on

large datasets firstly and then finetuning on the small target

datasets. Differently, we present a twice-finetune training

strategy to settle out the overfitting problem.

We conduct comprehensive experiments on the popu-

lar benchmarks, i.e., UCF-101 [25] and HMDB-51 [19].

Benefited from leveraging pose information, our network

demonstrates a significant improvement, which implies the

effectiveness of our architecture. Although no auxiliary in-

formation like optical flow is used, we achieve competitive

performance compared to the state-of-the-art approaches.

II. RELATED WORK

A. Action Recognition

Traditional hand-crafted representation approaches for ac-

tion analysis, such as iDT [30], are computationally ex-

pensive and inefficient on extracting context and high-level

features. Afterward, Convolutional Neural Networks have

exhibited excellent performances in video analysis, including

action recognition, action detection and video captioning. Re-

cently there are two typical methods for action recognition:

a) Two-stream ConvNets [24], b) 3D ConvNets [26].

Two-stream ConvNets is first proposed by Simonyan et

al. [24], which processes RGB inputs and optical flows

in different branches separately. Feichtenhofer et al. [9]

propose different fusing architectures to take advantage of

both RGB inputs and optical flows information. Temporal

Segment Networks presented by Wang et al. [32] use a sparse

temporal sampling strategy to capture long-term temporal

representations. Feichtenhofer et al. [8] introduce residual

connections to allow spatiotemporal interaction between

the two streams. Although Two-stream ConvNets achieves

promising results for action recognition, the optical flows

are hand-crafted representations which are computationally

expensive to obtain. Moreover, the optical flows are always

computed ahead of time, which restricts end-to-end trainable

abilities to some extent. Compared to the above methods, our

PAS-Net captures pose information by Pose ConvNet and

appearance features by Appearance ConvNet on raw videos,

which is a fully end-to-end architecture for robust action

recognition.
The other influential method, 3D ConvNets, has shown

favorable capabilities for action recognition [26]. Deeper

backbones, such as DenseNet [13] and ResNet [12], are

considered in 3D CNNs as T3D [6] and R3D [27] re-

spectively, which demonstrates the superiority of 3D CNNs

over 2D CNNs. Two-Stream Inflated 3D ConvNet (I3D)

presented by Carreira et al. [3] leverages the advantages

of both two-stream inputs and 3D ConvNet, which shows

considerably impressive performance. Zolfaghari et al. [42]

capture appearance features in 2D CNN and acquire temporal

context in 3D CNN for recognition at an 80x faster rate than

I3D [3]. The main drawback of 3D ConvNets is oversize

parameters and memory cost, making it easy to overfit on

small datasets that are yet common situations in practical

applications. One effective solution is to explicitly factorize

3D convolution into 2D spatial convolution and 1D temporal

convolution [23], [28]. Compared to these entire 3D Con-

vNets, our PAS-Net, a two-stream hybrid 2D/3D Convnet,

not only alleviates oversize parameters and memory cost but

also extracts spatiotemporal features more efficiently for the

disentanglement of appearance and pose.
Besides, another interesting approach in action recognition

[35] models the temporal relation among frames by means of



recurrent neural network(RNNs). And other input modalities

like warped flow [32], RGB difference [32], object informa-

tion [16], and audio [36] are utilized as complementary infor-

mation to improve classification performance. [10] endeavors

to explore regions of the person of interest and their context

by action transformer architecture to recognize actions. [31],

[33], [34] attempt to model more effective spatiotemporal

relations for action recognition.

B. Pose-related Action Recognition

Human poses, captured by current methods, are sufficient

to provide the discriminative clues for action recognition.

Recently, there appear some attempts for pose-related action

recognition. Choutas et al. [5] introduce a novel representa-

tion that encodes the motion of semantic keypoints. Yan et

al. [38] compute skeleton joint coordinates and construct ST-

GCN on skeleton sequences. Du et al. [7] model RNNs for

classification utilizing pose-attention mechanism. Luvizon

et al. [22] propose a multitask framework for jointly pose

estimation and human action recognition. Yan et al. [37] take

pose information into account for classification but integrate

different streams by simply averaging, and analogous works

proposed in [20]. Although methods above leverage pose

information for action recognition, few specialize in how

to fuse pose and appearance information more effectively.

Compared to these methods, our method not only proposes

a hybrid convolutional architecture but also considers various

fusion methods for fusing pose and appearance information

to improve the action recognition.

III. PROPOSED METHOD

Our PAS-Net is a two-stream hybrid 2D/3D ConvNet

which simultaneously leverages appearance and pose infor-

mation. We firstly provide a detailed introduction of our PAS-

Net. Then we discuss the necessity for aligning responses

of appearance and pose features, and explore various fusing

methods for fusing them. Finally, we describe the training

strategies and implementation details for learning PAS-Net.

A. PAS-Net

As illustrated in Fig. 1, our PAS-Net has three main stages:

features extraction, features fusion, action recognition. The

features extraction is further subdivided into appearance

extraction and pose extraction. Our network takes the visual

information of the whole video as input and provides a

video-level prediction as output, which is an entire and

efficient end-to-end architecture. The overall objective can

be formulated as:

PAS-Net(V )=Nst

⎛
⎜⎜⎝Nfuse

⎛
⎜⎜⎝

Nrgb (T1) , Npose (T1)
Nrgb (T2) , Npose (T2)

. . .
Nrgb (TK), Npose(TK)

⎞
⎟⎟⎠

⎞
⎟⎟⎠. (1)

Firstly the whole input video V is grouped into K segments

{S1, S2, ..., SK} with the same number of frames. Then an

unique frame Ti is sampled randomly from each segment

Si representing this segment. Next, the appearance extrac-

tion network Nrgb and the pose extraction network Npose

capture appearance and pose features from each sampled

frame. Furthermore, the appearance and pose features along

time are further integrated by employing Fusing Network

Nfuse. Spatiotemporal ConvNet Nst leverages the integrated

features and learns spatiotemporal features representation of

the whole video. Finally, softmax function is adopted to

estimate the probability of each action.

1) Appearance ConvNet (Nrgb): Appearance ConvNet

utilizes Inception architecture to capture multi-scale appear-

ance features, whose initialized weights come from ECO-

(H2D) [42]. Moreover, Appearance ConvNet processes a

single frame at a time, rather than stacked images in simple

mixed 2D/3D Convnet [28]. So it only captures spatial

features, and temporal features still retain the correlation

among sequential frames in order.

2) Pose ConvNet (Npose): Pose ConvNet utilizes VGG-

19 architecture to capture robust pose features, the initialized

weights of which come from Openpose [2]. We use the

feature maps of the 6th stage as the pose information.

Specifically, the implicit pose features come from 6-6 con-

volutional layer features in the detection branch, the explicit

pose features (keypoints) come from the maximum of 6-

7 convolutional layer features in channel dimension in the

detection branch, and the part-affinity-fields features come

from 6-6 convolutional layer features in the association

branch. Besides, Pose ConvNet processes a single image at

a time in a similar way as Appearance ConvNet, so the same

output resolution between them can be easily constructed for

succedent feature fusion.

3) Fusing Network (Nfuse): Fusing Network tries various

fusion methods, including different combinations of inputs

and operators, and the details are described in Sec. III-B.

4) Spatiotemporal ConvNet (Nst): In Spatiotemporal

ConvNet, 3D CNNs are considered to capture spatiotemporal

representations for its efficiency. Spatiotemporal ConvNet

utilizes 3D Resnet architecture [27], and the initialized

weights of which come from ECO-(H3D) [42]. Furthermore,

the last layer of Spatiotemporal ConvNet is 3D global

pooling, and its output feature is a 512-d vector which is

the spatiotemporal representation of the entire video. Since

temporal information modeling gets processed only in Spa-

tiotemporal ConvNet, we disentangle and extract appearance

features and pose features without temporal interference from

other frames.

B. Alignment and Fusion

Here we firstly take into account aligning responses of

appearance information and pose knowledge, and then ex-

plore different architectures for fusing them. Furthermore, we

attempt to settle out the challenges of where to fuse, what to

fuse and how to fuse. Subsequent empirical experiments will

evaluate the performance in different fusion architectures in

Sec IV-B.

Before fusion, it is very essential and meaningful to

align responses in three factors: temporal dimension, se-

mantic dimension, and spatial dimension. And typically in

practice, the video frame stands for temporal dimension,



channel capacity and input resolution can be interpreted

as semantic dimension and spatial dimension respectively.

So we choose to fuse appearance and pose features at the

last 2D convolutional layer, because temporal information

is not dealt with until entering Spatiotemporal ConvNet. In

this way, appearance features can be integrated with pose

features at the same time without temporal interference from

other frames, and temporal relation is in correspondence

strictly. Meanwhile the spatial correspondence is also easily

achieved, as long as two steams have the same feature

resolution, which can be simply implemented by pooling

or convolution with strides. Furthermore, we believe that

optimizing the trainable filters of the network can fits chan-

nel correspondence between appearance and pose features

gradually to some extent. By the above careful design, we

align responses of appearance and pose features in temporal,

spatial and semantic dimensions.
To specify fusion methods in detail, the concepts and

formal definitions related to appearance and pose features

are presented. Note, only one segment Ti is considered to

simplify the issue.

hi = Nfuse (Nrgb (Ti) , Npose (Ti))

= Nfuse

((
xi

A

)
,
(
xi
I , x

i
E , x

i
F

))
.

(2)

Here Ti ∈ R3×h×w is the sampled frame. xi
A ∈ Rc×h×w

is appearance feature computed by Appearance ConvNet.

xi
I , x

i
F ∈Rc×h×w, xi

E ∈R1×h×w are implicit pose feature,

part-affinity-fields feature and explicit pose feature (key-

points) computed by Pose ConvNet. hi∈Rc×h×w is hybrid

feature computed by fusing Network, and c, h, w is the num-

ber of channels, width, height in the feature map. Nfuse is

a complicated function representing Fusing Network, which

can be simple operations like addition and multiplication,

or complex networks like convolution and pooling, and it

will be considered concretely based on different inputs in

the following:
1) Appearance feature xA or pose features xI only:

h = xA. (3)

h = xI . (4)

Equation (3) only uses the appearance feature as input like

ECO [42], we set it as a baseline for comparison. And

Equation (4) only utilizes the pose feature as input.
2) Explicit pose heatmap xE and appearance feature xA:

h = xE ⊗ xA, (5)

h = xA + λ1 · xE ⊗ xA, (6)

h = conv (cat (xA, xE ⊗ xA)) . (7)

Equation (5) computes the pixel wise product of xE and xA,

and xE represents pose probability map. In other words,

joints probability map as attention map is attached to ap-

pearance feature. Observing the sparsity of pose heatmap,

we integrate original appearance feature xA and the product

in (5) once more. Equation (6) computes the sum of xA and

the product in (5), where λ1 is a hyper-parameters to balance

them. Equation (7) concatenates these two features first, then

convolves the stacked data with filter f .

3) Implicit pose feature xI and appearance feature xA:

h = xA + λ2 · pool (xI) , (8)

h = conv (cat (xA, xI)) . (9)

Equation (8) computes the sum of xI and xA, where mean-

pooling operation is to fit the number of channels in corre-

spondence. Equation (9) computes the result of convolution

of concatenation between xI and xA. And others are the

same as above.

4) Implicit pose feature xI , part-affinity-fields feature xF

and appearance feature xA:

h = xA + λ3 · pool (xI) + λ4 · pool (xF ) , (10)

h = conv (cat (xA, xI , xF )) . (11)

Equation (10) computes the sum of xI and xF and xA,

and equation (11) computes the convolution of concatenation

among them. And others are the same as above.

C. Training Strategy

Complicated networks, in particular 3D CNNs, are more

likely to take a severe risk of overfitting on small datasets that

are yet common situations in practical applications. Before

large datasets like Kinetics [18] are presented, many attempts

including multitask learning [24], high dropout [24], cross

modality pre-training [32], regularization techniques [32],

data augmentation [32] are conducted to mitigate the impact

of overfitting. Currently almost all works [3], [6], [28] choose

to pretrain on large datasets firstly and then finetune the

model on small target datasets, so training with small datasets

relies too much on initialization weights from large datasets.

Consider the scenario: The network N0 (ECO) is a well-

known network architecture, whose weights w0 can be

initialized from existing models pretrained on huge datasets

D0 (Kinetics). We design a more efficient network N1 (PAS-

Net) based on ECO, which aims to obtain good performance

on the small target dataset D1. There are three training

strategies:

Conventional:
1. finetune N1 on D1 through w0 → w

Recent:
1. finetune(1st) N1 on D0 through w0 → w1

2. finetune(2nd) N1 on D1 through w1 → w

Our twice-finetune:
1. finetune(1st) N0 on D1 through w0 → w1

2. finetune(2nd) N1 on D1 through w1 → w

The conventional methods directly finetune N1 on small

target datasets, which always bring about the performance

degeneration caused by overfitting; The recent methods, i.e.,

I3D and ECO, firstly pretrain on huge datasets D0 then train

on small target datasets, which always takes quite expensive

time and memory cost; Our twice-finetune firstly finetune

original network N0 on target datasets D1 with initializations

from the model pretrained on D0, then train N1 on target

datasets D1. It achieves excellent performance with no need

for pertraining N1 on huge datasets D0, which demonstrates

our twice-finetune is both effective and efficient.



D. Implementation Details

We train our networks using mini-batch stochastic gradient

descent (SGD) with a momentum of 0.9, and weight decay

of 5e−4. The initial learning rate is 0.001 and the dropout

rate is 0.3. And the hyper-parameters λ1,λ2,λ3,λ4 in Fusing

Network are set to 1.5, 1.5, 0.5, 1. The implementation of

our PAS-Net is based on PyTorch with TITAN Xp GPU.

During training, all sampled frames are firstly resized to

256*340, and then data augmentations including random

cropping and horizontal flipping are employed, finally the

cropped regions are resized to 224*224 for training. When

testing, only applying center cropping, we sample K frames

from each video to compute the final prediction result. And

we also provide an ensemble model with {16, 20, 24, 28, 32}
frames like ECO [42].

IV. EXPERIMENTS

We conduct comprehensive experiments on two popular

datasets, UCF-101 [25] and HMDB-51 [19]. Firstly we make

brief introductions of the datasets. Then we explore the

influence of various training strategies, fusing methods, and

frame numbers. Moreover we compare our method to the

state of the art methods. Finally, we visualize the learned

pose information in our PAS-Net to further demonstrate the

effectiveness of leveraging poses for action recognition.

A. Datasets

We conduct experiments on UCF-101 and HMDB-51 fol-

lowing most works in pose-based action recognition. UCF-
101 [25] consists of over 13k clips and 27 hours of video

data from 101 action classes, which contains realistic user-

uploaded videos from YouTube. HMDB-51 [19] consists of

6766 video clips from 51 action classes from YouTube. Both

of them involve daily activities containing variations from

camera motion, viewpoint, and occlusion.

B. Ablation Studies

1) Training strategies: Table I shows two cases of train-

ing strategies, the conventional and twice-finetune, with 3

most typical fusion instances on UCF-101, i.e., appearance

features(baseline), the convolution based fusion of appear-

ance and pose features, the convolution based fusion of

appearance, pose and PAF features. Compared to the base-

line, the performance degenerates severely when using the

conventional finetuning strategy. In particular, we add a

simple 1*1 convolutional layer to ECO as a controlled trial.

Although the modification of network architecture is slight,

the performance also degrades, which demonstrates that a

slight alteration of the original network may lead to poor

performance as described in Sec. III-C. In contrast to the

conventional finetuning strategy, the proposed twice-finetune

training strategy significantly improves the performance for

all cases and slightly surpasses the baseline. An interesting

discovery is that the more complex the network is, the higher

accuracy is achieved with the twice-finetune strategy and

meanwhile the lower accuracy by the conventional finetuning

strategy. The possible reason behind it is a more complex

network with pose information indeed helps to deal with the

action recognition, but it is quite difficult for the conventional

finetuning strategy to approach the optimal solution due to

overfitting.
2) Fusion methods: We conduct experiments to evaluate

nine different fusion methods as described in Sec. III-B, and

Table II show the results on UCF-101. As can be seen, only

utilizing pose information (I) leads to the severe performance

degeneration. And the performance of calculating the pixel-

wise product of appearance and pose probability map (E ◦A)

have a similar decline for the sparsity of pose probability

map. Moreover, When the product (E ◦A) is appended to

original appearance features, we achieve an obvious per-

formance improvement up to 90.94% and 90.81% than

the baseline for the addition based and convolution based

fusions respectively, which demonstrates the advantages of

fusing body pose information. Simple addition operation

obtains better performance than the convolution, it is prob-

ably because that to learn the parameters of convolutional

kernels is rather difficult in consideration of the limitation

from small datasets. Moreover, the utilization of implicit

pose feature, part-affinity-fields feature and appearance fea-

ture(A + 0.5·pool(I) + pool(F)) achieves the best results and

all the following experiments utilize this fusion style.
3) Frame numbers: Extensive experiments are conducted

to investigate the influence of various frame numbers K,

i.e., 8, 16, 24, 32 and 48. As depicts in Fig. 2, we concluded

that the classification accuracy is improved along with the

increase of frame numbers, since more information of the

entire video is leveraged. Our PAS-Net with 16 frames

achieves the best classification accuracy on HMDB-51 of

71.6% while it with 32 frames achieves the best result of

94.1% on UCF-101. The cause for differences might be

that different datasets have different video length, and we

discover that the average length of video in UCF-101 is

186.36 frames while that in HMDB-51 is 95.16 frames.

When continuing to increase frame numbers, the accuracy

decreases. One possible reason for this decrease is that more

frames contain more redundant information, which may be

harmful for model learning.g

(a) (b)
Fig. 2. Performance comparison of various frames on UCF101(left) and
HMDB51(rights)

C. Comparison with the State-of-the-art Results

We compare our PAS-Net with the state-of-the-art methods

on both UCF101 and HMDB51. Tabel. III summarizes

the accuracy comparisons results when using only RGB

modality. Our PAS-Net outperforms TSN [32], DTPP [40],

ARTNet [31] and ECO [42] on both UCF101 and HMDB51



TABLE I

PERFORMANCE COMPARISON BETWEEN THE CONVENTIONAL FINETUNING STRATEGY AND OUR TWICE-FINETUNE TRAINING STRATEGY ON UCF101.

Training strategies

Fusion Style
Acc(%) A (baseline) A + 1*1conv Conv(A, I) Conv(A, I, F)

Conventional 90.20 78.73 77.54 77.22
Twice-finetune - 90.28 90.44 90.89

TABLE II

PERFORMANCE COMPARISON OF DIFFERENT FUSION METHODS

(SEC. III-B) ON UCF101

Fusion Style
Accuracy(%)

top-1 top-5

A (baseline) 90.20 -
I 57.44 83.82

E ◦A 78.10 94.65
A + 1.5·E ◦A 90.94 98.17

Conv(A, E ◦A) 90.81 98.17
A +1.5· pool(I) 91.15 98.20

Conv(A, I) 90.44 98.23
A + 0.5·pool(I) + pool(F) 91.37 98.04

Conv(A, I, F) 90.89 98.22

TABLE III

COMPARISON WITH THE STATE-OF-THE-ART METHODS ON UCF101

AND HMDB51 USING ONLY RGB MODALITY.

Method
Pre-training

models
Accuracy(%)

UCF101 HMDB51

I3D [3] ImageNet 84.5 49.8
TSN [32] ImageNet 86.4 53.7
DTPP [40] ImageNet 89.7 61.1
Res3D [27] Sports-1M 85.8 54.9
TSN [32] ImageNet + Kinetics 91.1 -
I3D [3] ImageNet + Kinetics 95.6 74.8
ARTNet [31] Kinetics 93.5 67.6
T3D [6] Kinetics 91.7 61.1
ECO [42] Kinetics 94.8 72.4
PAS-Net Kinetics 94.8 73.8

TABLE IV

COMPARISON WITH ECO ON UCF101 AND HMDB51.

Network Frames
Accuracy(%)

UCF101 HMDB51

ECO [42]
8 90.2 63.3
16 91.6 68.2
32 93.1 68.3

PAS-Net
8 91.4 68.8
16 93.2 71.6
32 94.1 70.1

TABLE V

ACCURACY COMPARISONS WITH RECENT WORKS UTILIZING POSE

Network
Optical
flows

Accuracy(%)
UCF101 HMDB51

Attention Pooling [11] - 52.2
Chained [41] � 76.1 69.7
PoTion [5] 65.2 43.7
I3D + PoTion [5] � 98.2 80.9
PA3D [37] - 55.3
I3D + PA3D [37] � - 82.1
PAS-Net 94.8 73.8

datasets. Moreover, we conduct comprehensive experiments

to do further comparisons with ECO in terms of utilizing dif-

ferent frames, i.e., 8,16,32. As shown in Table. IV, benefited

from leveraging pose information for action recognition, our

PAS-Net consistently surpasses ECO on both UCF101 and

HMDB51 across arbitrary frames. And our PAS-Net slightly

Fig. 3. Visualization comparison between Openpose and our PAS-Net.

underperforms I3D [3] since the latter employs a heavier

network architecture, which is computationally expensive.

Our PAS-Net with 32 frames performs 3x faster than I3D.

Furthermore, we make comparisons with recent pose-related

works [5], [11], [37], [41] in Table. V. Both PoTion [5]

and PA3D [37], utilize heavy I3D as auxiliary architectures.

However, neither exploiting auxiliary information like optical

flow nor heavy network like I3D, our PAS-Net achieves

competitive performance on both UCF-101 and HMDB-51,

which demonstrates the effectiveness of our PAS-Net.

D. Visualization and Analysis

Although PAS-Net employs the pretrained Openpose

model as the initializations to leverage the pose information

for action recognition, the weights of the Openpose model

are further optimized to improve the action recognition

accuracy under an end-to-end training manner. Visualization

results of pose heatmaps from the original Openpose model



and the modified versions in PAS-Net are shown in Fig. 3.

It can be concluded that for easy examples, similar results

are obtained for both the original Openpose and the version

optimized by our PAS-Net. While for hard examples, our

PAS-Net demonstrates the great advantages of well exploring

attentions useful for action recognition, especially in small

objects and the crowd. Interestingly, our PAS-Net pays

attentions to not only persons but also objects interacting

with people and we believe our PAS-Net seeks action-related

pose heatmaps to improve the action recognition results.

V. CONCLUSIONS

We present a novel pose-based and appearance-based

spatiotemporal networks(PAS-Net), which simultaneously

consider the appearance information and pose knowledge.

Moreover we explore various architectures for fusing the

appearance and pose information, and our proposed training

strategy can effectively reduce the influence of overfitting for

the limited training data. Furthermore, our PAS-Net achieves

competitive performance on UCF-101 and HMDB-51 when

using only RGB modality. Future work includes investigating

the effectiveness of our PAS-Net on other action analysis

tasks such as action detection and video captioning.

REFERENCES

[1] Thomas Brox, Andrés Bruhn, Nils Papenberg, and Joachim Weickert.
High accuracy optical flow estimation based on a theory for warping.
In ECCV, 2004.

[2] Zhe Cao, Tomas Simon, Shih-En Wei, and Yaser Sheikh. Realtime
multi-person 2d pose estimation using part affinity fields. In CVPR,
2017.

[3] Joao Carreira and Andrew Zisserman. Quo vadis, action recognition?
a new model and the kinetics dataset. In CVPR, 2017.
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