
Deformation Flow Based Two-Stream Network for Lip Reading

Jingyun Xiao1,2, Shuang Yang1, Yuanhang Zhang1,2, Shiguang Shan1,2, Xilin Chen1,2

1 Key Laboratory of Intelligent Information Processing of Chinese Academy of Sciences (CAS), Institute of

Computing Technology, CAS, Beijing 100190, China
2 University of Chinese Academy of Sciences, Beijing 100049, China

Abstract— Lip reading is the task of recognizing speech
content by analyzing movements in the lip region when people
are speaking. Based on the continuity in adjacent frames in the
speaking process, and the consistency in motion patterns among
different people when they pronounce the same phoneme, we
model lip movements as a sequence of apparent deformations
in the lip region during the speaking process. Specifically,
we introduce a Deformation Flow Network (DFN) to learn
the deformation flow between adjacent frames, which directly
captures the motion information within the lip region. The
learned deformation flow is then combined with the original
grayscale frames with a two-stream network to perform lip
reading. To make the two streams learn from each other in
the learning process, we introduce a bidirectional knowledge
distillation loss to train the two branches jointly. Owing to
the complementary cues provided by different branches, the
two-stream network shows substantial improvement over using
either single branch. A thorough experimental evaluation on
two large-scale lip reading benchmarks is presented with
detailed analysis. The results accord with our motivation, and
show that our method achieves state-of-the-art or comparable
performance on these two challenging datasets.

I. INTRODUCTION

Visual speech recognition, also known as lip reading, is

the task of decoding speech content based on the visual cues

of a speaker’s lip motion. Lip reading is a developing topic

that has received growing attention in recent years. It has

broad application prospects in hearing aids, special education

for hearing impaired people, complementing acoustic speech

recognition in noisy environments, new human-machine in-

teraction methods, among many other potential applications.

The field of video understanding has progressed signifi-

cantly in recent years. However, lip reading remains a chal-

lenging task. Different from coarse-grained video analysis

tasks, such as action detection and action recognition, lip

reading is a fine-grained video analysis task, and requires

subtle spatial information in the lip region as well as contin-

uous and discriminative temporal information of lip motion.

While humans outperform machines in action recognition,

machines have already exceeded humans in lip reading. This

is partly because the visual details and lip motions are too

subtle for humans to capture and analyze, while machines

have an innate advantage in this respect.

Recent lip reading methods are based on deep learning and

often conducted in end-to-end fashion. Although promising

performance has been achieved by these methods, there are

several issues that demand more consideration. First, existing
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lip reading methods extract frame-wise features and model

temporal relationships with RNNs, with less consideration

of the innate spatiotemporal correlation of adjacent frames.

Second, one main difference between lip reading and other

video tasks is that the input video is focused on the face,

and usually a crop of the lip region. It sets higher demands

on the discriminative power of subtle facial information.

In this paper, we propose a Deformation Flow Network

(DFN) to generate the deformation flow of the face in a

video. It is trained in a completely self-supervised manner,

with no need for labeled data. The deformation flow is a

sequence of deformation fields. A deformation field is a

mapping of the correlated pixels from the source frame

to the target frame, which directly represents the motion

information from the source frame to the target frame.

By computing the deformation field between each pair of

adjacent frames, we can capture and represent the motion of

the face in the video.

We employ a two-stream network for lip reading, and input

both the computed deformation flow and the raw videos.

The two branches predict the probabilities of each word

class independently. To make the two branches exchange

information during training, we adopt knowledge distillation,

and utilize a bidirectional knowledge distillation loss to

help the two branches learn from each other’s predictions

during training. At test time, we fuse predictions from both

branches to make the final prediction. We observe that a

simple average of the predictions produces more accurate

predictions, compared to using either of the two branches.

It suggests that the two sources of input, the raw video and

the deformation flows, provide complementary cues for the

lip reading task.

Our contributions are threefold: (a) we propose a De-

formation Flow Network (DFN) to generate deformation

flows that can capture the motion information of the faces,

which is trained in a self-supervised manner; (b) we use the

deformation flows and the raw videos as the inputs to a two-

stream network, which provide complementary cues for lip

reading, and utilize a bidirectional knowledge distillation loss

to train the two branches jointly; (c) we conduct extensive

experiments on LRW [4] and LRW-1000 [18], demonstrating

the effectiveness of our methods.

II. RELATED WORKS

In this section, we briefly review previous works on deep

learning methods for lip reading, as well as self-supervised

methods for facial deformation modeling.
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Fig. 1. The overview of Deformation Flow Based Two-stream Network. Given an input video, we first feed it to the Deformation Flow Network to
generate the deformation flows. Then the raw video and the deformation flows are fed into the two branches separately. Each branch predicts the probability
of each word class independently. At test time, we fuse the results of each branch to improve classification performance. During training, we propose a
bidirectional knowledge distillation loss to help the two branches exchange learned knowledge.

A. Deep Learning Methods for Lip Reading

With the rapid development of deep learning in recent

years, some works have begun to apply deep learning meth-

ods to lip reading, which offer considerable improvements

over traditional methods using hand-engineered features.

Noda et al. [8] first employed a convolutional neural network

(CNN) to extract the features for lip reading. Wand et al. [13]

used Long Short-Term Memory (LSTM) to replace the tra-

ditional classifier for lip reading, and achieved considerable

improvement. In 2016, Chung et al. [4] proposed several

end-to-end lip reading models for word-level classification.

They also published a large-scale word-level database, LRW.

Since then, more recent lip reading approaches have followed

an end-to-end paradigm. Concurrently, Assael et al. [1]

proposed LipNet, the first end-to-end lip reading model

that performs sentence-level prediction. Notably, it employs

the CTC loss [5], which is widely used in audio speech

recognition to deal with unaligned data.

In 2017, Stafylakis et.al. [11] proposed a new word-

level model that attains 83.0% classification accuracy on

the LRW dataset, which is a significant improvement over

prior art. It uses a combination of a single 3D convolution

layer, ResNet [6], and bidirectional LSTM networks [7].

The proposed architecture, which has strong spatiotemporal

modeling power, successfully copes with many in-the-wild

variations that LRW presents. Inspired by the success of

deep spatiotemporal convolutional networks and two-stream

architectures in action recognition, Weng et al. [15] apply

deep spatiotemporal convolutional networks to lip reading.

They also employ optical flow and two-stream networks.

B. Self-supervised Facial Deformation

Recently, there have been a series of works using the de-

formation field and warping methods for face manipulation,

facial attributes learning and other face-related tasks.

The Deforming Autoencoder (DAE) [10] presents an

unsupervised method to disentangle shape (in the form of

a deformation field) and appearance (texture information

disregarding the pose variations) of a face, assuming that

a face can be decomposed as the texture being warped

by the deformation field. It performs an inverse process to

disentangle the two features in an unsupervised manner. The

learned features are demonstrated to be effective for face ma-

nipulation, landmarks localization and emotion estimation.

X2Face [17] is a network that can generate face images

with a target pose and expression. In the evaluation stage,

given a source face and a driving face, the network is

able to generate a new face that preserves the identity,

appearance, hairstyle and other attributes of the source face,

while possessing the pose and expression of the driving face.

In the training stage, it uses a pixel-wise L1 loss between

the generated frame and the driving frame to supervise the

training process. In this way, the training process of the

network does not need any annotations.

FAb-Net [16] has a similar architecture to X2Face. How-

ever, it aims to learn the facial attributes in a self-supervised

manner. The architecture consists of an encoder and a

decoder. The encoder encodes the frame into a vector, which

contains rich facial attributes information. The learned facial

attributes are demonstrated to achieve results comparable

to and even surpassing the features learned by supervised

methods in several tasks.
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Fig. 2. The architecture of DFN. It consists of an encoder and a decoder.
Given a source frame and a target frame, the encoder encodes them into two
feature vectors, vs and vt . The decoder takes the concatenation of vs and
vt as input, and generates a deformation field. The source frame is warped
by the deformation field, and generates an output frame. A pixel-wise L1
loss between the output frame and target frame can supervise the network
effectively. The DFN is trained in a completely self-supervised manner.

III. METHODS

In this section, we introduce our Deformation Flow Net-

work (DFN) for generating the deformation flow, Deforma-

tion Flow Based Two-stream Network (DFTN) for word-

level lip reading, and the bidirectional knowledge distillation

loss for training the two-stream network jointly.

An overview of the pipeline is shown in Fig. 1. Given

an input video (i.e., cropped grayscale image sequence of

the lip region), we first feed it to the Deformation Flow

Network to generate a series of deformation fields, one for

each pair of adjacent frames. This resulting deformation field

sequence is the deformation flow of the original video. Next,

the grayscale video and the deformation flow are fed into the

two branches separately for recognition. The two branches

are optimized with individual classification losses, and a

bidirectional knowledge distillation loss, which helps the two

branches learn from each other. At test time, we fuse the

results of each branch to make a final classification for the

input video.

In the following subsections, we first state the architecture

and training strategy of DFN in III-A. Next, in III-B we

present the structure of the two branches of DFTN in detail.

Finally, the proposed bidirectional knowledge distillation loss

is explained in III-C.

A. Deformation Flow Network

The architecture of the Deformation Flow Network (DFN)

is shown in Fig. 2. The input to the DFN is a pair of frames

(i.e., a source frame and a target frame) and the output is a

deformation field, which is a 2-channel map of the same size

as the input frames. The DFN consists of an encoder and a

decoder. The encoder encodes the source frame s and target

frame t into a source vector vs, and a target vector vt . The

decoder takes the concatenation of vs and vt as input, and

generates a deformation field d, which predicts the relative

offsets (δx,δy) for each pixel location (x,y) in the target

frame relative to the source frame. An output frame o is

generated by sampling from the source frame s with the

offsets of the deformation field d:

o(x,y) = s(x+δx,y+δy) (1)
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Fig. 3. The source frames, target frames, output frames, deformation flow
generated by DFN, and optical flow generated by PWC-Net [12]. It shows
that the deformation flow captures more details of the face than the optical
flow.
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Fig. 4. The difference images of output frame and target frame.

The output frame o = D(s, t), is expected to be identical to

the target frame t, which can be supervised by a pixel-wise

L1 loss between the output frame and target frame:

L1 =
1

n ∑
(x,y)
|o(x,y)− t(x,y)| (2)

The DFN is trained in a completely self-supervised man-

ner, with no need for any extra manual annotations. Examples

of the source frames, target frames and output frames are

shown in Fig. 3. It is worth noting that since the deformation

field is estimated at the pixel level, it can capture very

subtle variations of faces and directly represent the motion

information, which means it also has potentials in other face-

related tasks beyond lip reading.

B. Deformation Flow Based Two-stream Network

In this subsection, we introduce the two branches (i.e.,

the grayscale branch and the deformation flow branch) of

the Deformation Flow Based Two-stream Network, as well

as the fusion strategy of the two branches.

Firstly, we introduce the baseline model in this paper. The

grayscale branch adopts the widely used model proposed by

[11], which is a combination of CNN and RNN, except

that we use Gated Recurrent Units (GRU) [2] instead of

LSTMs. Specifically, it consists of a front-end (i.e., a single

layer of 3D CNN followed by ResNet-18 [6] and a back-

end (i.e., a 2-layer bidirectional RNN with GRUs). The
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Fig. 5. The architecture of the two-stream network for lip reading.
The grayscale branch and the deformation flow branch make prediction
respectively. The learning propcess is guided by both the classification loss
and the bidirectional knowledge distillation loss.

front-end extracts the visual features for each frame, and

outputs a sequence of feature vectors. The back-end decodes

the feature sequences, and predicts the probability of each

word class. The deformation flow branch mostly mirrors the

structure of the grayscale branch. The only difference is that

the first layer of the model is a 2D convolution layer, while

it is a 3D convolution layer in the grayscale branch. The

detailed architecture is shown in Fig. 5.

Massive amount of works on two-stream networks have

explored methods to fuse the two branches. In this work, we

experimented with different fusion strategies, and the results

with different fusion strategies are presented in IV-C. Among

all the strategies, we find that fusing the output probabilities

of the two branches gives the best performance.

However, the problem with fusing the predicted proba-

bilities from individual branches is that the two branches

are optimized separately, and lack interaction in the training

stage. We wish to design a method that can help the two

branches exchange the knowledge they learned during the

training process. Therefore, we propose the bidirectional

knowledge distillation loss.

C. Bidirectional Knowledge Distillation Loss

In this subsection, we introduce the bidirectional knowl-

edge distillation loss as an additional supervision for training

the two branches jointly.

Fusion schemes for two-stream architectures have been

widely explored in the field of action recognition. Here,

we adopt the method of knowledge distillation. The two

branches are able to make word-level classification as two

independent models respectively. The outputs of the fully-

connected (FC) layers of the grayscale branch and the

deformation branch are denoted as zg and zd respectively.

We then obtain the predicted probability distribution over all

classes, qg and qd as:

q(i) =
exp(z(i)/T )

∑ j exp(z( j)/T )
, (3)

where T is a parameter known as temperature. T is usually

set to 1 for classification tasks, and the equation becomes the

softmax function. In knowledge distillation, a large T makes

the probability distribution q “softer”, which is easier for a

student network to learn than a one hot vector corresponding

to the ground truth. In our work, we set T to 20. The

knowledge distillation loss is defined as:

LKD(qt ,qs) =−
N

∑
i=1

q(i)t logq(i)s , (4)

where qt and qs denotes the soft probability distribution of

the teacher network and student network, respectively, and

N denotes the number of classes.

Since we expect the two branches to learn from each other,

we adopt a bidirectional knowledge distillation loss:

LBiKD(qg,qd) = LKD(qg,qd)+LKD(qd ,qg) (5)

Altogether, the objective function of the two-stream network

is:

L = LCE(zg,y)+LCE(zd ,y)+λLBiKD(qg,qd), (6)

where LCE represents the standard cross-entropy loss for

classification tasks, y is the one hot vector indicating the

word class label of the video, and λ is a hyper-parameter

indicating the weight of LBiKD.

IV. EXPERIMENTS

A. Datasets

The proposed methods are evaluated on two large-scale

public lip reading datasets, LRW [4] and LRW-1000 [18].

Here we give a brief overview of the two datasets.

LRW. LRW [4] is a large and challenging word-level lip

reading dataset. Each sample of LRW is a video snippet of

29 frames captured from BBC programs. The label is the

corresponding word class of the video snippet. The dataset

has 500 word classes and each class has around 1000training
samples, 50 validation samples and 50 testing samples. The

total duration of LRW is approximately 173 hours. The main

challenges of LRW are: (a) the variability of appearance

and pose of the speakers, (b) similar word classes such

as ”benefit” and ”benefits”, ”allow” and ”allowed”, which

demands strong discriminative power of models, and (c) the

target words do not exist independently in the videos; rather,

they are presented with surrounding context, which requires

the model to focus on the correct keyframes.

LRW-1000. LRW-1000 [18] is the first public large-scale

Mandarin lip reading dataset. It is a naturally-distributed

large-scale benchmark for lip reading in the wild which

contains 1,000 classes with 718,018 samples from more

than 2,000 individual speakers. Each class corresponds to

the syllables of a Mandarin word composed of one or several

Chinese characters. It is a challenging dataset, marked by the

following properties: (a) it contains significant image quality



variations such as lighting conditions and scale, as well as

speakers attribute variations in pose, speech rate, age, make-

up and so on, (b) the number of samples in different classes

are imbalanced, which is consistent with the natural case

that some words occur more frequently than others in the

everyday life, and (c) the samples of the same word are not

limited to a constant length range to allow for modeling of

different speech rates.

B. Implementation Details

Data preprocessing. For both LRW and LRW-1000, we

resize the cropped images of lip region to 96×96 as input.

For LRW, we randomly crop the input to 88× 88 during

training and apply random horizontal flipping. For LRW-

1000, we take a central 88× 88 crop, and do not apply

random flipping.

Network architecture. For DFN, we employ a ResNet-18

[6] as the encoder, and 7 cascaded pairs of deconvolutional

layers and bilinear upsampling layers as the decoder. The

encoder yields a 256-dimensional vector for each frame. The

decoder takes the concatenation of a source vector vs and

a target vector vt as input, which is 512-dimensional, and

generates a 2-channel deformation field with the same size

as the input frames. The two channels of the deformation

field denote the offsets along the x and y axis at each pixel

location. For the lip reading model, as mentioned earlier,

we employ ResNet-18 as the front-end and GRU as back-

end. More specifically, for the grayscale branch, the front-

end is a single 3D convolution layer followed by a powerful

ResNet-18 network which yields a 512-dimensional vector

for each frame. For the deformation branch, we use a single

2D convolution layer on top of the ResNet-18 network.

As for the back-end, we use a 2-layer bidirectional Gated

Recurrent Unit (Bi-GRU) RNN with 1024 hidden units to

process the sequence of the 512-dimensional vectors, each

vector extracted from a frame.

Training strategies. We use the three-stage training

strategy proposed in [11]. We use the Adam optimizer

with default hyperparameters. For LRW, the learning rate

is initialized to 0.0001 and reduced by half every time

when the validation loss stagnates, until the model reaches

convergence. For LRW-1000, the learning rate is initialized

to 0.001. In all of our experiments, when the validation loss

stagnates for the first time, we reduce the learning rate of the

back-end to 10% of the learning rate of the front-end. This

policy works well in alleviating the overfitting problem. As

for the weight of bidirectional knowledge distillation loss,

we initialize it to be 100, and reduce it by half every time

when the validation loss stagnates.

C. Evaluation of DFN

We evaluated DFN on LRW [4]. The source frames, target

frames, output frames, and generated deformation fields are

shown in Fig. 3. As can be seen, the output frame matches

the target frame quite well. Visualizations of the deformation

field shows clear discrimination of the lip region, which

carries the motion information we wish to capture, from

TABLE I

EVALUATION OF DIFFERENT INPUTS ON LRW.

Input Accuracy (%)

Grayscale 81.91
Deformaion Flow 77.24
Deformaion Flow (optimized by classification loss) 79.43
Optical Flow 67.81

TABLE II

COMPUTATION EXPENSE OF DIFFERENT NETWORKS.

Network GFLOPS # Params
DFN 14.5 7.95M

PWC-Net 635 9.37M
Lip Reading Model 18.4 40.5M

neighboring regions. This indicates that DFN can generate

precise deformation fields, which meets our expectation of

directly capturing motion in the speakers’ faces, especially

in the lip region.

We also studied the reconstruction quality of the output

frames qualitatively and quantitatively. Shown in Fig. 4, DFN

is able to reconstruct faces of varying poses by warping

the source frames. We randomly chose 2000 pairs of target

frames and output frames and evaluated the peak signal-to-

noise ratio (PSNR) and structural similarity (SSIM) index.

The average PSNR is 26.86 and the SSIM index is 0.82.

Inspired by the observations in [9], we further experiment

with replacing the L1 loss with classification loss to supervise

the DFN. This should help the DFN learn to generate task-

specific deformation flows which better suits the lip reading

task. Specifically, we freeze the decoder and unfreeze the

encoder of DFN when training the deformation flow branch

with classification loss. As shown in Fig. 6, compared with

the target frames, the action of mouth opening or closing

is slightly amplified in the output frames. The classification

accuracy is also improved, as shown in Table I.

We compared DFN with state-of-the-art optical flow

method PWC-Net [12] on the task of lip reading qualitatively

and quantitatively. We utilize the pretrained model in [12]

to generate the optical flow of the adjacent frames in the

video, and use the optical flow for lip reading. The generated

optical flow and deformation flow are shown in Fig. 3. It

shows that the deformation flow has more fine details. We

then use the deformation flow generated by DFN and optical

flow generated by PWC-Net as inputs to evaluate their lip

reading performance on LRW. The results of are presented in

Table I. It indicates that our task-specific deformation flow is

more suitable for the lip reading task. We also compared the

network complexity (i.e., floating point operations (FLOPs)

and the number of params) of DFN and PWC-Net, which is

shown in Table II. The result indicates that the computational

complexity of DFN is much lower than PWC-Net, which

is one of our motivations to propose DFN. The greatly

reduced complexity makes it possible to use DFN in real-

time applications. DFN also has potential to benefit other

face-related analysis tasks.



Fig. 6. The output frames and deformation fields generated by DFN,
where the encoder is optimized with the classification loss instead of the
L1 loss. The output frames have slight differences from the target frames.
According to the views in [9], optical flow learned for action recognition in
a task-specific manner differs from traditional optical flow and improves the
performance of action recognition. This is also the case with the deformation
flow.

TABLE III

EVALUATION OF DFTN ON LRW AND LRW-1000.

Method LRW (%) LRW-1000 (%)

Grayscale branch (baseline) 81.91 38.56
Deformaion flow branch 79.43 36.44
Two-stream 83.03 41.46
Grayscale branch (with LBiKD) 82.93 38.76
Deformation flow branch (with LBiKD) 80.85 37.47
Two-stream(with LBiKD) 84.13 41.93

TABLE IV

EVALUATION OF DIFFERENT STRATEGIES ON LRW.

Method Accuracy (%)

Grayscale branch 81.91
Deformation flow branch 79.43
Avg (FC) 82.13
Add (Res4) 82.52
Mul (probabilities) 83.03
Mul (probabilities) (with LKD(d−>g)) 82.14

Mul (probabilities) (with LKD(g−>d)) 82.92

Mul (probabilities) (with LBiKD) 84.13

(a)

(b)

Fig. 7. Examples of the inputs of the grayscale branch and the deformation
flow branch.

D. Evaluation of DFTN

In this subsection, we present ablation studies of DFTN

on LRW and LRW-1000.

Evaluation of each single branch. We pretrained the

two branches (i.e., the grayscale branch and the deformation

flow branch) of the two-stream networks independently. The

inputs of the two branches are shown in Fig. 7. The grayscale

branch alone is also the baseline model in this paper. The

results in terms of recognition accuracy on LRW and LRW-

1000 are shown in Table III.

Evaluation of the two-stream network. We fused the

probabilities predicted by the two branches to make the final

classification of the testing samples. The results are shown in

Table III. Empirically, we found using multiplicative fusion,

i.e. taking the product of the probabilities results in higher

recognition accuracy than additive fusion, i.e. taking the

average of the probabilities of the two branches.

Evaluation of the bidirectional knowledge distillation
loss. To make the two branches exchange the learned

knowledge and further improve the performance of DFTN,

we trained the two-stream network with the bidirectional

knowledge distillation loss as an additional supervision. The

results indicate that bidirectional knowledge distillation not

only improves the accuracy of the joint prediction, but also

improves the prediction accuracy of each branch when they

work independently. The results are shown in Table III.

Evaluation of different fusion strategies and distil-
lation strategies. To further validate the effectiveness of

the bidirectional knowledge distillation loss, we conducted

experiments to compare the performance of different fusion

strategies and distillation strategies. We experimented with

two fusion methods that fuse the intermediate features of

the two branches rather than the probabilities:

1) Average the outputs of FC layers of the two branches,

feed the vector to a softmax layer to get the probability

distribution, and compute the cross-entropy loss;

2) Adopt the fusion method in [15], i.e. sum the outputs of

the last layers of ResNet of the two branches, feed the

resulting vector to the back-end to get the probability

distribution, and compute the cross-entropy loss.

We also experimented with two unidirectional knowledge

distillation strategies to compare with the bidirectional

knowledge distilling strategy:

1) Distill knowledge from the grayscale branch to the

deformation flow branch.

2) Distill knowledge from the deformation flow branch to

the grayscale branch.

The results are presented in Table IV. It indicates that

the fusion of the output probabilities performs better than

the fusion of the intermediate features of the two branches

(mid-fusion). Also, the bidirectional knowledge distillation

outperforms unidirectional knowledge distillation.

E. Comparison with State-of-the-Art

Comparison with other methods on LRW. We compared

our methods with other word-level lip reading methods [4],



TABLE V

COMPARISON WITH OTHER METHODS ON LRW.

Method Accuracy (%)

Chung16 [4] 61.10
Chung17 [3] 76.20
Stafylakis17 [11] 83.00
Stafylakis17 [11] (reproduced) 77.80
Weng19 [15] 84.07
DFTN 84.13

TABLE VI

COMPARISON WITH OTHER METHODS ON LRW-1000.

Method Accuracy (%)

Yang19 [18] 38.19
Wang19 [14] 36.91
DFTN 41.93

[11], [15] on LRW. The results are presented in Table V.

The model in [15] employs deep 3D CNNs and optical flow

based two-stream networks, which achieved state-of-the-art

performance. Our method outperforms it, and establishes

new state-of-the-art performance.

Comparison with other methods on LRW-1000. We

compared our methods with other word-level lip reading

methods [18], [14] on LRW-1000. The results are presented

in Table VI. Our method outperforms all previous methods

on LRW-1000 and achieves state-of-the-art performance.

V. CONCLUSION

In this paper, we propose a Deformation Flow Network

(DFN) to generate deformation flows, a way of representing

facial motion, which provides cues complementary to the

raw videos. Notably, the network is lightweight and trained

in a self-supervised manner. We also propose a Deformation

Flow Based Two-stream Network (DFTN) for word-level

lip reading. Different from previous methods that fuse the

features of the two branches, we employ the bidirectional

knowledge distillation loss to help the two branches interact

with each other, and exchange knowledge during training.

Finally, we compare our method with other word-level lip

reading methods, and show that our method achieves state-

of-the-art performance. Our work makes a first attempt to

introduce facial deformation to generate a new modality. It

provides potential applications and possibilities for not only

lip reading, but also other face analysis tasks.
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