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Abstract

Vehicle Re-Identification is to find images of the same ve-

hicle from various views in the cross-camera scenario. The

main challenges of this task are the large intra-instance dis-

tance caused by different views and the subtle inter-instance

discrepancy caused by similar vehicles. In this paper, we

propose a parsing-based view-aware embedding network

(PVEN) to achieve the view-aware feature alignment and

enhancement for vehicle ReID. First, we introduce a pars-

ing network to parse a vehicle into four different views,

and then align the features by mask average pooling. Such

alignment provides a fine-grained representation of the ve-

hicle. Second, in order to enhance the view-aware fea-

tures, we design a common-visible attention to focus on the

common visible views, which not only shortens the distance

among intra-instances, but also enlarges the discrepancy of

inter-instances. The PVEN helps capture the stable discrim-

inative information of vehicle under different views. The ex-

periments conducted on three datasets show that our model

outperforms state-of-the-art methods by a large margin.

1. Introduction

Vehicle Re-identification (ReID) has attracted more and

more attention in recent years as it is important for building

intelligent transportation and city surveillance systems [16,

11, 18, 14, 13, 30, 2]. This task aims to retrieve images of

a query vehicle in a large gallery set, where the target vehi-

cles are usually under various views and from widespread

cameras. It is particularly useful when the license plates of

*Corresponding author.

vehicles are occluded, blurred, and damaged. As illustrated

in Figure 1, there exists two key challenges in this task, 1)

the large intra-instance difference of the same vehicle under

different views. 2) the subtle inter-instance discrepancy of

different vehicles when they share the same type and color.

To address the above challenges, some works use the

meta information (e.g. vehicle attributes, spatial-temporal

information) to improve the representation ability of the

features. Liu et al. [16] proposed a course-to-fine search

framework to model the attributes and spatial-temporal in-

formation into vehicle ReID. Zheng et al. [34] introduced a

deep network to fuse the camera views, vehicle types and

color into the features of vehicle. These approaches focus

on learning global representation for the vehicle.

However, the overall appearance changes dramatically

under different view-points, which results in the instability

of global features and also brings the first challenge. In con-

trast, local features usually provide the stable discriminative

cues. Recently, researchers introduced local regions to learn

the more discriminative features about the vehicle. Wang

et al. [27] generated orientation invariant features based on

vehicle keypoints detection. Liu et al. [17] extracted local

features based on three evenly separated regions of a vehicle

to acquire distinctive visual cues. He et al. [3] detected win-

dow, lights, and brand for each vehicle through a YOLO de-

tector to generate discriminative features. The above meth-

ods focus on pre-defined regions to learn the subtle local

cues. However, as shown in Figure 1, the distinctive cues

(e.g. exhaust, stickers and ornaments) may appear in any

part of vehicle and this leads to the second challenge.

Recently, data augmentation such as complementary

views generation was applied to shrink the intra-instances

discrepancy. Zhou et al. [37] tried to handle the multi-view
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(a) Vehicle ID-1

(b) Vehicle ID-2

Figure 1. Toy examples from two different vehicles with the same

type and color in VERI-Wild. Each row indicates different views

of the same vehicle, which shows the challenge of large intra-

instance difference. Each column denotes the same view from dif-

ferent vehicles, which shows the challenge of subtle inter-instance

discrepancy. The red boxes represent the subtle discriminative dif-

ferences of the two vehicles.

problem based on generating the invisible views. The gen-

erated views are derived from the visible view, which are

unable to reconstruct additional discriminative features.

In vehicle ReID, different views usually present the dif-

ferent characteristics of a vehicle. We would acquire more

discriminative description of a vehicle by leveraging these

complementary characteristics. However, since the same

vehicle has large appearance discrepancy between different

views, how to effectively fuse such different characteristics

remains a challenging problem.

To tackle the above challenge, this paper proposes a

Parsing-based View-aware Embedding Network (PVEN) to

achieve the view-aware feature alignment and enhance-

ment for vehicle ReID. The PVEN consists of three mod-

ules: vehicle part parser, view-aware feature alignment, and

common-visible feature enhancement. First, we generate

four view masks (front, back, top and side) by training a

U-shape parsing network as shown in Figure 3. Because

the vehicle is a rigid body, the parsing network achieves

an impressive accuracy as it need not handle the deforming

problem. Second, based on global feature maps, local view-

aware features are aligned through mask average pooling.

Such alignment brings the vehicle the fine-grained represen-

tation with a complete spatial covering. Third, we propose

a common-visible attention to enhance the local features.

The mechanism tends to enlarge the effect of common visi-

ble views between two vehicles and suppress the non-salient

views. This helps to overcome the large intra-instance dif-

ference under different views and the subtle discrepancy

of inter-instances under similar type and color. Based on

common-visible attention, we modified the typical triplet

loss to avoid the mismatch of local features. We optimize

this local triplet loss and the global loss to learn the view-

aware feature embedding. As a result, the global semantic

and local subtle discriminative cues are jointly learned into

the final embedding of the vehicle.

In summary, our main contributions are three folds.

• To address the two key challenges in vehicles ReID,

we propose a view-aware feature embedding method,

where both feature alignment and enhancement of

common visible views help to learn more robust and

discriminative features.

• We introduce a common-visible attention to enhance

features under different views. This not only shortens

the distance among intra-instances, but also enlarges

the discrepancy of inter-instances.

• Experiments on three vehicle ReID datasets verify the

effectiveness of PVEN1. It achieves superior perfor-

mance over SOTA methods with a large margin.

2. Related Works

Vehichle Re-identification has become a hot topic re-

cently due to its wide using in intelligent transportation sys-

tems [16, 11, 18, 14, 2, 19, 8]. In previous works of vehicle

ReID, these methods can be summarized into three groups:

(1) Vehicle meta-information based feature fusion. The

meta information, such as spatial-temporal information,

vehicle attribute, are aggregated into global vehicle em-

beddings. Liu et al. [16] used a course-to-fine progres-

sive search to leverage the vehicle attributes and spatial-

temporal information. Shen et al. [24] considered the con-

straint of spatial temporal information and used visual-

spatial-temporal path to reduce searching space. Guided by

camera views, vehicle types and color, Zheng et al. [34] in-

troduced a deep model to fuse the features for vehicle ReID.

These approaches learn global representation for vehicle,

and they are sensitive to dramatic changes of view. So they

suffer from the challenge of large intra-instance difference

of the same vehicle under different views. (2) Local region

based vehicle feature learning. Besides global features, re-

cent works take advantage of local features to improve the

representation ability. For example, Wang et al. [27] gener-

ated orientation invariant feature based on pre-defined key-

points detection. He et al. [3] used the local region (e.g.,

window, brand and light bounding box) to learn more dis-

criminative regions. This type of methods usually depends

on pre-defined distinctive region or key-points. They ig-

nore the fact that the discriminative cues may appear in any

region of vehicle, and suffer from the challenge of subtle

inter-instance discrepancy of similar vehicles. (3) Gener-

ative Adversarial Network based feature alignment. With

GAN thriving, some works have started to introduce GAN

into vehicle ReID. For instance, Zhou et al. [37] handled

the viewpoint problem by generating the opposite side fea-

tures using a GAN. Lou et al. [18] proposed to generate the

1https://github.com/silverbulletmdc/PVEN
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Figure 2. The network architecture of PVEN. First, the image is fed into feature extractor and vehicle part parser. The former outputs

semantic feature maps while the latter generates the view mask of front, back, top and side. Then global feature of vehicle is extracted

to construct the ID loss and triplet loss. View-aware features are extracted by mask average pooling for each mask. We aggregate the

features by common-visible attention to formulate the triplet loss of local features. In inference stage, the distance of global feature and

local features are added to get the final distance.

hard samples by introducing a GAN. Due to the limitation

of generation ability of existing GAN and the insufficient

adversarial samples, there exists large gap between the gen-

erated features and reality features.

Vehicle re-identification is also related with person ReID

task, which aims to find target persons from various views

in a large set of persons. Recently, CNN-based features

achieved great progress on person ReID [25, 35, 6, 20, 33, 9,

32, 12]. Sun et al. [25] split the image with a uniform parti-

tion strategy and extract CNN features for each parts. Zhao

et al. [33] decompose the person by human body region to

acquire human pose information. Wei et al. [9] proposed

harmonious attention CNN to jointly learn attention selec-

tion and feature representation. The explosion of person

ReID methods lightens the vehicle ReID task.

3. Methodology

To address the challenges of large intra-instance differ-

ence and subtle inter-instance discrepancy in vehicle ReID,

we propose a Parsing-based View-aware Embedding Net-

work (PVEN). It consists of three modules: vehicle part

parser, view-aware feature alignment, and common-visible

feature enhancement. The PVEN focuses on the view-

aware feature learning, where the alignment and enhance-

ment of common visible regions helps learn more robust

and discriminative features.

3.1. Vehicle Part Parser

As one key challenge of vehicle ReID, view transforma-

tion under multiple cameras is unavoidable. Invariant fea-

ture learning under different views is an important insight

to improve the performance of vehicle ReID. We notice that

most vehicles have the following two characteristics. First,

the vehicle can be regarded as a cube, which can be divided

into different parts by view. Second, the vehicle is the rigid

body, so there are no physical deformations. The character-

istics imply that accurate vehicle parsing masks are capable

to be extracted. With these parsing masks, we can align

corresponding parts for different vehicles.

A vehicle can be roughly regarded as a cube with six

surfaces. The bottom of vehicle is usually invisible under

the camera. The left and right side of the vehicle usually

can not appear at the same time under a certain view and

are usually symmetry in visual. Based on these observa-

tions, we parse a vehicle into four parts: front, back, side

and top. The side indicates the left or right side of a vehi-

cle. In this paper, the above parsing scheme is designed for

vehicle view-aware representation. As shown in Figure 3,

there are two key advantages of this parsing scheme: First,

it covers the whole vehicle under the certain view, so that

every subtle differences between two vehicles can be cap-

tured. Second, under most view-points, 3 parts of a vehicle

are visible in an image, which means that there are at least

2 same parts appearing in both the query and gallery image.

Parsing Annotation for VeRi776 Dataset. We annotate

a subset of VeRi776 [16] dataset for training vehicle part

parsing network. To improve the adaptive capacity of the

parsing model for various views, we collect as many views

of a vehicle as possible. In detail, according the definition

of viewpoint in [27], we sample images for seven different

viewpoints of a vehicle. If the number of viewpoints is less
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VeRi776

VehicleID

VERI-Wild

Figure 3. Examples of our parsing result on three main vehicle

ReID datasets. The red, green, yellow and blue masks denote the

front, back, side and top view of the vehicle respectively.

than four, we evenly sample four images of this vehicle.

Totally, we annotated 3165 images. We select 2665 images

of the annotated dataset randomly as training set and 500

images as validation set.

Vehicle Parsing Network. To get an accurate parsing re-

sult, we train a segmentation model [21] using the above an-

notated dataset. The parsing model takes SeResNeXt50 [5]

as backbone and is trained with balanced cross entropy loss.

Our model achieves 81.2% IoU score in the validation set,

which is sufficient for solving the view transformation chal-

lenge. Figure 3 shows some of the parsing results in three

vehicle ReID datasets. It shows the impressive generaliza-

tion performance of the parsing model as the parser need

not handle the deforming problem.

3.2. View-aware Feature Alignment

Most of vehicle ReID models use deep global features

to represent a vehicle, which focus on learning high seman-

tic information. In this paper, we introduce the view-aware

local features to obtain the fine-grained representation with

a complete spatial covering. Further, view-aware feature

alignment is implemented to avoid the mismatch among dif-

ferent views.

Here, we use ResNet50[4] pre-trained on ImageNet[22]

dataset as our feature extractor. We reset the stride of last

pooling layer from 2 to 1 and obtain a 16× 16× 2048 fea-

ture map F. As shown in Figure 2, the feature extractor net-

work has two output branches. The first branch is the global

branch, where we apply the global average pooling to the

feature map to get global feature fg . The other branch is the

local branch for view-aware feature learning. First, we pool

the above view masks to 16 × 16 by max pooling, which

is defined as {Mi|i ∈ {1, 2, 3, 4}}. Second, we apply the

mask average pooling (MAP) to the feature map F to com-

pute four local view-aware features {f i
l |i ∈ {0, 1, 2, 3}}.

They represent the front, back, side and top view of a vehi-

View-aware

features

masks

local distance

View-aware

features

masks
visibility

score

visibility

scoreCommon 

Visible

Attention

Common-visible score

Figure 4. Illustration of common-visible attention. First, the visi-

bility scores of different parts are computed based on the vehicle

masks. Then, the common-visible scores of all parts are obtained

by the common-visible attention. Finally, we calculate the local

distance between two vehicles with their view-aware features and

the corresponding common-visible scores.

cle respectively. The f i
l is calculated by

f i
l =

∑
16

j,k=1
Mi(j, k)× F(j, k)

∑
16

j,k=1
Mi(j, k)

(1)

The global feature blend features of different views into

one feature. It leads to a mismatch of views when compar-

ing two vehicles. Differently, the local view-aware features

are aligned upon the above four views. It decouples the

information of different views into corresponding local fea-

tures, and provides view-aware embeddings for a vehicle.

3.3. Common-visible Feature Enhancement

After the above stage, we obtain the four view-aware lo-

cal features f i
l of the vehicle. In this section, we introduce

a common-visible attention to enhance the features of dif-

ferent views. This helps capture the stable discriminative

information of the same vehicle under different views.

Figure 4 shows the procedure of common-visible atten-

tion. Given two image p, q, and their masks M
p
i and M

q
i ,

we compute the visibility score v
p
i and v

q
i , which indicated

the size of corresponding area of each view. The visibility

score vi is defined as

vi =

16∑

j,k=1

Mi(j, k) (2)
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We introduce the common-visible attention to compute

the common-visible score a
p,q
i as following,

a
p,q
i =

v
p
i v

q
i∑N

i=1
v
p
i v

q
i

(3)

where a
p,q
i measures the consistency of common visible re-

gions. Then, the distance of local features D̂ between two

vehicles is computed as,

D̂p,q =
N∑

i=1

a
pq
i D(fp

i , f
q
i ) (4)

where D denotes the Euclidean distance.

If the vehicle lacks some views, the corresponding

common-visible score would be relatively small. So, only

views with high score would contribute to the final distance.

In this paper, we optimize the network by constructing

the loss of ID and triplet loss for global features, and triplet

loss for local features. The triplet loss of local features is

calculated based on the above distance of local features as,

Ll
triplet = max(D̂ap − D̂an + γ, 0) (5)

where the local distance based on view-aware feature align-

ment and common-visible feature enhancement aims to re-

duce the intra-instance distance from different views and

enlarge the inter-instance distance from similar vehicles.

Finally, the total objective of PVEN is to minimize the

following loss,

L = L
g
id + L

g
triplet + Ll

triplet (6)

4. Experiments

4.1. Datasets

We evaluate our model on three popular vehicle ReID

datasets, including VehicleID [11], VeRi776 [16] and

VERI-Wild [18].

VehicleID [11] is a large scale vehicle ReID dataset. It

contains 221,763 images about 26,267 vehicles. Images of

this datasets are captured under front or back viewpoint.

Three test sets (i.e. small, medium and large) are extracted

according to their size. During inference stage, for each

vehicle, one image is randomly selected as the gallery set

while other images are regarded as query images.

VeRi776 [16] is also a classical vehicle ReID bench-

mark. It consists of about 50,000 images of 776 vehicles,

which are collected by 20 cameras across block region un-

der different viewpoints. The training set covers 576 vehi-

cles and the test set contains the other 200 vehicles.

VERI-Wild [18] is another large scale dataset for vehi-

cle ReID. It contains 416,314 images of 40,671 vehicles,

which are collected by 174 cameras in a month.

4.2. Experiments Setup

4.2.1 Training

We train the parsing model for 40 epochs on our annotated

Parsing VeRi dataset. The batch size is 8 and the learning

rate is 1e-4. We use Adam as the optimizer. Finally, The

parser achieves 81.2% IoU score in the validation set.

We train models for 120 epochs with warm-up strategy.

Initial learning rate is 3.5e-5, which increases to 3.5e-4 af-

ter the 10th epoch, and drops to 3.5e-5, 3.5e-6 in the 40th,

70th epoch for faster convergence. We first pad 10 pixels on

image border, and then randomly crop it to 256 × 256. We

also augment the data with random erasing. Adam is used

to optimize the model. Further, we add a Batch Normaliza-

tion layer after global feature. A fully connected layer is

added to map the global feature to ID classification score.

4.2.2 Inference

To evaluate our method, we first calculate the Euclidean

distance Dglobal among global features. Then we calcu-

late the distance D̂local as defined in Eq. (4) among local

view-aware features. Final distance between query set and

gallery set is computed as λ1Dglobal + λ2D̂local. Here, we

set λ1 = 1 and λ2 = 0.5.

4.2.3 Compared Methods

We compare our method with some state-of-the-art meth-

ods, e.g. (1). Handcraft feature based methods. BOW-

CN [36] first adopts BOW model based on the Color

Name (CN). Local Maximal Occurrence Representation

(LOMO) [10] is robust to the varied lightning condi-

tions. Fusion of Attributes and Color feaTures (FACT) [15]

combines the low-level color feature and high-level se-

mantic features. (2). Deep learning based methods.

GoogLeNet [28] is a GoogleNet[26] model fine-tuned on

the CompCars [29] dataset. Plate-SNN[16], which use

the number plate features to enhance the retrieval vehicles.

Siamese+Path [24] proposed the visual-spatial-temporal-

path to exploit the temporal restrict. GSTE [1] proposed

group-sensitive-triplet embedding to model the intraclass

variance elegantly. VAMI [37] generated features of differ-

ent views by GAN while Feature Distance Adversarial Net-

work [18] (FDA-Net) generated the hard negative samples

in feature space. EALN [19] proposed an adversarial net-

work that is capable of generating samples localized in the

embedding space. (3). Discriminitive region mining based

methods. OIFE [27] used the 20 pre-defined keypoints to

roughly align the vehicle features. RAM [17] split the im-

age horizontally into 3 parts. PRN [3] detected the window,

light and brand to capture the difference between vehicle

instances. AAVER [7] proposed an attention mechanism

based on vehicle keypoints and orientation.
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Table 1. The CMC@1 and CMC@5 on VehicleID.

Method
small medium large

@1 @5 @1 @5 @1 @5

MD+CCL[11] 0.490 0.735 0.428 0.668 0.382 0.616

OIFE[27] - - - - 0.670 0.829

VAMI[37] 0.631 0.833 0.529 0.751 0.473 0.703

RAM[17] 0.752 0.915 0.723 0.870 0.677 0.845

EALN[19] 0.751 0.881 0.718 0.839 0.693 0.814

AAVER[7] 0.747 0.938 0.686 0.900 0.635 0.856

PRN[3] 0.784 0.923 0.750 0.883 0.742 0.864

PVEN 0.847 0.970 0.806 0.945 0.778 0.920

4.3. Experiments on VehicleID dataset

We compare the CMC@1 and CMC@5 scores on this

dataset, as there is only one ground-truth for each query ve-

hicle. Table 1 shows the comparison results on three test

datasets with different sizes. We observe that, first, com-

pared with other methods, the PRN and our PVEN obtained

the performance improvement with a large margin. This is

because these two methods introduced the further learning

to some key regions. This plays important role in vehicle

ReID task. Second, our PVEN achieve the improvement at

the CMC@1 by 3.6%+ and CMC@5 by 4.5%+ over the

SOTA PRN [3] on different test data. Although the PRN [3]

introduced the detection about window, light, and brand for

each vehicle, they ignored the fact that the distinctive cues

will appear in any part of vehicle. On the contrast, our

method certifies the complete information mining of vehicle

through the local view-aware feature embedding. The above

comparison results prove the effectiveness of the PEVN.

It is worth noting that the vehicle only contains two view-

points in this dataset, namely, the front side and back side.

The extracted features from different views are completely

different, even they are from the same vehicle. Benefiting

from view-aware feature enhancement, the PVEN can avoid

the mismatch of local features under the different views.

4.4. Experiments on VeRi776 dataset

We also evaluate the vehicle ReID methods on VeRi776

dataset, where three measurement metrics, including mAP,

CMC@1 and CMC@5, are adopted.

Table 2 shows the performance comparison among

PVEN and other methods. We find that, benefitting from

learning of extra key regions, both the PRN and our PVEN

achieve a large promotion with a 16.0% and 21.2% on the

mAP respectively. Besides, different from the pre-defined

regions of the PRN, the PVEN extracts the local information

from four views, which completely cover the whole vehicle.

Thus, PVEN can learn the key distinctive and local cues to

determine the target vehicle. In detail, the PEVN obtains

the improvement of 5.2% on mAP, and 1.3% CMC@1 over

the PRN. Moreover the CMC@5 of both methods have ex-

ceeded the 98.4%, which is a promising performance for

real vehicle ReID scenario.

Table 2. The mAP, CMC@1 and CMC@5 on VeRi776.

Method mAP CMC@1 CMC@5

BOW-CN[36] 0.122 0.339 0.537

LOMO[10] 0.096 0.253 0.465

GoogLeNet[28] 0.170 0.498 0.712

FACT[15] 0.185 0.510 0.735

FACT+Plate+STR[16] 0.278 0.614 0.788

Siamese+Path[24] 0.583 0.835 0.900

OIFE[27] 0.480 0.894 -

VAMI[37] 0.501 - -

RAM[17] 0.615 0.886 0.940

EALN[19] 0.574 0.844 0.941

AAVER[7] 0.612 0.890 0.947

PRN[3] 0.743 0.943 0.989

PVEN 0.795 0.956 0.984

Table 3. The mAP on VERI-Wild.

Method small medium large

GoogLeNet[28] 0.243 0.242 0.215

Triplet[23] 0.157 0.133 0.099

Softmax[16] 0.264 0.227 0.176

CCL[11] 0.225 0.193 0.148

HDC[31] 0.291 0.248 0.183

GSTE[1] 0.314 0.262 0.195

Unlable-GAN[38] 0.299 0.247 0.182

FDA-Net[18] 0.351 0.298 0.228

PVEN 0.825 0.770 0.697

4.5. Experiments on VERI-Wild dataset

VERI-Wild dataset[18] is the current largest vehicle

ReID dataset. Here we compare our PEVN with other meth-

ods at three metrics, namely, CMC@1, CMC@5 and mAP.

Table 3 shows the performance of mAP on the three dif-

ferent size of test dataset. We can find that our PVEN has

a large promotion over the previous works of vehicle ReID.

In detail, the improvement of mAP is 47.4%, 47.2%, and

46.9% on the small, medium and large dataset respectively.

This impressive boost of mAP benefits from the view-aware

feature alignment and enhancement, which help to learn

more robust and discriminative features of vehicles.

Table 4 shows the performance of CMC@1 and

CMC@5 from different methods on three test datasets. We

can observe that, first, our PVEN exceeds all the other mod-

els under both metrics on different test datas. The CMC@1

of the PVEN has the improvement of 32.7%+ than the FDA-

Net [18], and the CMC@5 of PVEN has the improvement

of 16.4%+ than FDA-Net. The consistency of CMC pro-

motion proves the effectiveness of our model. Second, as

the size of test datas increases, the performance of the tra-

ditional methods decreases with a large margin. For exam-

ple, for CMC@5, the state-of-the-art method FDA-Net de-
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Table 4. The CMC@1 and CMC@5 on VERI-Wild.

Method
small medium large

@1 @5 @1 @5 @1 @5

GoogLeNet[28] 0.572 0.751 0.532 0.711 0.446 0.636

Triplet[23] 0.447 0.633 0.403 0.590 0.335 0.514

Softmax[16] 0.534 0.750 0.462 0.699 0.379 0.599

CCL[11] 0.570 0.750 0.519 0.710 0.446 0.610

HDC[31] 0.571 0.789 0.496 0.723 0.440 0.649

GSTE[1] 0.605 0.801 0.521 0.749 0.454 0.665

Unlabled Gan[38] 0.581 0.796 0.516 0.744 0.436 0.655

FDA-Net[18] 0.640 0.828 0.578 0.783 0.494 0.705

PVEN 0.967 0.992 0.954 0.988 0.934 0.978

Table 5. Ablation study about each part of PVEN on VehicleID.

settings CMC@1 CMC@5 CMC@10

PVEN w/o local 0.796 0.937 0.969

PVEN w/o CV-ATT 0.766 0.900 0.953

PVEN 0.847 0.970 0.987

clines 4.5% between small and medium test data and 7.8%

between medium and large test data; the performance of

PVEN degrades 0.4% between small and medium test data

and 1.0% between medium and large test data; This indi-

cates that our approach has the better generalization ability

under large datas. This results from the view-aware fea-

tures enhancement under different views in PVEN, not only

shortens the distance among intra-instances, but also en-

larges the discrepancy of inter-instances.

4.6. Ablation Study

4.6.1 The effectiveness of the parsing module

To validate the effectiveness of the parsing model for vehi-

cle ReID, we conduct an experiment that just evenly split

the images vertically into four parts, and remain other set-

tings the same with PVEN. The results in Table 6 shows that

parsing performs better than both the baseline and vertical

split settings in mAP and CMC@5.

4.6.2 The validation of view-aware feature learning

We conduct ablation study about the proposed view-aware

feature learning on VehicleID dataset. PVEN w/o local in-

dicates the PVEN model without the local branch of view-

aware feature learning. PVEN w/o CV-ATT adds the local

branch, but do not use the common-visible attention. It cal-

culates the Euclidean distance of each local features. Typ-

ical triplet loss are applied to the distance. PVEN uses the

full architecture as described in Section 3. As in Table 5,

first, we observe that our PVEN achieves better accuracy

than others by a large margin. This is because view-aware

feature alignment and common-visible attention drives the

network attending to the common visible parts between two

compared vehicles. Second, directly applying triplet loss

to view-aware features without common-visible attention is

Table 6. The validation of parsing module on VeRi776.

settings mAP CMC@1 CMC@5

baseline 0.772 0.957 0.980

vertical split 0.775 0.948 0.974

parsing 0.795 0.956 0.984

Table 7. Weight selection of global and local distance on VeRi776.

λ1 λ2 mAP CMC@1 CMC@5 CMC@10

1 0 0.787 0.955 0.982 0.990

1 0.3 0.794 0.956 0.984 0.992

1 0.5 0.795 0.956 0.984 0.992

1 0.7 0.794 0.959 0.984 0.992

1 1 0.793 0.961 0.984 0.991

0 1 0.713 0.922 0.967 0.982

harmful to the performance. It treats features of each view

equally and ignore that features are non-salient under cer-

tain views, so this introduces noise to the network.

4.6.3 Weight selection of global and local distance

Here we conduct experiments to figure out how the view-

aware feature affects the performance of vehicle ReID. Ta-

ble 7 shows the results of different weights between global

and local distance. We can find that the view-aware local

feature brings the improvement of final results at all met-

rics, namely mAP, CMC@1, CMC@5, CMC@10. The

local view-aware feature learning helps the global features

learn better.

4.6.4 Visualization of view-aware feature learning

To better understand the influence of view-aware feature

learning in PVEN, we visualize the distance heatmap of

vehicle images. The pixels with high score in distance

heatmap indicate that they play more important role in de-

termine the similarity between query and gallery vehicle.

Specifically, the heatmap is the weighted sum of the last

feature maps of the backbone. The weights are computed

from the element-wise Euclidean distance of two features.

Figure 5 shows the distance heatmap of two images from

our PVEN and PVEN without view-aware feature learn-

ing. The two images are from back view and front view

respectively, but they are of the same vehicle. As shown

the first row in Figure 5, we observe that the PVEN with-

out view-aware feature learning mainly focus on the mis-

matched back and front lights of the vehicle. As a compari-

son in the second row, the PVEN pays more attention to the

co-occurrence regions, such as the side and top part of the

vehicle, which decreases the obstruction of different views

and shortens the distance among intra-instances.
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PVEN w/o local

PVEN

Figure 5. The distance heatmap of two images for the same vehi-

cle. These two images are under different views (back and front).

The PVEN without view-aware future learning (first row) mainly

focuses on the back and front part of the vehicle, while PVEN

(second row) pays more attention on the common visible parts.

4.7. Cross-dataset Transferring

In vehicle Re-ID task, the main difference between dif-

ferent datasets is the distribution of views. For example,

most vehicles are under back and front views in VehicleID

while more vehicles are under side views in VeRi776 and

VERI-Wild. We test the transferring performance of PVEN

to evaluate the effectiveness of the view-aware feature em-

bedding. We train the PVEN in VERI-Wild and test it

in the VehicleID. The compared methods RAM [17] and

EALN [19] are trained and tested both on VehicleID.

Table 8 shows the performance. We found the perfor-

mance of our model outperforms RAM [17] and EALN [19]

on CMC@1 and CMC@5, although PVEN is not trained on

the test dataset. The proposed view-aware feature learning

alleviates the multi-view distribution difference. This trans-

fer ability of PVEN derives from two aspects. First, the

view-aware feature alignment brings the fine-grained rep-

resentation for the vehicle. Second, the common-visible

feature enhancement under different views can not only

shorten the distance among intra-instances, but also enlarge

the discrepancy of inter-instances.

4.8. Qualitative Analysis

Figure 6 shows the qualitative results of our PVEN on

the three vehicle ReID datasets. We can observe that when

the query and target images are under different views, our

PVEN can better recognize the same vehicle, which benefits

from view-aware feature alignment and enhancement.

In Figure 6, The top two rows show the results on

VeRi776. The medium two rows are the results on Vehi-

Table 8. The mAP, CMC@1 and CMC@5 on cross domain setting.

method train test CMC@1 CMC@5

RAM[17] VehicleID VehicleID 0.752 0.915

EALN[19] VehicleID VehicleID 0.751 0.881

PVEN VERI-Wild VehicleID 0.772 0.944

query Top5 results

VeRi776

PVEN w/o 

local

PVEN

VehicleID

VERI-Wild

PVEN w/o 

local

PVEN

PVEN w/o 

local

PVEN

Figure 6. Visualization of ranking list on vehicle ReID task. The

images in the first column are the query images. The rest images

are retrieved top-5 ranking results. The correct retrieved images

are in green border, while false instances are in red border.

cleID, where for each test query, there is only one target

image in the gallery set. The bottom two rows show the re-

sults on VERI-Wild. We can find that the top-k retrieved

vehicles of the PVEN without view-aware feature learning

are of the same view, and also in similar color and vehicle

type. As comparison, PVEN retrieves the right images un-

der different views. This indicates that the view-aware fea-

ture learning can better align and enhance the local features

so as to ease the view transformation problem.

5. Conclusion

In this paper, we propose a parsing-based view-aware

embedding network. With the help of vehicle part parser,

view-aware feature alignment provides a fine-grained repre-

sentation of the vehicle. We design a common-visible atten-

tion to focus on the common visible views, which enhance

the vehicle embeddings under different views. This not only

shortens the distance among intra-instances, but also en-

larges the discrepancy of inter-instances. PVEN helps cap-

ture the stable and discriminative information of the same

vehicle. The experiments on three datasets show that our

model outperforms SOTA methods by a large margin.
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