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a b s t r a c t 

Unconstrained face recognition still remains a challenging task due to various factors such as pose, ex- 

pression, illumination, partial occlusion, etc. In particular, the most significant appearance variations are 

stemmed from poses which leads to severe performance degeneration. In this paper, we propose a novel 

Deformable Face Net (DFN) to handle the pose variations for face recognition. The deformable convolu- 

tion module attempts to simultaneously learn face recognition oriented alignment and identity-preserving 

feature extraction. The displacement consistency loss (DCL) is proposed as a regularization term to en- 

force the learnt displacement fields for aligning faces to be locally consistent both in the orientation and 

amplitude since faces possess strong structure. Moreover, the identity consistency loss (ICL) and the pose- 

triplet loss (PTL) are designed to minimize the intra-class feature variation caused by different poses and 

maximize the inter-class feature distance under the same poses. The proposed DFN can effectively handle 

pose invariant face recognition (PIFR). Extensive experiments show that the proposed DFN outperforms 

the state-of-the-art methods, especially on the datasets with large poses. 

© 2019 Published by Elsevier Ltd. 
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. Introduction 

Face recognition, as a fundamental problem in computer vision,

as received more and more attentions in recent years. Equipped

ith powerful convolutional neural networks (CNNs), the accuracy

as a rapid boost that face recognition under controlled settings

i.e., near-frontal poses, neutral expressions, normal illuminations,

tc.) seems to be solved. However, under the uncontrolled envi-

onment, a number of factors (e.g., pose, illumination, resolution,

cclusion, and expression) significantly affect the performance of

ace recognition system. Among these factors, self-occlusion from

ut-plane poses brings about large appearance variations. The

isalignment problem heavily hurts the face recognition system.

n this paper, we further push the frontier of this research area

y simultaneously considering face recognition oriented alignment

nd identity-preserving feature extraction under deep neural net-

orks, which aims at tackling the pose-invariant face recognition

PIFR) problem. 

The conventional deep face recognition system usually firstly

ligns faces with simple affine transformations and then feeds

he aligned faces into convolutional neural networks to extract

dentity-preserving features. Since the affine transformations can

nly remove in-plane pose variations, the intra-class appearance
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ariations from out-plane poses still exists, resulting in face

isalignment problem. As a consequence, the face recognition ac-

uracy degenerates severely under large out-plane pose variations.

o handle this problem, one can either align the face images with

xtra technology, e.g., 3D based face alignment [1] or improve

he CNN’s capacity of extracting pose-invariant features. Since

uman heads are nearly rigid 3D objects, following the former

ipeline, many effort s are devoted to synthesizing well-aligned

rontal face image from non-frontal faces by using 3D rigid motion

odels [2–8] . However, 3D model reconstruction with a single

D image is an ill-conditioned problem and the synthesized

mage needs high fidelity refinement to improve the reality of

aces. Since face recognition system extracts high-level feature to

ecognize identities, it is unnecessary to generated frontal faces.

hus aligning high level features is more convenient than aligning

aces in pixel-level, leading to potentially more effective recog-

ition results. The approaches following the latter pipeline focus

n learning pose-invariant feature representations. Conventional

pproaches such as multiview subspace learning or pose-directed

ulti-task leaning significantly improve the large pose face recog-

ition. Unfortunately, such subspace projections and multi-tasks

re learnt corresponding to several discrete poses, it is difficult for

hose methods to handle face recognition under continuous pose

ariations. Moreover, it may be non-trivial for those methods to

btain pose-invariant feature robust to complex scenarios in no

onsideration of face alignment. 

https://doi.org/10.1016/j.patcog.2019.107113
http://www.ScienceDirect.com
http://www.elsevier.com/locate/patcog
http://crossmark.crossref.org/dialog/?doi=10.1016/j.patcog.2019.107113&domain=pdf
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In this paper, we propose a feature-level alignment method

to handle pose variations in face recognition. In our approach,

a convolution network, namely deformable face net (DFN) is

designed to simultaneously learn feature-level alignment and

feature extraction for face recognition. It is more favorable for

CNNs to learn identity-relevant features after aligning faces,

leading to better performance for face recognition under poses.

Inspired by the deformable convolution [9] , we propose to achieve

feature-level alignment by a deformable convolution module

which enables pose-aware spatial sampling based on displacement

fields for the subsequent feature extraction. It should be noted

that the conventional deformable convolution [9] is developed

for detecting general objects which have diverse local and global

non-rigid transformations, while human faces are approximately

rigid and the most salient transformations are caused by the rigid

pose change rather than other flexible variations. The difference

in rigidness implies that the displacement field learnt for face

recognition should be more consistent. With this in mind, we pro-

pose the displacement consistency loss (DCL) to enforce the local

consistency of the learnt displacement field both in orientation

and amplitude, leading to better alignment for face recognition.

Moreover, the identity consistency loss (ICL) and the pose-triplet

loss (PTL) are designed to minimize the intra-class feature varia-

tion caused by different poses and maximize the inter-class feature

distance under the same poses. Specifically, the ICL minimizes the

intra-class feature variation caused by different poses via taking

two faces under different poses as input. The PTL emphasizes

on improving the network discriminative ability of distinguishing

faces with the same pose but from different identities. Besides,

the DFN is quite efficient and can be end-to-end trained without

additional supervision. Compared to the existing pose-invariant

feature extraction methods, e.g., the PIM [10] and the p-CNN [11] ,

the proposed DFN achieves better results for face recognition

under poses, especially on the datasets with large poses. 

Briefly, the main contributions of this paper are summarized as

follows: 

• A novel Deformable Face Net (DFN) is proposed to handle pose

variations in face recognition with explicitly considering the

feature-level alignment. 
• The displacement consistency loss (DCL) is proposed to enforce

the learnt displacement field to be locally consistent both in the

orientation and amplitude, leading to better alignment for face

recognition. 
• The identity consistency loss (ICL) and the pose-triplet loss

(PTL) are designed to minimize the intra-class feature variation

caused by different poses and maximize the inter-class feature

distance under the similar poses, leading to better performance

for face recognition. 
• DFN outperforms the state-of-the-art methods on MegaFace,

MultiPIE and CFP, especially on the MultiPIE dataset with large

poses. 

The preliminary version of this work appears in [12] . We

extend it in a number of ways. (i) We propose a new loss function

named pose-triplets loss (PTL) for the Deformable Face Net (DFN).

This new loss function improves the DFN’s discriminative ability

of distinguishing faces with the same pose but from different

identities, leading to better results than the original DFN. (ii) Our

pose-triplet loss (PTL) is evaluated together with our displacement

consistency loss (DCL) on MultiPIE dataset and it significantly out-

performs the state-of-the-art methods. (iii) Further experiments

on the Celebrities in Frontal-Profile (CFP) dataset are conducted to

demonstrate the superiority of our DFN in a wild setting. 

The remainder of the paper is organized as follows: The related

works are briefly reviewed in Section 2 . In Section 3 , the proposed
FN and loss functions are illustrated. Experimental results are de-

ailed in Section 4 . The conclusions are summarized in Section 5 . 

. Related works 

Recently, many effort s are devoted to exploring pose invariant

ace recognition (PIFR) methods, which can be roughly grouped

nto the following three categories: face frontalization methods,

on-frontal face augmentation methods and pose-invariant feature

earning methods. In this section, we give a brief review of the

ecent works which are most relevant to this paper. 

.1. Face frontalization methods 

The face frontalization methods are essentially picture-level

ligning method. The key point of nearly all these methods is

ow to construct a well-aligned frontal face from faces under

iverse poses. In terms of the generation ways, these methods

re generally categorized into synthesizing frontal faces with

D information [2–8] or 2D images [13–16] . For the first cate-

ory, [2] proposes an effective face frontalization approach by

sing a single and unchanged 3D shape to approximate the shape

f all the input faces. In [3] , a high-fidelity pose and expression

ormalization method with 3D Morphable Model (3DMM) is pro-

osed to generate a frontal face under neutral expression. Without

sing the 3D structure model, the promising image synthesis

pproach Generative Adversarial Network (GAN) has also been

sed to frontalize faces [15–17] . By modeling the face rotation

rocess, DR-GAN [16] learns a disentangled representation which

an frontalize extreme poses in the wild. 

The face frontalization methods above have shown promising

esults of transforming non-frontal faces to frontal ones. How-

ver, 3D model reconstruction with a single 2D image is an

ll-conditioned problem, so that the gap between the real 3D

hape and the reconstructed 3D shape always exists. Furthermore,

ince the original non-frontal images have invisible face pixels due

o self-occlusion, the details of the transformed faces highly rely

n the invisible region filling approaches. Even though the facial

tructure is symmetrical, the symmetry of illumination cannot

lways hold. Both the blurry details and the weird illumination

ay make the transformed images unreal under large poses.

lthough current methods have improved the illumination trends

nd the texture details, the quality of the geometric frontalized

mages is still far from avoiding degeneration of face recognition

erformance. On the other side, the synthetic faces of GAN based

ethods usually have better visual effects. However, as the pixels

re not directly collected from the input image, the major con-

ern lies in how to guarantee that the frontalized faces can well

reserve the identity information. 

.2. Face augmentation 

Enlarging the training datasets with faces under diversified

oses may be an effective way to obtain features robust to differ-

nt poses. However, such training sets of a mass of identities are

xtremely rare. Alternatively, data augmentation methods become

ore practical. The works in [18–20] enrich the diversity of

oses by synthesizing massive images of sufficient pose variability

rom a frontal face. [18] employs 3DMM to augment the training

ata with faces of novel viewpoints. In [20] , a multi-depth generic

lastic model is developed to synthesize facial images with varying

oses. To some extent, these methods relieve the poses influence,

ut the discrepancy between distributions of the synthetic and real

ace images still limits the recognition performance improvements.

o improve the realism of synthetic training images, [19] pro-

oses a dual-agent generative adversarial network (DA-GAN) to
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efine the profile face images generated by the 3D face model. The

ompelling perceptual results improve the recognition significantly.

Although aforementioned augmentation methods enrich the

raining set with promising synthetic quality, but the misalignment

ssue inherited from the large poses still remains. The enriched

raining set relieves such issue by enforcing the feature extraction

etwork to adapt to various poses. However, the final performance

eavily relies on the fitting capacity of CNN, which may lead to

ncreased computation cost. 

.3. Pose-invariant feature learning methods 

These methods focus on learning pose-invariant feature repre-

entations for face recognition in the wild. Conventional multiview

ubspace approaches learn complex nonlinear transformations that

espectively project images captured under different poses to the

ommon space, where the intra-class variation is minimized [21–

7] . For instance, Sharma et al. [25] presents a discriminant cou-

led latent subspace framework for pose-invariant discriminative

earning. In [26] , GMA extracts unified multiview features by op-

imizing view-specific projections. In [27] , MvDA is proposed to

ointly solve the multiple linear transforms and meanwhile min-

mizes the within-class variations, resulting in very encouraging

erformance. 

Recently, more works resort to the deep learning to extract

ore powerful pose-invariant features [10,11,28–34] . To address

he above mentioned problem, one may either group multiple

ose-specific models or pose-specific activations, i.e., each one cor-

esponding to a specific pose [11,29,30,34] or design a single pose-

nvariant model [31–33] , which uniformly tackles all poses. For the

ormer category, [30] proposes a pose-directed multi-task CNN to

earn pose-specific identity features. Similarly, in [34] , a face image

s processed by utilizing several pose-specific deep convolution

eural networks. Although a significant improvement in accuracy

as been witnessed, the efficiency concern of such a multi-model

ramework needs to be further tackled. For the other category,

 unified model is exploited to extract pose-invariant features.

or instance, an analytic Gabor feedforward network is proposed

n [33] to absorb moderate changes caused by poses. In [10] , a

ace frontalization sub-net (FFN) and a discriminative learning

ub-net (DLN) is aggregated at a pose invariant model (PIM) which

enerates both high fidelity frontalized face images and pose

nvariant facial representations. The face synthesis in PIM makes it

ssentially a pixel-level alignment method. In contrast, our method

xplicitly considers feature-level alignments. Furthermore, com- 

aring to subspace methods and multi-tasks methods, our method

an tackle arbitrary poses rather than several specific poses. 

. Method 

The proposed Deformable Face Net (DFN) attempts to simul-

aneously learn feature-level alignment and feature extraction for

ace recognition via deformable convolutions with a spatial dis-

lacement field. This field is adaptively pose-aware, thus endowing

he deformable convolution the ability to align features in case

f pose variations. For this purpose, these displacement fields are

earnt by introducing three loss functions, i.e., the displacement

onsistency loss (DCL), the identity consistency loss (ICL) and

he pose-triplet loss (PTL). In this way, the DFN is able to well

ackle the feature misalignment issue caused by poses, resulting

n performance improvement in face recognition. 

.1. Overview of DFN 

As shown in Fig. 1 , a displacement field generator learns dis-

lacement fields at low-level features for face recognition oriented
lignment. In consideration of the strong structure in faces, the

isplacement consistency loss (DCL) is proposed to improve the

ocal consistency of the displacement fields and therefore assists

he deformable convolution to well tackle the PIFR problem. More-

ver, the identity consistency loss (ICL) are proposed to minimize

he intra-class feature variation caused by different poses, so as to

xplicitly force the learnt displacement fields to well align features

nder different poses. When employing the ICL, the DFN takes

aired images as input, of which each pair contains two faces

andomly sampled from the same person. It should be noted that

he two faces are not limited to one frontal image and one non-

rontal image, thus providing compatibility with various normal

raining datasets. When extra pose information of training set is

vailable, the proposed pose-triplet loss (PTL) can jointly minimize

he intra-class feature variation and further maximize the inter-

lass feature distance under the same poses, so as the extracted

eatures become more robust to poses. Both the ICL and the PTL

osses are imposed on intermediate feature (i.e., the output feature

f the deformable convolution) to supervise the learning of the

isplacement field generator, so that displacement fields are able

o achieve the pose-aware feature alignment. The whole network

s end-to-end trained jointly by using the softmax classification

oss and the proposed loss functions recorded as DCL, ICL and

TL. The proposed method can be integrated with the existing

owerful CNN architectures, e.g., the ResNet architecture [35,36] .

e note that introducing the pose-aware deformation modules

t different layers of the network have significant differences in

erformance. Details will be discussed in Section 4 . Next, we

resent each component of the DFN in details. 

.2. Displacement consistency loss 

Given an input feature map x , the kernels of the de-

ormable convolution [9] samples irregular grids over the

nput x . For each gird i centered on location p 

i 
0 
, such irregu-

ar sampling locations are obtained by an addition of offsets

 �p 

i 
k 

= { �p i 
kx 

, �p i 
ky 

}| k = 1 , . . . , K} (i.e., a displacement field) to a

egular sampling grid R . �p i 
kx 

and �p i 
ky 

denote the x-axis and

he y-axis component of �p 

i 
k 

respectively. The size of R is K , e.g.,

 = 9 for 3 × 3 convolution kernels. Then, the output feature map

 of the deformable convolution is computed as below: 

f (p 

i 
0 ) = 

K ∑ 

k =1 

w (p 

i 
k ) ·x (p 

i 
0 + p 

i 
k + �p 

i 
k ) , (1)

here R = { (−1 , −1) , (−1 , 0) , . . . , (0 , 1) , (1 , 1) } for a 3 × 3

ernel, p 

i 
k 

enumerates the locations in R and w denotes the

onvolution kernel. The offsets are represented as a h × w × 2 K

ensor for a h × w input feature map with stride 1. The spatial

imension h × w corresponds to the sliding sampling grids of the

onvolution operations and the channel dimension 2 K corresponds

o K offsets for each sampling grid R . 

To solve the PIFR problem, we expect that all the h × w × 2 K

ffsets to compensate both rigid and non-rigid global geometric

ransformations, such as poses and expressions. Since the general

bjects have diverse local and global transformations in the wild, it

s reasonable to learn those offsets without additional constraints

or conventional object detections. However, different faces share

he same structure and the most salient transformation is caused

y the poses, which means the deformation module should focus

ore on the distribution of the global displacement field along the

patial dimension of the input feature maps. Moreover, redundant

apacity of modeling the local transformations increases the risk

f over-fitting potentially, especially for the face images. To be free

rom this, the displacement consistency loss (DCL) is proposed to

earn the displacement field within each grid towards a consistent
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Fig. 1. Illustration of our proposed Deformable Face Net (DFN). DFN attempts to learn a pose-aware displacement field for the deformable convolution to extract pose- 

invariant features for face recognition. This field is adaptively pose-aware, thus endowing the deformable convolution the ability to align features in case of pose variations. 

For this purpose, these displacement fields are learnt by introducing three loss functions, i.e., the displacement consistency loss (DCL), the identity consistency loss (ICL) and 

the pose-triplet loss (PTL). 
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direction, as shown in Fig. 2 . The DCL is formulated in Eq. (2) as: 

L DCL = 

1 

h × w × K 

h ×w ∑ 

i =1 

K ∑ 

k =1 

‖ �p 

i 
k − �p 

i ‖ 

2 
2 , (2)

where �p 

i 
is the mean offset along k for i -th grid. By limiting

the solution searching space of the displacement field, the DCL

makes the training process more feasible, meanwhile the obtained

displacement field drives the deformable convolutions to well

compensate the intra-class feature variation caused by poses. 

3.3. Identity consistency loss 

The final objective of PIFR is to learn robust features that the

difference across poses is minimized as much as possible. It is

natural to introduce the Euclidean distance loss such as the con-

trastive loss [37,38] , whose minimization can pull the features of

the same identity under different conditions (e.g., poses) together.

Moreover, the formulation of pair-wise Euclidean distance loss is

frequently applied to face recognition. However, due to the limited

geometric transformation capacity of conventional CNN structures,

the pair-wise loss function is not always helpful. On the contrary,

benefited from the pose-aware deformation modules, DFN can

naturally handle this problem more efficiently. In this paper, we

reformulate the Euclidean distance loss as the identity consistency

loss (ICL) by constraining the distance between features of the

same person from the deformable convolutions rather than final
eatures from the penultimate layer. In this way, the identity

onsistency loss has more profound supervision effects on learning

he deformable offsets such that the PIFR can be further improved.

Formally, to train the DFN, a training batch containing N im-

ges is randomly chosen from N /2 identities, where two images

or the identity j , namely I 
j 
1 

and I 
j 
2 
. The identity consistency loss

inimizes the difference between the output deformable features

 

j 
1 

and f 
j 
2 

corresponding to the input images I 
j 
1 

and I 
j 
2 

respectively,

.e., 

 ICL = 

N/ 2 ∑ 

j=1 

‖ f j 
1 

− f j 
2 
‖ 

2 
2 . (3)

It should be noted that the normalization of f 
j 
1 

and f 
j 
2 

is neces-

ary, otherwise the norm of features will implicitly affect the scale

f the loss function, leading to un-convergence. By employing the

CL, the deformable module is optimized to enforce features under

aried poses to be well aligned. 

.4. Pose-triplets loss 

The pose variation reduces the similarity of faces from the

ame identity. In addition, it even surpasses the intrinsic appear-

nce differences between individuals, i.e., the features extracted

rom different identities under the same poses are more similar

han those from the same identity across different poses. In this

aper, we reformulate the triplet loss [39] as pose-triplets loss
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Fig. 2. Illustration of the offsets obtained with our displacement consistency loss (DCL). 
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Algorithm 1: Training deformable face net. 

Input : A training batch containing N images and their labels. 

while not converged do 

Compute the input feature map x for the deformable 

convolution; 

Compute the displacement field { �p 

i 
k 
| k = 1 , . . . , K} ; 

Compute the displacement consistency loss L DCL ; 

Compute the output feature map f of the deformable 

convolution; 

if training set contains pose information then 

Compute the pose-triplets loss L PT L ; 

Compute the softmax loss L sof tmax ; 

Compute the total loss L total : 

L total = L sof tmax + αL DCL + βL PT L ; 

else 

Compute the identity consistency loss L ICL ; 

Compute the softmax loss L sof tmax ; 

Compute the total loss L total : 

L total = L sof tmax + αL DCL + βL ICL ; 

end 

Backpropagation and update the weights of the DFN 

end 

Output : The trained DFN. 

o  

o  

a  

s  

t

3

 

i  

o  

t  

f  

r  
PTL) to improve the discriminative ability of separating images

ith same poses but from different identities. 

Formally, f a 
i 

denotes the feature of the anchor face and f 
p 
i 

de-

otes the feature of positive sample from the same identity. The

egative image is chosen from any other identity which has the

ame pose with the anchor face. Here, we want to ensure that

he feature distance of the negative pair (recorded as f a 
i 

and f n 
i 
)

s larger than the distance of the positive pair (recorded as f a 
i 

and

 

p 
i 

). The pose-triplets loss aims to separate the positive pair from

he negative by a distance margin α. The PTL is formulated in

q. (4) as: 

 PT L = 

N ∑ 

i =1 

[ ‖ f a i − f p 
i 
‖ 

2 
2 − ‖ f a i − f n i ‖ 

2 
2 + α] + . (4)

dditionally, similar to the aforementioned ICL, the features

 

a 
i 
, f 

p 
i 

and f n 
i 

are normalized for better convergence. The

lgorithm 1 summarizes the workflow of training our DFN with

he proposed loss functions. 

.5. Discussion 

.5.1. Differences with the deformable convolution network 

Both the deformable convolution network [9] and our DFN

re feature-level alignment methods that attempt to handle the

eometric transformations. The deformable convolution is firstly

eveloped for detecting general objects which have diverse local

nd global non-rigid transformations, e.g., the dogs shown in Fig. 3

ave significantly different postures. In contrast, human faces are

pproximately rigid objects and the most salient transformations

re caused by the rigid pose variations rather than the non-rigid

xpressions, which means the displacement field learnt for face

ecognition should be more consistent in directions. To this end,

hree addition loss functions DCL, ICL and PTL are embedded

n DFN for better face alignment. As illustrated in Fig. 3 , the

isplacement fields of faces from our DFN are more consistent

han those of dogs from deformable convolution networks, which

re more favorable for face recognition oriented face alignment.

oreover, when both the deformable convolution network and

ur DFN are applied to the human faces, the displacement fields
f our DFN notably shows more structure consistency than those

f the deformable convolution network, leading to better face

lignment and further improved face recognition performance. The

ignificant improvements in face recognition further demonstrate

he effectiveness of our DFN, see details in Section 4.3 . 

.5.2. Differences with the face frontalization methods 

The face frontalization methods [2–8,13–17,19] which are

mage-level alignment attempt to generate frontal faces, while

ur DFN is feature-level alignment that attempts to align fea-

ures under different poses. For face recognition, the generated

rontal faces are further fed into CNNs for feature extraction,

esulting in a two-stage process (i.e., the face frontalizaition and
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Fig. 3. Illustration of the displacement fields. As seen, adjacent offsets share simi- 

lar direction, meaning that local consistency inheres in the distribution of displace- 

ment field. Since human heads are nearly rigid objects, the deformable transfor- 

mations require more consistency. However, as show in (b), when directly applying 

conventional deformable convolution network for human faces, the generated dis- 

placement fields lack sufficient consistency, which are not good enough for aligning 

faces across poses. In contrast, as shown in (c), the displacement fields of our DFN 

are more consistent, which demonstrates the effectiveness of the proposed method. 
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the feature extraction). Differently, our method learns the pose

invariant features in a unified framework by designing an effective

feature-level deformable convolutional module, leading to better

recognition results. 

3.5.3. Differences with other pose-invariant feature learning methods 

Different from most pose-invariant feature leaning meth-

ods [10,11,23–34] using multiple models in which each model

correspond to a specific pose, our DFN presents a unified model

to handle different poses. Besides, those subspace learning

approaches [23–27] directly learn projections to achieve pose-

invariant features. Since such projections are learnt corresponding

to several specific poses, those methods are limited to handle

these discrete poses. Besides, it may be non-trivial for those

methods to obtain features robust to more complex pose varia-

tions without explicitly considering alignments. Differently, our

method can tackle arbitrary poses rather than several specific

poses. Furthermore, our method learns pose-invariant features

in consideration of explicit feature-level alignments, resulting in

significant improvement for face recognition across poses. 
. Experiments 

.1. Experimental setting 

.1.1. Dataset 

To investigate the effectiveness of the proposed DFN,

e evaluate our method on three main face recognition

enchmarks, MegaFace [40] , MultiPIE [41] and CFP [42] . The

egaFace [40] benchmark is employed for the evaluations as this

hallenging benchmark contains more than 1 million face images

mong which more than 197K faces have yaw angles larger than

40 degrees. In this study, we evaluate the performance of our

pproach on the standard MegaFace challenge 1 (MF1) benchmark.

his benchmark evaluates how face recognition method performs

ith a very large number of distractors in the gallery. For this

urpose, the subjects in the MegaFace dataset [40] are used as the

istractors, while the probes are from the Facescrub dataset [43] .

he MegaFace dataset consists of more than 1 million face images

rom 690k different individuals and the Facescrub dataset contains

06,863 face images of 530 subjects. Specifically, in one test, each

f the images per subject in the Facescrub dataset is added into

he gallery, and each of the remaining images in the Facescrub

f this subject is exploited as a probe. It should be noted that

he uncleaned MegaFace datasets are used in evaluation for fair

omparison. 

To systematically evaluate how our DFN handles various pose

ngles, we conduct experiments on the MultiPIE dataset as it

ontains images captured with varying poses. The MultiPIE dataset

s recorded during four sessions and contains images of 337 iden-

ities under 15 view points and 20 illumination levels. To compare

ith state-of-the-arts, we employ the following setting since it

s an extremely challenging setting with more pose variations.

he setting follows the protocol introduced in [30,31] , images of

50 identities in session one are used. For training, we utilize the

mages of the first 150 identities with 20 illumination levels and

oses ranging from +90 ◦ to −90 ◦. For testing, one frontal image

ith neutral expression and illumination is used as the gallery

mage for each of the remaining 100 identities and the other

mages are used as probes. The rank-1 recognition rate is used as

he measurement of the face recognition performance. 

To evaluate how our DFN performs in a wild setting, we

onduct experiments on the Celebrities in Frontal-Profile (CFP)

atabase [42] . The CFP contains 70 0 0 images of subjects and each

ubject has 10 frontal and 4 profile face images. The images in CFP

re organized into 10 splits and each split contains 350 frontal-

rontal pairs and 350 frontal-profile pairs. The evaluation follows

he 10 fold cross-validation protocol defined in [42] and the mean

nd standard deviation of accuracy(ACC), Equal Error Rate (EER)

nd Area Under Curve (AUC) are used as the measurement. 

.1.2. Implementation details 

In our experiments, we use [44] for landmark detection and

rop the face images into size of 256 × 256 by affine transforma-

ions. Some examples of the cropped images are shown in Fig. 4 .

he DFNs are constructed by integrating the deformable module

etween two adjacent original CNN blocks and trained with the

oftmax loss function. It is flexible to be directly applied to the

tandard CNNs so that we develop DFN-ResNets by stacking it into

wo adjacent residual blocks of the ResNets. Extensive experiments

re conducted to explore the impact of the deformable module

ntegrated at different stages of the ResNet architectures. The DFN

DCL) and DFN (ICL) denote the DFN versions trained with the

roposed DCL and ICL respectively. The DFN (DCL&ICL) denotes

he version trained with the two loss function jointly. The DFN

DCL&PTL) denotes the version trained with the DCL loss and
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Fig. 4. An example of pose-invariant features of DFN-L (DCL&ICL) with various poses ( −60 ◦ to +60 ◦). Even with the same identity, obvious differences are witnessed between 

features extracted from the baseline method. In contrast, the features obtained by the proposed DFN-L (DCL&ICL) show a similar pattern across all poses. 

Table 1 

Architecture details of DFN-ResNet-50 and DFN-ResNet-152 with DCL, PTL or ICL. 

Output size DFN-ResNet-50 DFN-ResNet-152 

62 × 62 conv, 7 × 7, 64, stride 4 conv, 7 × 7, 64, stride 2 

displacement field generator (conv, 3 × 3, 18) 

DCL loss 

deformable conv, 3 × 3, 64 

PTL loss or ICL loss 

max pool, 3 × 3, stride 2 

stage 1 

31 × 31 

max pool, 3 × 3, stride 2 ⎡ 

⎣ 

conv , 1 × 1 , 64 

conv , 3 × 3 , 64 

conv , 1 × 1 , 256 

⎤ 

⎦ × 3 

⎡ 

⎣ 

conv , 1 × 1 , 64 

conv , 3 × 3 , 64 

conv , 1 × 1 , 256 

⎤ 

⎦ × 3 

stage 2 

16 × 16 

displacement field generator (conv, 

3 × 3, 18) 

DCL loss 

deformable conv, 3 × 3, 64 

PTL loss or ICL loss ⎡ 

⎣ 

conv , 1 × 1 , 128 

conv , 3 × 3 , 128 

conv , 1 × 1 , 512 

⎤ 

⎦ × 4 

⎡ 

⎣ 

conv , 1 × 1 , 128 

conv , 3 × 3 , 128 

conv , 1 × 1 , 512 

⎤ 

⎦ × 8 

stage 3 

8 × 8 

⎡ 

⎣ 

conv , 1 × 1 , 256 

conv , 3 × 3 , 256 

conv , 1 × 1 , 1024 

⎤ 

⎦ × 6 

⎡ 

⎣ 

conv , 1 × 1 , 256 

conv , 3 × 3 , 256 

conv , 1 × 1 , 1024 

⎤ 

⎦ × 36 

stage 4 

1 × 1024 

⎡ 

⎣ 

conv , 1 × 1 , 512 

conv , 3 × 3 , 512 

conv , 1 × 1 , 2048 

⎤ 

⎦ × 3 

avg pool, 4 × 4 

fc, 1024 

⎡ 

⎣ 

conv , 1 × 1 , 512 

conv , 3 × 3 , 512 

conv , 1 × 1 , 2048 

⎤ 

⎦ × 3 

avg pool, 7 × 7 

fc, 1024 

1 × 1 fc, softmax loss 
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TL loss jointly. For the MegaFace evaluation, the conventional

esNet-50 and ResNet-152 are used as our baselines. 

We manually clean the MS-Celeb-1M [45] dataset and finally

ollect 3.7 Million images from 50K identities. The revised dataset

s used as our training set for the evaluations on MegaFace chal-

enge 1. For experiments on MultiPIE dataset, the limited amount

f training images may incur over-fitting issue for deep networks

ike ResNet-50/152. To this end, we design a light CNN, namely,

FN-Light which is pre-trained on the cleaned MS-Celeb-1M

ataset and then fine-tuned on the MultiPIE training set. The

aseline denotes the plain network without the deformable mod-

les and the proposed three losses. The architecture details of the

FN-ResNet-50 and DFN-ResNet-152 are summarized in Table 1 .

or experiments on CFP dataset, we modify the conventional

esNet-18, forming a lightweight ResNet-10 as our baseline. The

FN-10 is then constructed by integrating the deformable module

ith ResNet-10. The architecture details of the DFN-Light and
FN-ResNet-10 are summarized in Table 2 . Both the baseline t  
nd DFN-10 are pre-trained on the cleaned MS-Celeb-1M dataset

nd then fine-tuned on the CFP dataset following the 10 folds

ross-validation protocol [42] . We implement our method on the

XNet [46] platform and train all the models using SGD with four

VIDIA TITAN XP GPUs. The loss weight of the softmax loss is set

o 1 and the loss weights of DCL, PTL and ICL are 0.001, 0.1 and

.01 respectively. 

.2. Evaluations on the megaface benchmark 

Since the stage where the deformable convolution is integrated

lays an important role in the resulting network architectures, we

rstly conduct experiments to investigate the best construction

ith only softmax loss. By integrating the deformable convolution

t four different stages of the plain ResNet-50 respectively, we

onstruct four versions of the DFN-ResNet-50 (DFN-50 for short in

he following sections). Table 1 exhibits an example of integrating

he deformable module in the stage 2. One significant difference
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Table 2 

Architecture details of DFN-Light and DFN-ResNet-10 with DCL, PTL or ICL. 

Output size DFN-Light DFN-ResNet-10 

62 × 62 conv,7 × 7, 64, stride 4 conv, 7 × 7, 64, stride 4 

stage 1 

31 × 31 

max pool, 3 × 3, stride 2 

displacement field generator (conv, 

3 × 3, 18) 

DCL loss 

deformable conv, 3 × 3, 64 

PTL loss or ICL loss 

max pool, 3 × 3, stride 2 [
conv , 3 × 3 , 256 

conv , 3 × 3 , 256 

]
× 1 

stage 2 

16 × 16 

conv, 3 × 3, 64, stride 2 

conv, 3 × 3, 64, stride 1 

displacement field generator (conv, 3 × 3, 18) 

DCL loss 

deformable conv, 3 × 3, 64 

PTL loss or ICL loss [
conv , 3 × 3 , 512 

conv , 3 × 3 , 512 

]
× 1 

stage 3 

8 × 8 

conv, 3 × 3, 128, stride 2 

[
conv , 3 × 3 , 1024 

conv , 3 × 3 , 1024 

]
× 1 

stage 4 

1 × 1024 

conv, 3 × 3, 128, stride 1 

avg pool, 4 × 4 

fc, 1024 

[
conv , 3 × 3 , 2048 

conv , 3 × 3 , 2048 

]
× 1 

avg pool, 4 × 4 

fc, 1024 

1 × 1 fc, softmax loss 

Table 3 

Rank-1 identification accuracy on MegaFace challenge 1 with deformable 

convolution embedded at different stages. 

Method MF1 Rank1 

Baseline ResNet-50 74.76 

DFN-50 with deformable conv embedded in stage 1 75.25 

DFN-50 with deformable conv embedded in stage 2 75.02 

DFN-50 with deformable conv embedded in stage 3 72.48 

DFN-50 with deformable conv embedded in stage 4 58.88 

Table 4 

Rank-1 identification accuracy on MegaFace challenge 1 with 

different loss functions. 

Loss MF1 Rank1 

DFN-50: softmax 75.02 

DFN-50: softmax + contrastive 76.82 

DFN-50: softmax + ICL 78.14 

DFN-50: softmax + DCL 77.51 

DFN-50: softmax + DCL + ICL 78.21 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 5 

Rank-1 identification accuracy on MegaFace challenge 1 com- 

pared to the state-of-the-art methods. 

Method MF1 Rank1 

SphereFace-Small [47] 75.76 

CosFace [48] 82.72 

ArcFace [49] 81.03 

ResNet-152 80.60 

DFN-152 80.99 

DFN-152 (ICL) 81.85 

DFN-152 (DCL) 81.53 

DFN-152 (DCL&ICL) 82.11 
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between these four versions is the size of the input feature map

which varies from 62 × 62 to 8 × 8. We train the four versions on

the 3.7 Million images and test them on the MegaFace challenge 1

benchmark. As illustrated in Table 3 , the performance is gradually

improved from stage 4 to stage 1, which means the deformable

convolution works better on larger input feature maps from the

shallow stage. Since the size of the receptive field in the shallow

stage is much smaller than that in the deep stage, the learnt dis-

placement field of the shallow stage is more elaborative, leading

to better alignment for face recognition. 

Furthermore, integrating the deformable module in shallow

stage significantly outperforms the baseline, indicating that the

DFN is superior to its plain version, i.e., the ResNet-50 baseline.

Since models in Table 3 are trained only with the softmax loss,

the capability of DFN has not been fully excavated. Here, we

further explore the effectiveness of applying the DCL and ICL loss

functions to DFN. Firstly, we train the DFN-50 integrated with the

deformable module in stage 2 with the DCL and ICL respectively.

Then, we train the same network structure with both the DCL and

ICL. 

Table 4 summarizes the rank-1 identification accuracy on

MegaFace challenge 1 of our models trained with the proposed
CL and ICL loss functions. When the two loss functions are

sed separately, both of them can significantly improve the

erformance, which demonstrates the effectiveness of the two

roposed loss functions. Specifically, when only using the DCL

oss, the rank-1 accuracy is improved by 2.49%. We also com-

are the proposed ICL with the contrastive loss function. As

een, both the ICL and the contrastive loss improve the rank-1

ccuracy and our ICL outperforms the conventional contrastive

oss by 1.32%. It is reasonable that the conventional contrastive

oss function is usually applied at the penultimate layer, which

ay weaken the effect of the loss function to well align faces

nder poses. Nevertheless our ICL is applied directly after the

eformable module, enforcing the transformed features to be

ell aligned for better face recognition. Furthermore, by employ-

ng the ICL and DCL jointly, the performance of DFN is further

mproved to 78.21% which outperforms the plain ResNet-50

y 3.45%. 

We then evaluate the DFN with deeper architectures. The

FN-ResNet-152 (DFN-152 for short in the following sections)

nd its corresponding plain ResNet-152 are trained under the

ame optimization scheme. Table 5 shows the results of different

etworks on MegaFace challenge 1. Similar to the observation

nder the DFN-50, the performance of DFN-152 is consistently

mproved with the proposed loss functions. Trained with only

0K identities, our DFN-152 (DCL&ICL) achieves result comparable

o that of CosFace [48] trained with 90K identities and that of

rcFace [49] trained with 85K identities. Moreover, compared

o the ResNet-152, our DFN-152 (DCL&ICL) improves the rank-1

ccuracy by 1.51% with only 0.2M extra parameters. 
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Table 6 

Rank-1 recognition rates (%) on MultiPIE for different poses. 

Method ±90 ◦ ±75 ◦ ±60 ◦ ±45 ◦ ±30 ◦ ±15 ◦

CPF [50] – – – 71.65 81.05 89.45 

Hassner [2] – – 44.81 74.68 89.59 96.78 

FV [51] 24.53 45.51 68.71 80.33 87.21 93.30 

HPN [32] 29.82 47.57 61.24 72.77 78.26 84.23 

FIP [31] 31.37 49.10 69.75 85.54 92.98 96.30 

c-CNN [30] 47.26 60.66 74.38 89.02 94.05 96.97 

TP-GAN [15] 64.03 84.10 92.93 98.58 99.85 99.78 

PIM [10] 75.00 91.20 97.70 98.30 99.40 99.80 

p-CNN [11] 76.96 87.83 92.07 90.34 98.01 99.19 

Baseline 74.22 80.40 89.30 95.59 97.83 98.39 

DFN-L 82.42 87.64 94.44 97.76 98.88 99.22 

DFN-L(ICL) 83.65 88.62 94.97 98.00 99.12 99.51 

DFN-L(DCL) 83.71 88.59 94.68 97.87 99.15 99.47 

DFN-L(DCL&ICL) 84.07 88.97 95.16 98.05 99.23 99.58 

DFN-L(DCL&PTL) 85.66 90.04 96.13 98.40 99.22 99.52 
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Table 7 

Face recognition performance (%) comparison on CFP dataset. The results are 

average ± standard deviation over the 10 folds. 

Method 

Frontal-Profile 

ACC EER AUC 

Sengupta et al. [42] 84.91 ± 1.82 14.97 ± 1.98 93.00 ± 1.55 

Sankarana et al. [52] 89.17 ± 2.35 8.85 ± 0.99 97.00 ± 0.53 

Chen et al. [53] 91.97 ± 1.70 8.00 ± 1.68 97.70 ± 0.82 

DR-GAN [16] 93.41 ± 1.17 6.45 ± 0.16 97.96 ± 0.06 

PIM [10] 93.10 ± 1.01 7.69 ± 1.29 97.65 ± 0.62 

Peng, et al. [18] 93.76 – –

Human 94.57 ± 1.10 5.02 ± 1.07 98.92 ± 0.46 

ResNet-10 92.89 ± 1.42 6.69 ± 1.43 97.90 ± 0.58 

DFN-10 92.72 ± 1.57 7.03 ± 1.14 97.87 ± 0.50 

DFN-10(ICL) 93.89 ± 2.25 5.71 ± 1.87 98.06 ± 0.89 

DFN-10(DCL) 93.64 ± 2.39 5.69 ± 1.94 98.09 ± 0.87 

DFN-10(ICL&DCL) 93.99 ± 2.75 5.51 ± 1.92 98.18 ± 0.98 

DFN-10(PTL&DCL) 94.01 ± 2.79 5.40 ± 2.03 98.24 ± 1.02 
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.3. Evaluations on the multipie benchmark 

Table 6 summarizes the face recognition accuracy of our DFN-

ight (DFN-L for short) on MultiPIE for different poses. The results

f other state-of-the-arts are directly quoted from [2,10,11,15,30–

2,50,51] . As seen from Table 6 , the face frontalization method

assner [2] performs better than CPF [50] since 3D facial shapes

re utilized for the face synthesizing. Furthermore, benefitting

rom the patch based reconstruction and occlusion detection,

PN [32] achieves better results than [50] and [2] . Attributed

o the powerful generation ability of GAN, the TP-GAN [15] out-

erforms all previous face frontalization methods. Differently,

he methods of FV [51] , FIP [31] , c-CNN [30] , p-CNN [11] and

IM [10] focus on pose-invariant feature learning. Among them,

he deep methods FIP [31] , c-CNN [30] and p-CNN [11] outperform

he traditional feature representations method FV [51] . Further-

ore, owing to learning pose-specific models or pose-specific

daptive routes, the c-CNN and p-CNN perform much better than

he unified model FIP. By integrating face frontalization and dis-

riminative feature learning, the PIM [10] achieves almost the best

esults among the existing methods except the ± 90 ◦. The reason

s that as PIM is a face frontalization method, it may be hard for it

o well maintain the realness of synthesis, especially on the pose

f ± 90 ◦. 

As seen, our DFN-L generally outperforms the p-CNN for all

oses, demonstrating the effectiveness of introducing deformable

onvolutions for face recognition oriented alignment. Besides,

ttributed to the joint leaning with the proposed DCL and ICL

oss functions, our DFN-L (DCL&ICL) achieves better results than

-CNN [11] with an improvement up to 7.11% for ± 90 ◦. As

hown in Fig. 4 , the features extracted by our DFN have a similar

attern across all poses, while obvious differences are witnessed

etween features extracted from the baseline, which demonstrates

he superiority of our DFN again. Moreover, the DFN-L (DCL&PTL)

chieves the comparable results with PIM and significantly out-

erforms PIM with an improvement up to 10.66% under faces of

90 ◦. It is worth noting that the DFN-L has a very light network

tructure (as shown in Table 2 ), which is much more efficient than

he GAN based PIM. 

.4. Evaluations on the CFP benchmark 

Table 7 summarizes the Accuracy(ACC), Equal Error Rate (EER)

nd Area Under the Curve (AUC) on CFP dataset. The results of the

ther state-of-the-arts are directly quoted from [10,16,18,42,52,53] .

s seen from Table 7 , our DFN-10 (PTL&DCL) outperforms Peng,

t al. [18] , DR-GAN [16] and PIM [10] , reaching a higher accu-

acy of 94.01%. Besides, attributed to the joint leaning with the
roposed DCL and PTL loss functions, our DFN-L (PTL&DCL)

chieves lower EER results than PIM [11] with an EER reduction up

o 2%. It is worth noting that, without the proposed loss functions,

FN-10 performs worse than the baseline ResNet-10. The reason

s that without the propose loss functions, it is non-trivial for the

eformable module to learn appropriate pose-aware displacement

elds for well face alignment. Moreover, it also increases the risk of

ver-fitting potentially. To be free from this, the experiments have

llustrated that it is necessary to use the proposed loss functions

ith the deformable module jointly. For instance, with the DCL

oss, the accuracy of DFN-10 (DCL) is improved to 93.64% which

urther demonstrates the effectiveness of enforcing the learnt dis-

lacement field to be locally consistent. 

. Conclusions 

To deal with the pose invariant face recognition problem, we

roposed a novel Deformable Face Net (DFN) to align features

cross different poses. To achieve the feature-level alignments,

he proposed method, DFN introduces deformable convolution

odules to simultaneously learn face recognition oriented align-

ent and feature extraction. Besides, three loss functions, namely

isplacement consistency loss (DCL), identity consistency loss

ICL) and pose-triplet loss (PTL) are designed to learn pose-aware

isplacement fields for deformable convolutions in DFN and

onsequently minimize the intra-class feature variation caused

y different poses and maximize the inter-class feature distance

nder the same poses. Extensive experiments show that the pro-

osed DFN achieves quite promising performance with relatively

ight network structure, especially for those large poses. 
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