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Abstract

In this paper, we describe a system for recognizing both
the isolated and continuous Chinese Sign Language (CSL)
using two Cybergloves and two 3SAPCE-position trackers
as gesture input devices. To get robust gesture features,
each joint-angle collected by Cybergloves is normalized.
The relative position and orientation of the left hand to
those of the right hand are proposed as the signer
position independent features. To speed up the
recognition process, a fast match and a frame predicting
techniques are proposed. To tackle epenthesis movement
problem, context-dependent models are obtained by the
Dynamic Programming (DP) technique. HMMs are
utilized to model basic word units. Then we describe
training techniques of the bigram language model and the
search algorithm used in our baseline system. The
baseline system converts sentence level gestures into
synthesis speech and gestures of 3D virtual human
synchronously. Experiments show that these techniques
are efficient both in recognition speed and recognition
performance.

1. Introduction

Sign language as a kind of structured gesture is one of
the most natural means of exchanging information for
most deaf people. This has spawned interesting in
developing machines that can accept sign language as the
means for human-computer interaction and
communication between deaf people and hearing society.
In fact, a new field of sign language engineering is
emerging that attempts to make use of the computer
power to enhance deaf people to hearing society

communication or human-computer interfaces. The aim
of recognizing sign language is to provide an efficient and
accurate mechanism to transcribe human sign language
into text or speech.

To date, there are two ways to collect gesture data in
sign language recognition, one is the vision-based
approach. This technique utilizes cameras to collect the
images of hand gestures. Hand gesture features are
extracted from the images. In order to robustly extract the
hand gesture features, a special glove with areas painted
on it to indicate the positions of the fingers or skin color
information to segment hand [2] is often used for input,
for example, bright points on the edge of the fingers, etc.
The approach has the advantage that the signer is not
necessary to wear any complex input devices. However,
the approach to extracting hand gesture features often
suffers from instability due to poor illuminant conditions.
Furthermore, hand features extracted from images have
poorer discriminant powers for large vocabulary sign
language recognition task. The device-based measurement
techniques measure hand gestures using devices such as
Datagloves, position-trackers and so on. The advantage of
device-based approaches manifests that the time and
space information of hand gestures is directly measured.
The feature discriminant power is higher than that of the
vision based feature. So it is suitable for large vocabulary
sign recognition task. However, the disadvantage is its
high cost.

Attempts at machine sign language recognition began
to appear in the literature in 90’s. Charaphayan and
Marble [1] investigated a way using image processing to
understand ASL. This system can recognize correctly 27
of the 31 ASL symbols. Starner [2] reported that the word
correct rates for hands wearing colored gloves and hands



without gloves were 99% and 92%, respectively, using a
color camera as input device. Fels and Hinton’s[3] and
Fel’s[4] Fels developed a system using a VPL DataGlove
Mark II with a Polhemus tracker attached for position and
orientation tracking as input devices. In this system, the
neural network was employed for classifying hand
gestures. Wexelblbat[5] developed a gesture recognition
system. In the system three Ascension Flock-of-Bird
position trackers together with a CyberGlove on each
hand. Takahashi and Kishino[6] investigated
understanding the Japanese Kana manual alphabets
corresponding to 46 signs using a VPL DataGlove. The
system could correctly recognize 30 of the 46 signs, while
the remaining 16 could not be reliably identified.
Murakami and Taguchi [7] made use of recurrent neural
nets for sign Language recognition. They trained the
system on 42 handshapes in the Japanese finger alphabet
using a VPL Data Glove. The recognition rate is 98 per
cent. James Kramer and his supervisor, Larry Leifer [8]
worked on a method for communication between deaf
individuals. W.Kadous[9] demonstrated a system based on
Power Gloves to recognize a set of 95 isolated Auslan
signs with 80% accuracy, with an emphasis on fast match
methods. R.H.Liang and M.Ouhyoung used HMM for
continuous recognition of Tainwan sign language with a
vocabulary between 71 and 250 signs based Dataglove as
input device. However, the system required that gestures
performed by the signer be slowly to detect the word
boundary. This requirement is hardly ensured for practical
applications. Tung and Kak[11]described automatic
learning of robot tasks through a DataGlove interface.
Kang and Ikeuchi[12] designed a system for simple task
learning by human demonstration. Kisti Grobel and
Marcell Assan [13] used HMMs to recognize isolated
signs with 91.3% accuracy out of a 262-sign vocabulary.
They extracted the features from video recordings of
signers wearing colored gloves. C.Vogler and
D.Metaxas[14] used HMMs for continuous ASL
recognition with a vocabulary of 53 signs and a
completely unconstrained sentence structure. C.Vogler
and D.Metaxas[15-16]  described an approach to
continuous, whole-sentence ASL recognition that used
phonemes instead of whole signs as the basic units. They
experimented with 22 word vocabularies and achieved
similar recognition rates with phoneme-and word-based
approaches.

Chinese Sign Language (CSL) is the primary mode of
communication for most deaf people in China. CSL
consists of about 5500 elementary vocabularies including
postures, hand gestures. In this paper we describe a

system for continuos Chinese Sign Language (CSL)
recognition.

How do we extract singer position invariant features?
This is very important to practical applications because it
is not necessary to restrict a singer to a certain position
when the signer is gesturing. How do we tackle the
phenomenon of movement epenthesis during continuously
gesturing? This is a very important problem for accurate
recognition of continuous sign language. How do we
prune efficiently during the tree search of Viterbi
decoding? This is a very important problem for speeding
up recognition procedure and reducing memory resources.
How do we use language model in the decoding process?
This is an important problem to prune unlikely hypothesis
as soon as possible and to enhance the recognition
accuracy. The paper will address the four problems.

The organization of this paper is as follows, in Section
2 we describe a gesture feature extraction approach.
Statistical approaches in sign language recognition are
discussed in Section 3. Section 4 describes the system
outline. Section 5 briefly describes Chinese sign language
synthesis. Section 6 describes the synchronously driving
of speech and gestures. The performance evaluations of
the system are presented in Section 7. Section 8 contains
the summary and discussion.

2. Feature Extraction

In the following, we address modeling of the relative 3-
D motion of receivers with respect to a transmitter. 3-D
motion of receivers can be viewed as rigid motion. It is
well known that 3-D displacement of a rigid object in the
Cartesian coordinates can be modeled by an affine
transformation as the following,

( )SXRX −=′                           (1)

Where R  is a 3×3 rotation matrix as the following
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( )txxxX 321 ,,=  and ( )txxxX 321 ,, ′′′=′  denote the

coordinates of an object point with respect to the
Cartesian coordinate systems of the transmitter and
receiver ,respectively, S  is the position vector of the
receiver with respect to Cartesian coordinate systems of
the transmitter. The receiver output the Eulerian angles,
namely, the α , β ,γ , which are angles of rotation about

1X , 2X  and 3X  axes, respectively. However, they can



not be directly used as features because of their variations
when the position of the transmitter is not fixed at a
certain position during training and testing. This situation
often happens when the system is moved. Therefore, it is
necessary to define a reference point so that the features
are invariant whenever the positions of the transmitter
and a signer are changed. To meet this requirement, we
propose the following approach when two receivers are
available.

For the case of two receivers available, firstly, the
reference Cartesian coordinate system of the receiver at
left hand is chosen. Secondly, the position and Cartesian
coordinate system of the receiver at right hand with
respect to reference Cartesian coordinate system of the
receiver at left hand are calculated as invariant features to
the positions of the transmitter and the signer. The

algorithm is described as follows. Suppose that rS , lS  are

the position vectors of the receivers at both hands which

are measured by the position tracking system.lR is the

rotation matrix of the receiver at the left hand respect to

Cartesian coordinate systems of the transmitter.t

r
R  is the

transpose matrix of r
R that is the rotation matrix of the

receiver at the right hand respect to Cartesian coordinate
systems of the transmitter. They can be calculated
according to the Eulerian angles measured by the

orientation tracking system. Firstly, the product t

rl
RR  is

invariant to the positions of the transmitter and the signer.
The reason is that each element of the matrix is a dot
product between a unit directional vector of axis of the
receiver at the left hand and a unit directional vector of
axis of the receiver at the right hand. The relative angle is
invariant to the position of the transmitter. Secondly, the

relative position vector ( )lrl SSR −  is also invariant. This

approach can be generalized for the case of the number of
receivers over two.    

The raw gesture data, which in our case are values of
18-joint angles collected from the Cyberglove for each
hand and 12 positions and orientations collected from two
receivers.  For two hands, they are formed as a 48
dimensional vector. However, The range of each angle
value is within 0-255. The dynamic range of each
component is different. Each component value is
normalized to ensure its dynamic range is 0-1.

After these transforms, the feature vector used for
recognition is formed as nine relative direction cosines of
the left hand relative to right hand with appended the
three relative position components of the left hand relative

to the right hand and 36 –joint normalized angles of two
hands.

3. Recognition Approaches

The most popular framework for the sign recognition
problem is a statistical formulation in which we choose
the most probable word sequences from all word
sequences that could have possibly been generated. For a
sequence of words n

wwwW �,,
21

= , suppose that F is the

feature evidence extracted from the data collected by
Datagloves that is provided to the system to identify this
sequence. The recognition system must choose a word

string Ŵ  that maximizes the probability that the word
string W was gestured given that the feature evidence of
hand gesture F was observed. This problem can be
significantly simplified by applying Bayesian approach to

finding Ŵ :

( ) ( )WPWFPW
W

maxargˆ =                        (3)

The probability, ( )WFP , is typically provided by the

spatial models of hand gestures. The likelihood ( )WP

that denotes the a priori chances of the word sequence W
being gestured is determined using a language model.

3.1.  Spatial models of hand gestures

Hidden Markov Models (HMMs)[17] have been used
successfully in continuous speech recognition,
handwriting recognition, etc. A key assumption in
stochastic gesture processing is that the gesture signal is
stationary over a short time interval. In the case of
continuous recognition, one difficult problem is the
coarticulation problem, coarticulation means that both the
sign in front of it and the sign behind it can affect a sign.
If two signs are performed in succession, an extra
movement from the end position of the first sign to the
start position of the second sign appears. To take into
account of the effect of epenthesis, the basic sign HMMs
are concatenated to form a large lexical HMM for each
training sign sentence. Then, the Dynamic Programming
(DP) algorithm [19] is used to segment the training
sentence into basic units that are then sorted into
individual basic unit files for further re-estimating by
Welch-Baum algorithm. Suppose that we have a sequence
of training data for a sentence( )tx , Tt ,,2,1 �= ,T  is the

number of total frames of training data. The T frames are
divided into N segments with boundaries 0

0
=t , Tt

N = .

Each segment corresponds to a word in the sentence. The



average segmentation probability of each segment is
defined as

( ) ( ) ( )( )nnn
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Where ( ) ( )( )
nnn

WordtxtxP ,,,11 �+−  denotes the probability of

the wordn HMM. The task is to find the segment
boundaries 11 ,, −Ntt � so that

( )∑
=

− +
N

n
nn

ttP
1

1 ,1                             (5)

is maximized. Dynamic programming offers an efficient
solution [19]. We introduce an auxiliary function ( )tnF ,

which denotes the probability of the best segmentation of
the frame interval [1,t]  into n segments. By decomposing
the frame interval [1,t]  into two frame intervals [1,j]  and
[j+1,t]  and using the optimality in the definition of

( )tnF , , we can obtain the recurrence equation of dynamic

programming:
( ) ( ) ( ){ }tjPjnFtnF

j
,1,1max, ++−=            (6)

As equation shown above, the best segmentation of the
frame [1,j]  into n-1 segments is used to determine the
partition of the frame interval [1,t] into n segments. The
optimal segment boundaries are calculated along with the
maximum log likelihood ( )TNF ,  by recursively applying

Eq.6.

3.2. Bigram language models

The language model provides constraints on the
sequences of words that are to be recognized. In bigram
models, we make the approximation that the probability
of a word depends on only the immediately proceeding
word. To make ( )

01 wwP  meaningful ,we  asumme that

the beginning of the sentence with a distinguished
token<bos>, that is 

0
w =<bos>. For a word strings W, the

probability over W is as
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=
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To estimate ( )
1−ii wwP ,the frequency with which the word

i
w  occurs given that the last word is 

1−iw , we can simply

count how often the bigram occurs in some the training
corpus. If the training corpus is not large enough, many
actually existing word successions will not be well enough
observed, leading to many zero probabilities. So
smoothing is critical to make the estimated probability
robust for unseen data. In this paper, we use the Katz
smoothing [18] to smooth the zero probabilities. The
bigrams indirectly encode syntax, semantics and

pragmatics by concentrating on the local dependencies
between two words. The net result of the techniques is to
limit the number of alternatives that must be searched to
find the most probable sequence of words. Hence the
bigram language model reduces the search space. The
corpus to estimate the bigram probabilities consists of
about 30 million Chinese words in the Chinese
newspapers from the year 1993 to 1995.

3.3. Search algorithms

Viterbi search and its invariant forms belong to a class
of breadth-first search techniques. All hypotheses are
pursued in parallel and gradually pruned away as the
correct hypothesis emerges with the maximum score. In
this case, the recognition system can be treated as a
recursive transition network composed of the states of
HMMs in which any state can be reached from any other
sate. In Viterbi beam searches only the hypothesis whose
likelihood falls within a beam of the most likely
hypothesis are considered for further growth. The best
beam size is determined empirically. By expanding the
network to include an explicit arc from the end of each
word to the start of the next, the bigram language model
has been incorporated to improve recognition accuracy.
Signs can be classified into one-handed and two handed.
For the case of one-handed, the left hand is motionless,
the right hand conveys the information of a sign. To
reduce the computation load, the right hand shape and
position information is used firstly to prune unlikely
words.

3.4. Frame predicting

Since some gesture signals change slowly, the
observation probabilities do not usually change
dramatically from one frame to the next. Therefore, the
gesture feature of the preceding frame can be used for
predicting the gesture feature of the current frame. If the
distance between the two frame features is below a
threshold, the observation probabilities of the current
frame is assumed to be those of the preceding frame. This
technique reduces the computation effort without loss of
noticeable accuracy if suitable threshold is chosen.

4. System Outline

The baseline system organization is shown as the
following. The gesture-input devices are two DataGloves
with 18 sensors measuring hand joint-angles and two



3SPACE-position trackers for each hand. The data
collected by the gesture-input devices is fed to the feature
extraction module, the feature vectors are input to the fast
match module. The fast match finds a list of candidates
from 220 words. The Bigram model uses word transition
probabilities to assign, a priori, a probability to each word
based on its context. The system combines the fast match
score to obtain a list of no more than 150 candidates, each
of which is then subject to a detailed match. The decoder
controls the search for the most likely word sequence
using the search algorithm described in section 3.When
the word sequence is output from the decoder, each word
drives the speech synthesis model and 3D-virtual human
gesture animation model to produce the speech and
gestures synchronously.

5. Chinese Sign Language Synthesis

Our early synthesis system of CSL, speech and the
corresponding facial expression driven by the text was
reported in [20]. A Chinese sentence is input to the text
parser module, which divides the sentence into basic
words. The parser algorithm is the Bi-directional
maximum matching with backtracking approach. After
the words are matched, each word in the sentence is then
input to the sign language synthesis module and speech
synthesis module. For the time being, the word library
consists of above 3163 words.

6. Synchronously Driving

Conversion the text recognized by the sign language
system to speech is important to communication between
deaf people and hearing society, while text to synchronous
gesture and lip movement is useful for long distance
communication between deaf and deaf. To synchronously
drive speech and gestures, we align the display time of
gesture to the playing time of speech so that human
perceives it comfortable. The underlying assumption of
this approach is that the display speed of gestures is faster
than that of playing speech. Fortunately, this requirement
is usually satisfied.

7. Experiments

The database of gestures consists of 220 words and 80
sentences. To collect training and test gesture samples,
the gesture of each isolated word was performed five
times by a sign language teacher, four for training and
one for test. In general, each sentence consists of 2 to 15

words. No intentional pauses were placed between signs
within a sentence.

For the isolated word, recognition rates are listed in the
Table 1.The recognition rate with feature normalization is
99.1 % and the recognition rate without feature
normalization is 97.3%. This result shows that feature
normalization is necessary to increase system
performance.

   Table 1. The recognition rates of
    isolated word test

Without Feature Normalization 97.3%

With Feature Normalization 99.1%

  Table 2.The recognition rates of
  sentence level test

Without Embedded Training 73.6%

With Embedded Training 98.2%

  Table 3. The recognition rates of
  sentence level test

With Embedded Training
( Without Bigram Model)

94.7%

With Bigram Model(Without
Embedded Training)

79.4%

To test the recognition performance of sentence level,
one test was carried out as described the following. When
80 sentences were not used for any portion of the training.
The 220 words were used as basic units. Within 80
sentences, 43 sentences can be correctly recognized, the
left 37 sentences have deletion (D), insertion (I), and
substitution (S) errors,D=21,I=30, S=53. This shows that
the movement epenthesis has greatly affected on the
sentence level recognition performance. To take into this
effect, the embedded training technique was used for
estimating the context dependent HMMs. For the left 37
sentences, the embedded training procedure was used for
each of sentence. In the collected sentence samples, four
in five were used for training and one for test. The word
recognition rate is 98.2%, where D=3, S=2,I=2,N=394, N
denotes the total number of signs in the test set. The
accuracy measure is calculated by subtracting the number
of deletion, insertion substitution and errors from the total
number of signs and dividing by the total number of signs.
The result shows that context dependent models are



necessary for sentence level recognition. To reach such a
high recognition rate, bigram model is also necessary,
otherwise the recognition performance becomes worse.
Table 3 shows this comparison.  The recognition rate with
embedded training but without bigram language model is
94.7%, where D=9,S=7,I=5.The recognition rate with
bigram but without embedded training is 80.7%,
D=171,I=21, S=43. This indicates that the effect of
context dependent model is higher than that of bigram
language model.

8. Summary and Conclusion

A CSL system has been developed using HMMs based
recognizers. We have developed a new gesture feature
extraction approach and an embedded training approach.
The performance of these techniques ware evaluated using
the CSL recognition system. Experimental results have
shown that these techniques are capable of improving
both the recognition performance and speed. The
approach for extracting signer position independent
features is very powerful for sign language recognition
system in practical applications.
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