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Abstract 

Data collection for both training and testing a 

classifier is a tedious but essential step towards face 

detection and recognition. All of the statistical methods 

suffer from this problem. This paper presents a genetic 
algorithm (GA)-based method to swell face database 

through re-sampling from existing faces. The basic idea 

is that a face is composed of a limited components set, 

and the GA can simulate the procedure of heredity. 

This simulation can also cover the variations of faces in 

different lighting conditions, poses, accessories, and 
quality conditions. All the collected face samples are 

aligned and randomly divided into three sub-sets: 

training, validating, and testing set. The training set is 

then used to train a Sparse Network of Winnow (SNoW).  

In addition, it is also used as the initial population of 
the GA. After each generation, we will use the initial 

generation and the solutions with high fitness values to 

re-train the SNoW, and the newly-trained SNoW is used 

to evaluate the individuals of next generation and also 

tested on validation set and test set. To verify the 

generalization capability of the proposed method, we 
also use the expanded database to train an 

AdaBoost-based face detector and test it on the 

MIT+CMU frontal face test set. The experimental 

results show that the data collection can be speeded up 

efficiently by the proposed methods. 

1. Introduction

 Over the past ten years, face detection has been 

thoroughly studied in computer vision research for its 

interesting applications. Face detection is to determine 

whether there are any faces within a given image, and 

return the location and extent of each face in the image 

if one or more faces present [15]. Recently, the 

emphasis has been laid on data-driven learning-based 

techniques. Sung and Poggio presented an example 

based learning method with six Gaussian clusters to 

model the distributions for face and nonface patterns 

respectively [12]. The density functions of the 

distributions were then fed to a multiple layer 

perceptron for face detection. Rowley et al. developed 

a neural network-based face detection system to 

examine small windows of an image and decide 

whether each window contains a face [9]. In order to 

detect faces with rotation in the image plane, the 

system was extended to incorporate a separate router 

network to determine the orientation of the face pattern 

[10]. Schneiderman and Kanade proposed a face 

detector based on the estimation of the posterior 

probability function, and profile images were added to 

the training set to incorporate such statistics to detect 

side views of a face [11]. Yang et al. proposed a 

method that used a SNoW learning architecture to 

detect faces with different features and expressions, in 

different poses, and under different lighting conditions 

[14]. Liu presented a Bayesian Discriminating Features 

(BDF) method for multiple frontal face detection, 

which was trained on images from only one database, 

yet worked on test images from diverse sources, 

displayed robust generalization performance [7]. Viola 

described a rapid object detection scheme based on a 

boosted cascade of simple features. It brought together 

new algorithms, representations and insights which 

could broader applications in computer vision and 

image processing [13]. Li et al. proposed a 

FloatBoost-based algorithm to guarantee monotonicity 

of the sequential AdaBoost learning and developed a 

real-time multi-view face detection system [6]. 

 The performance of these learning-based methods 

highly depends on the training set [8], and they suffer 

from a common problem of data collection for training. 

This paper focuses on this problem. We propose a 

re-sampling method to generate more samples from 

existing ones by using GA operations. The intuitive 

idea is that a face is composed of limited types of 

components, and we use the GA to simulate the 

procedure of heredity. 

The rest of this paper is organized as following: 

Section 2 presents the details of the GA-based database 

expanding. The experiment results of GA are described 

in Section 3. In Section 4, we give the conclusions. 

2. Re-sampling using Genetic Algorithms 

 The system overview is given in Fig. 1. Initially, 

all collected images are aligned coarsely, preprocessed 

and divided into three sets: the training, validating and 

testing set. The training set is employed as the initial 

population to perform the GA operations. All the 
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intermediate solutions are evaluated by a classifier 

SNoW trained by the initial population and the 

non-face samples. Fitter solutions survive while 

weaker ones perish. All the survival solutions and the 

initial population are composed of the next population 

which is utilized to re-train the classifier SNoW again. 

The newly-trained classifier is used to evaluate the 

next intermediate solutions. If the termination criterion 

is reached, the iterative GA operations are stopped and 

the last population is the ultimate solutions. 

Fig. 1. Overview of the system.

2.1. Face-Samples Preprocessing 

First, we align all the collected face samples to 

reduce the extrinsic variations among them. In our 

method, we apply the preprocessing proposed by 

Rowley et al [9] to align face samples. To make the 

detection method less sensitive to affine transform, the 

images are often rotated, translated and scaled [1, 3, 6, 

7, 9 10, 14]. Before GA operations, therefore, we 

randomly rotate these samples up to ±15 , translate up 

to half a pixel, and scale up to ±10%. Then, histogram 

equalization is performed, which maps the intensity 

values to expand the range of intensities. The same 

procedure (histogram equalization) is applied to the 

initial population and all successive reproduced 

populations. By these preprocessing, the solutions 

fitness can be improved. 

The face-image database consists of 6,000 faces 

(collected form Web) which cover wide variations in 

poses, facial expressions and lighting conditions. After 

these preprocessing, we get 30,000 face images, and 

then this database is randomly divided into three sets: 

training set (which consists of 15,000 images), 

validation set (5,000 images) and test set (10,000 

images). 

2.2. Genetic Algorithms 

Genetic algorithms take their analogy from nature 

[4]. They create an initial population, often represented 

as bit strings, which evolve over successive 

generations. Those individuals which represent a better 

solution to the target problem are given more chances 

to “reproduce” than those individuals which are poorer 

solutions. They are mated with other solutions by 

crossing parts of a solution string with another. The 

reproduced strings are also mutated. The schematic of 

GA operations are shown in Fig. 2. Over time, they 

reproduce by crossing high fitness solutions at random 

points to weed out poor fitness solutions. These 

operations act to randomly-sample a large part of the 

huge state space very efficiently. Holland first 

proposed the artificial reproduction schemes in 1970s 

[4].

Fig. 2. The schema of crossover and mutation.

The main procedure of the genetic algorithm is:  

�. Encoding.  As discussed in [14], assume that the 

pixel at ( , )x y  of an image, with width w and height 

h , has intensity value ( , )I x y 0 ( , ) 255I x y≤ ≤ . This 

information is encoded as a string whose index is: 

( ) ( ) 256( ) ( , )l i l y w x y w x I x y= × + = × + + . In our 

experiments, the values for w  and h  are 20, since 

each face sample has been normalized to an image of 

20 20×  pixels. A gene in an individual can be denoted 

by ( )l i (0 400)i≤ ≤ , and an individual A is 

represented as a string
1 2 3 400

( )( )( ) ( ) ( )( )i jl l l l l w ,

where jw is the fitness value of this individual. 

�. Initial Population.  In general, the initial 

population is randomly generated [4]. In this method, 

however, we will end up with a population where each 

individual is generated by encoding a normalized face 

sample of 20 20×  pixels, and it is actually the 

training set as discussed in Section 2.1. 

�. Crossover and Mutation.  In our scheme, we 

consider “1-point” crossover in order to manipulate the 

fitness of solutions. Furthermore, every two parents 

crossover at fixed locus. That is to say, we will break 

down each parent into smaller pieces without 

overlapping: forehead, eye, nose, mouth, as 

demonstrated in Fig. 3 (a), and the process of crossover 

are shown in Fig. 3 (b). Mutation, in our method, is 

accomplished by sharpening or blurring or lighting. 
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The procedure of sharpening or blurring is: First of all, 

a sub-image, about a quarter to half size of its parent, is 

obtained from its parent, then it is sharpened or blurred 

randomly, and then we recombine the changed 

sub-image and the unchanged part to reproduce its 

child. To avoid the trace resulting from recombination, 

the intermediate solution is smoothed as shown in Fig. 

3 (c). As to the lighting, we use the same scheme as 

that in [5]. 

(a) (b) (c)

Fig.3. Crossover and mutation. (a) Each parent is converted 

into a sequence of observation vectors for crossover, (b) 

Crossover, (c) Mutation 

�. Fitness Evaluation.  The fitness function, used 

to evaluate the fitness of a solution, is a classifier 

called Sparse Network of Winnows (SNoW) [14]. To 

train this classifier, we use a new feature pattern [1] to 

characterize the samples as demonstrated in Fig. 4. It 

encodes a local block of each 20×20 sample on 

spatially pixel intensities. The pixel intensities and 

their coordinates at each possible 2×2-block are 

quantized into one scalar value. That is to say that the 

4 grey pixels and its position are all coarsely encoded 

using 3-bit resolution, and we can get an 18-bit 

resulting string as shown in Fig. 4. Before the 

calculation of the feature, histogram equalization is 

applied to the sample. And then we get 2
18

=262,144 

possible binary features, which enlarge the feature 

space further and make the two class problem (face 

and non-face) more linear separable when compared 

with the feature space in [14] (102,400 possible binary 

features). Each 20×20-pixel sample has exactly 

19 19× =361 feature components and each is connected 

to a 2×2-block. Each of these 361 feature components 

addresses a single weight vector of the classifier. The 

sum over all weight components addressed by the 

current feature vector matches a normalized score. 

(Note this score is assigned to the input face sample as 

its fitness.) The classifier contains 262,144 weights in 

total. They are trained using the SNoW training 

procedure. For the details of the SNoW-classifier, 

please refer to [14].  

To train the evaluation function SNoW (or classifier) 

of each generation, we use the initial population and 

the solutions of the last generation as positive samples 

as illustrated in Fig. 1. For negative examples we start 

with 15,394 non-face examples from 6,107 images of 

landscapes, trees, buildings, etc. Although it is 

extremely difficult to collect a typical set of non-face 

examples, the bootstrap [12] is used to include more 

non-face examples during training. And each resulting 

classifier is used to test on the validation set and 

evaluate the successive generation. After each solution 

is evaluated, a fitness value is attached. As to the initial 

population, let the fitness value 
jw =1 for each 

individual. Note the second generation is evaluated by 

the classifier trained only by the initial population 

(about 15,000 face images) and the negative examples. 

Fig. 4. Quantization method of grey features. 

Where (x, y) is the coordinate of the 2×2-block; Ij (j=1, 2, 3, 

4) are 4 pixels in this block; the subscript “3” in [x]3, [y]3 and 

[Ij]3 denotes each component is encoded by 3-bit resolution 

in the feature representation. 

2.3. Re-sampling 

The initial population, (which actually is the 

training set in our method and it contains 15,000 face 

images), is divided into several smaller sub-sets 

according to the rotating angle of each image. Here, we 

divide all these images evenly into six sub-sets: the 

first is those within [ 15 , 10 )− −  and denoted by 
1

ω
as shown in Fig. 5; the 2nd is those within [ 10 , 5 )− −
and denoted by 

2
ω ;…; and the last is those within 

[10 ,15 ]  and denoted by
6

ω . Then all these six 

sub-sets are used as the initial population of the GA 

operations.  

Here, we use the “roulette selection” to choose 

individuals. The roulette selection is based on the 

fitness value of each individual — the higher an 

individual’s fitness is, the more chances it has. As 

shown in Fig. 5, these selected individuals are put into 

mating pools, and those individuals within the same 

sub-set will crossover with the probability cP . For 

example, two individuals, xi and xj, selected from 
6

ω ,

are put into Pool6. After the crossover operations, their 

offspring will be put into 
6

ω  again. It is the same that 

those individuals selected from 
5

ω  are put into Pool5 
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for crossover, and their offspring are returned to 
5

ω ,

and so on as demonstrated in Fig. 5. Some parents of 

the current generation (not their children in our method) 

mutate with the probability mP . For example, xk

selected from 
1

ω  is mutated and its child is laid back 

into
1

ω .

1ω2ω 3ω4ω5ω 6ω

4ω

2ω3ω
5

ω

1ω

6ω

Fig. 5. The process GA operations.

 After each generation reproduced, we keep 10% 

children with high fitness and discard the others. In 

this scheme, after every 20 generations, the population 

will contain 2015,000 (1 0.1) 100,912× + =
individuals. Its size is much larger than that of the 

original one. In order to keep it in control, we cut down 

the scale and keep it within 3 times of the initial 

generation. That is to say we keep only 45,000 

individuals, which including the 15,000 initial 

population and their 30,000 children. All the remained 

children of every 20-generation are checked manually 

to avoid the classifier assigning a biased fitness value, 

which means some solutions may have high fitness 

value assigned by the classifier but do not look like 

faces.  

After every one generation, we use its solutions 

(together with the initial population) and the negative 

set as new training set to train the classifier SNoW as 

demonstrated in Fig. 1. Note the newly-trained 

classifier is used to evaluate the solutions of next 

generation. And the newly-trained SNoW is also tested 

on the validation set (as discussed in Section 2.2). 

Moreover, we compare these results of each generation. 

The GA operations will be terminated when their 

resulting difference between two neighbor generations 

drops below a predetermined threshold. Some 

solutions by the GA operations are shown in Fig. 6. 

Fig. 6. Some face samples generated by the GA 

re-sampling.

3. Experiment 

3.1. Comparing the solutions performance of 

the different generations 

Fig. 7 provides the results for the classifier SNoW 

trained with different database (based on the different 

generations) and tested on validation set. In this figure, 

we use only the initial population (NoGA), and the 

initial population together with the solutions of the 20
th

generation (GA20) or the 40
th
, or the 60

th
, or the 80

th

generation (the same as GA40, GA60, GA80) as 

face-sample sets. It means the NoGA has 15,000 face 

samples, while GA20, GA40, GA60 or GA80 has 

45,000 face samples (including the initial population 

and their solutions respectively). For all of these five 

cases, the trained classifiers are tested on the validation 

set. 

Fig. 7. The ROC curves on the validation set using different 

generations of GA as training set for a fixed classifier.

Form these Receiver Operating Characteristic (ROC) 

curves in Fig. 7, we can find that the performance of 

GA20 is much better than that of NoGA, and GA40 

improve the result further. However, the difference 

between GA60/GA80 and GA40 is very limited. 

Furthermore, we check these five trained classifiers by 

the test set to verify their generalization performance. 

We find that they will obtain almost the same results 

compared to test on the validation set. That is to say 

that GA20 also outperforms NoGA, and GA40 works 

better than GA20, while GA40, GA60, GA80 almost 

have similar results on the test set. From these results, 

we can conclude that the proposed algorithm has good 

generalization performance. 

In addition to comparing the solutions 

performance of different generations, we also 

investigate some possible reasons for the success of 

GA in this domain. First, the selection scheme gives 

more chances to those typical samples; and using these 

samples, we can generate more samples with 

representative features by GA. Second, we can acquire 

some variations about one person by crossover. For 

example, we can make one with glasses or beard to 

simulate the variations of a person, and these variations 
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are very common in our daily life. Third, the mutation 

can simulate the variations from the lighting and 

quality conditions of an image to the aging and 

makeup of a person. Therefore, it can gain the 

diversities of the samples. 

3.2. Evaluation of the generated samples 

3.2.1. The AdaBoost-based classifier. Considering 

that all the solutions of each generation are evaluated 

by the classifier SNoW during expanding, they may 

favor this classifier. In order to verify that the solutions 

are independent to any special classifier, we use the 

expanded training set to train another classifier and test 

its generalization performance. 

Fig. 8. The AdaBoost algorithm for classifier learning.

A large number of experimental studies have 

shown that classifier combination can significantly 

exploit the discrimination ability comparing with those 

individual feature and classifiers. Boosting is one of 

the common used methods for combining classifiers 

[2]. AdaBoost, a version of the boosting algorithm, has 

been used in face detection and is capable of 

processing images extremely rapidly while achieving 

high detection rates [13]. Therefore, we use the 

AdaBoost algorithm to train a classifier. A final strong 

classifier is formed by combining a number of weak 

classifiers which is described in Fig. 8 following the 

notation in [2]. For the details of the AdaBoost based 

classifier, please refer to [2]. 

3.2.2. Training the detector. To compare the 

performance improvement on different training sets, 

we use three different face training sets. The first group 

consists of the initial population as discussed in 

Section 2.2. The second group contains a set of 45,000 

face images generated by GA40 automatically which 

includes the initial population (15,000 faces) and its 

solutions (30,000 faces). The third group also contains 

a set of 45,000 face images generated by GA40 

manually which includes the initial population (15,000 

faces) and its solutions (30,000 faces). Here, the word 

“automatically” means that each solution of every one 

generation is evaluated by the classifier SNoW, while 

all the remained children of every 20-generation are 

checked manually (see Section 2.3 for details). The 

word “manually” means that both each solution of 

every one generation and all the remained children of 

every 20-generation are checked manually. Applying 

these two-group face sets: the group by GA40 

automatically and the group by GA40 manually, the 

aim is to compare the performance difference between 

by automatic manners and by hands. 

The non-face class is initially represented by 5,000 

non-face images. Each single classifier is then trained 

using a bootstrapping approach similar to that 

described in [12] to increase the number of images in 

the non-face set. The bootstrapping is carried out 

several times on a set of 8,736 images containing no 

faces. Note that non-face samples used to train the 

AdaBoost-based classifier are not the same with the 

non-face samples used to train the classifier SNoW. 

3.2.3. Detection Results. The resulting detectors, 

trained on three different sets, are evaluated on the 

MIT+CMU frontal face test set which consists of 130 

images showing 507 upright faces [9]. Some results are 

shown in Fig. 9. The detection performances on this set 

are compared in Fig. 10. From the ROC curves one can 

find that we get the detection rate of 90.48% and 12 

false alarms with the detector trained on the set by 

GA40 automatically. P. Viola reported a similar 

detection capability of 89.7% with 31 false detects (by 

voting) [13]. However, different criteria (e.g. training 

time, number of training examples involved, cropping 

training set with different subjective criteria, execution 

time, and the number of scanned windows in detection) 

can be used to favor one over another which will make 

it difficult to evaluate the performance of different 

methods even though they use the same benchmark 

data sets [15]. While using the detector, trained on the 

set by GA40 automatically, in real-time applications, 

it can run at 16 frames per second averagely on a PC 

(with a Pentium III CPU @ 866MHz) when the image 

size is 320×240. 

From the ROC curves we can also conclude that the 

detector trained on the set by GA40 automatically

outperforms the detector trained on the set by GA40 

manually, expect two points in the curves (One point 

is when the false detects equal to 103, and the other is 

226.). The possible reasons are: The first is that those 

face samples, selected according to one’s subjective 

criteria, are not always optimal to train a detector. The 

second is that the subjective criteria are not always the 

same during the tedious work when one selects a 

sub-set from thousands of candidates. For example, in 

our experiments, we choose 50% individuals of the 

initial generation to crossover and 10% to mutate (The 

Given example set S and their initial weights 
1

ω ;

Do for t=1,……,T: 

1. Normalize the weights tω ;

2. For each feature, j, train a classifier hj with respect 

to the weighted samples;  

3. Calculate error tε , choose the classifier ht with 

the lowest error and compute the value tα ;

4. Update weights
1tω + ;

Get the final strong classifier:
1

( ) ( )
T

t tt
h x h xα

=
= .
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fraction for mutation is much smaller than that of the 

crossover, which is to avoid the quality deteriorism of 

the newly generated faces.). We let Pc=0.6 and Pm=0.1.

After every one generation, we are needed to pick out 

1,500 samples from 4650 candidates, and this 

operation is repeated by 40 times. 

Fig.9. Some face detection results; (a), (b), (c) from 

MIT+CMU frontal face test set and (d) from the practical 

application of this system. 

Fig.10. The ROC curves for our detectors on the 

MIT+CMU frontal face test set. 

4. Conclusions 

 In this paper, we present a novel method to 

expand face sample set by applying the genetic 

algorithms. It can generate new face samples by 

crossover and mutation operations. These new 

generated samples can cover a widely variations: 

simulate the variations of faces in daily life and the 

variations of the images of lighting and quality 

conditions. We use some face samples without GA and 

those with GA but different generations to train a 

classifier SNoW, and compare the results tested on a 

validation set and an independent test set with these 

trained classifiers. The performances of the detector 

trained by both the initial generation and the solutions 

of GA are much better than that trained only by the 

initial generation. When the generation is up to 40, the 

result will approach a relatively stable result. Finally, 

we use the expanded face set by GA40 to train an 

AdaBoost-based classifier and test it on the 

MIT+CMU frontal face test set, and a detection rate of 

90.48% is achieved while only 12 false alarms. It 

demonstrates that the expanded face samples set can be 

used to train other classifiers other than SNoW and can 

improve further the classifier performance. 
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