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Abstract 

Over the past ten years, face detection has been 

thoroughly studied in computer vision research for its 

interesting applications. However, all of the state-of-the-art 

statistical methods suffer from the data collection for training a 

classifier. This paper presents a self-adaptive genetic algorithm 

(GA)-based method to swell face database through re-sampling 

from the existing faces. The basic idea is that a face is composed 

of a limited components set, and the GA can simulate the 

procedure of heredity. This simulation can also cover the 

variations of faces in different lighting conditions, poses, 

accessories, and quality conditions. To verify the generalization 

capability of the proposed method, we also use the expanded 

database to train an Adaboost-based face detector and test it on 

the MIT+CMU frontal face test set. The experimental results 

show that the data collection can be efficiently speeded up by 

the proposed methods. 

1. Introduction 

 Face detection is to determine whether there are any faces 

within a given image, and return the location and extent of each 

face in the image if one or more faces present [18]. Recently, the 

emphasis has been laid on data-driven learning-based techniques. 

Sung and Poggio presented an example based learning method 

with six Gaussian clusters to model the distributions for face and 

nonface patterns respectively [15]. Rowley et al. developed a 

neural network-based face detection system to examine small 

windows of an image and decide whether each window contains 

a face [12]. In order to detect faces with rotation in the image 

plane, the system was extended to incorporate a separate router 

network [13]. Schneiderman and Kanade proposed a face 

detector based on the estimation of the posterior probability 

function [14]. Yang et al. proposed a method that used a Sparse 

Network of Winnow (SNoW) learning architecture to detect 

faces with different features and expressions, in different poses, 

and under different lighting conditions [17]. Liu presented a 

Bayesian Discriminating Features (BDF) method for multiple 

frontal face detection which had robust generalization 

performance [9]. Viola described a rapid object detection 

scheme based on a boosted cascade of simple features [16]. Li et 

al. proposed a FloatBoost-based algorithm to guarantee 

monotonicity of the sequential AdaBoost learning [8]. 

 The performance of these learning-based methods highly 

depends on the training set [10], and they suffer from a common 

problem of data collection for training. This paper focuses on 

this problem. We propose a re-sampling method to generate 

more samples from existing ones by using GA operations. 

The rest of this paper is organized as following: Section 2 

presents the details of the GA-based database expanding. The 

experiment results of GA are described in Section 3. In Section 

4, we give the conclusions. 

2. Re-sampling using self-adaptive GA 

 The system overview is given in Fig. 1. Initially, all 

collected images are aligned coarsely, preprocessed and divided 

into three sets: the training, validating and testing set. The 

training set is employed as the initial population to perform the 

GA operations. All the intermediate solutions of the current 

generation are evaluated by a classifier SNoW trained by the last 

generation and the non-face samples. Fitter solutions survive 

while weaker ones perish. All the survival solutions and the 

initial population are composed of the next population which is 

utilized to re-train the classifier SNoW again. The newly-trained 

classifier is used to evaluate the next intermediate solutions. If 

the termination criterion is reached, the iterative GA operations 

are stopped and the last population is the ultimate solutions. 

Fig. 1. Overview of the system. 

2.1. Face-Samples Preprocessing 

First, we align all the collected face samples to reduce the 

extrinsic variations among them. To make the detection method 

less sensitive to affine transform, the images are often rotated, 

translated and scaled [4]. Before the GA operations, we 

randomly rotate these samples up to ±15 , translate up to half a 

pixel, and scale up to ±10%. Then histogram equalization is 

performed, which is also applied to the initial population and all 

successive reproduced populations. 

The face database consists of 6,000 faces (collected form 

Web) which cover wide variations in poses, facial expressions 

and lighting conditions. After these preprocessing, we get 

30,000 face images, and then this database is randomly divided 

into three sets: training set (which consists of 15,000 images), 

validation set (5,000 images) and test set (10,000 images).

2.2. Self-adaptive genetic algorithms

 Genetic algorithms take their analogy from nature and 

Holland first proposed the artificial reproduction schemes in 

1970s [5]. The main procedure of the genetic algorithm is: 

�. Encoding.  As discussed in [17], Let the pixel at 

( , )x y  of an image, with width w and height h , has intensity 
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value ( , )I x y (0 ( , ) 255)I x y≤ ≤ . This information is encoded as 

a string whose index is: ( ) ( ) 256( ) ( , )l i l y w x y w x I x y= × + = × + + . In 

our experiments, the values for w and h  are 20, since each 

face sample has been normalized to an image of 20×20 pixels. 

A gene in an individual can be denoted by ( )il (0 400)i≤ < , and 

an individual A is represented as a string 

1 2 3 400( )( )( ) ( ) ( )( )i jl l l l l w , where wj is the fitness value of this 

individual. 

�. Initial Population.  In this method, the initial 

population is ended up with a population where each individual 

is generated by encoding a normalized face sample in the 

training set. 

�. Crossover and Mutation.  In our scheme, we consider 

“1-point” crossover in order to manipulate the fitness of 

solutions. Furthermore, every two parents crossover at fixed 

locus with a probability Pc That is to say, we will break down 

each parent into smaller pieces without overlapping: forehead, 

eye, nose, mouth, as demonstrated in Fig. 2 (a), and the process 

of crossover are shown in Fig. 2 (b). 

(a) (b) (c)

Fig.2. Crossover and mutation. (a) Each parent is converted into 

a sequence of observation vectors, (b) Crossover, (c) Mutation 

Mutation, in our method, is accomplished by sharpening, 

blurring or lighting with the probability Pm. The procedure of 

sharpening or blurring is: First of all, a sub-image, about a 

quarter to half size of its parent, is obtained from its parent, then 

it is sharpened or blurred randomly, and then we recombine the 

changed sub-image and the unchanged part to reproduce its 

child. To avoid the trace yielded by recombination, the 

intermediate solution is smoothed as shown in Fig. 2 (c).  

As to the lighting of mutation operator, we use two kinds of 

strategies. One is the same as mentioned in [6] which is applied 

to simulate linear point light source; the other is the same as 

mentioned in [7] which is used to simulate more complex 

diffuse light fields by a configuration of nine point light source 

directions. 

As discussed in [7], assuming a face is a convex 

Lambertian surface, we get the face image: 

( , ) ( , ) ( , )I x y x y n x y sρ= ,        (1) 

where ( , )x yρ  is the albedo of the point ( , )x y , ( , )n x y

is the surface normal direction and s  is the point light source 

direction whose magnitude is the light source intensity. 

In space-frequency domain, Lambertian surface is a 

low-pass filter and the set of images of a Lambertian object 

under varying lighting can be approximated by a 9D linear 

subspace spanned by harmonic images lmb ( 20 ≤≤ l )[1]. The 

harmonic images are defines as: 

)),,(),,((),(),( yxyxYAyxyxb lmllm φθρ= (2) 

where lmY  is spherical harmonic at the surface normal, ),( φθ
corresponding to pixels is ),( yx  and Al is the spherical 

harmonics coefficients. The image under arbitrary lighting 

can be written as: 
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2
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where lmL is the spherical harmonic coefficients of the specific 

lighting. The lower nine spherical harmonic coefficients 

lmL ( 20 ≤≤ l ) can be estimated as discussed in [11]. Once we 

have estimated the lighting of the original image, it is 

straightforward to relight it to the canonical illumination with 

illumination ratio image. Illumination ratio image between the 

canonical image and original image the is defined as: 
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where the subscripts are index of illumination, and E is the 

incident irradiance. Image relighting with illumination ratio 

image can be written as: 

),(),(),( yxIyxIRIyxI orgcan ×= . (5) 

In order to search the solutions effectively, the probability 

Pc and Pm are modulated self-adaptively. The modulation 

scheme is: 
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where '

cf  is the bigger one of two parents’ fitness value; f is 

the fitness of the mutated parent; fmax is the maximum fitness 

value of the current population and f  is its average fitness; 

K1=k3=1, k2=k4=0.5. The self-adaptive algorithm reduces the Pc

and Pm of those individuals whose fitness value are bigger than 

the average of the current population. It can make the GA 

operations converge quicker. The Pc and Pm of those individuals 

whose fitness value are smaller than the average are increased to 

avoid the local solutions. 

�. Fitness Evaluation.  The fitness function, used to 

evaluate the fitness of a solution, is a classifier called SNoW 

[17]. To train this classifier, we use a new feature pattern to 

characterize the samples as demonstrated in [2]. And then we 

train this classifier using the SNoW training procedure. For the 

details of the SNoW-classifier, please refer to [17]. By the 

trained classifier, a sample matches a normalized score. Note 

this score is assigned to the input sample as its fitness. 

To train the evaluation function (or classifier) SNoW of 

each generation, we use the initial population and the solutions 

of the last generation as positive samples. For negative examples 

we start with 12,000 non-face examples from 6,107 images of 

landscapes, trees, buildings, etc. Although it is extremely 

difficult to collect a typical set of non-face examples, the 

bootstrap [15] is used to include more non-face examples during 

training. And each resulting classifier is used to test on the 

validation set and evaluate the successive generation. After each 

solution is evaluated, a fitness value is attached. 

2.3. Re-sampling 

 The initial population, (which actually is the training set in 

our method and it contains 15,000 face images), is divided into 
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several smaller sub-sets according to the rotation angle of each 

image. Here, we divide all these images evenly into six sub-sets: 

the first is those within [ -15 , -10  )  and denoted by 
1ω  as 

shown in Fig. 3; the 2nd is those within [ -10 , -5  )  and denoted 

by 
2ω ;…; and the last is those within [10 , 15  ] and denoted 

by 
6

ω . Then all these six sub-sets are used as the initial 

population of the GA operations. 

1ω2ω 3ω4
ω5ω 6

ω

4ω

2
ω3

ω
5

ω

1ω

6
ω

Fig. 3. The process GA operations.

 Here, we choose parents randomly to ensure the diversity 

of the reproduced solutions. As shown in Fig. 3, these selected 

individuals are put into mating pools, and those individuals 

within the same sub-set will crossover with the probability Pc as 

demonstrated in equation (6). For example, two individuals, xi

and xj, selected from 
6

ω , are put into Pool6. After the crossover 

operations, their offspring will be put into 
6

ω  again. Some 

parents of the current generation mutate with the probability Pm

as demonstrated in equation (7). For example, xk selected from 

1ω  is mutated and its child is laid back into 
1ω .

After each generation reproduced, we keep 5,000 children 

at most from the intermediate population and discard the others. 

Or we keep all of those solutions whose fitness value is bigger 

than a given threshold θ  and we let θ =0.6 according to the 

experiences. In this scheme, after every 10 generations, the 

population will be 1015,000 (1+0.3) 206,787× =  individuals. Its size 

is much larger than that of the original one. In order to keep it in 

control, we cut down the scale and keep only 85,000 solutions. 

In order to select those 85,000 individuals from 206,787 ones, 

all of them are sorted in a sequence according to their fitness 

value and then we pick out 85,000 individuals evenly along this 

sorted sequence. After these operations, we have 100,000 

individuals, which including the 15,000 initial population and 

their 85,000 children. All the remained children of every 

10-generation are checked manually to avoid the classifier 

assigning a biased fitness value. 

After every one generation, we use its solutions and the 

negative set as new training set to train the classifier SNoW as 

demonstrated in Fig. 1. Note the newly-trained classifier is used 

to evaluate the solutions of next generation and is also tested on 

the validation set. Moreover, we compare these results of each 

generation. The GA operations will be terminated when their 

resulting difference between two neighbor generations drops 

below a predetermined threshold. Some solutions by the GA 

operations are shown in Fig. 4. 

Fig. 4. Some face samples generated by the GA re-sampling.

3. Experiment 

3.1. Comparing the solutions performance 

Fig. 5 provides the results for the classifier SNoW trained 

with different database and tested on validation set. In this 

figure, we use only the initial population (NoGA), and the initial 

population together with the solutions of the 10th generation 

(GA10) or the 20th, …, or the 60th generation (the same as 

GA20,…, GA60) as face-sample sets. It means the NoGA has 

15,000 face samples, while GA10, GA20,…, or GA60 has 

100,000 face samples. For all of these seven cases, the trained 

classifiers are tested on the validation set. 

Form these Receiver Operating Characteristic (ROC) 

curves in Fig. 5, we can find that the performance of GA10 is 

better than that of NoGA, and GA20, GA30, GA40 improve the 

results further respectively. However, the difference between 

GA50/GA60 and GA40 is very limited. Furthermore, we check 

these seven trained classifiers by the test set to verify their 

generalization performance. We find that they obtain almost the 

same results compared to test on the validation set. 

Fig. 5. The ROC curves on the validation set using different 

generations of GA as training set for a fixed classifier.

We also investigate some possible reasons for the success 

of GA. First, the random selection scheme ensures the diversity 

of the reproduced solutions. Second, we can acquire some 

variations about one person by crossover. For example, we can 

make one with glasses or beard to simulate the variations of a 

person, and these variations are very common in our daily life. 

Third, the mutation can simulate the variations from the lighting 

and quality conditions in an image to the aging of a person. 

3.2. Evaluation of the generated samples 

 In order to verify that the solutions are independent to any 

special classifier, we use the expanded training set to train 

another classifier and test its generalization performance. 

Adaboost, a version of the boosting, has been used in face 

detection and is capable of processing images extremely rapidly 

while achieving high detection rates [16]. Therefore, we use the 

Adaboost algorithm to train a classifier. For the details of the 

Adaboost based classifier, please refer to [3]. 

To compare the performance improvement on different 

training sets, we use three different face training sets. The first 

group consists of the initial population. The second group 

contains a set of 100,000 face images generated by GA40

automatically. The third group also contains a set of 100,000 

face images generated by GA40 manually. Here, the word 

“automatically” means that each solution of every one 

generation is evaluated by the classifier SNoW, while all the 

remained children of every 10-generation are checked manually. 

The word “manually” means that both each solution of every 

one generation and all the remained children of every 
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10-generation are checked manually. The non-face class is 

initially represented by 10,000 non-face images. Each single 

classifier is then trained using a bootstrapping approach similar 

to that described in [15]. The bootstrapping is carried out several 

times on a set of 8,736 images containing no faces. 

The resulting detectors are evaluated on the MIT+CMU 

frontal face test set which consists of 130 images showing 507 

upright faces [12]. The detection performances on this set are 

compared in Fig. 6. Some detects are shown in Fig.7. From the 

ROC curves one can find that we get the detection rate of 

90.52% and 12 false alarms with the detector trained on the set 

by GA40 automatically. Viola reported a similar detection 

capability of 89.7% with 31 false detects (by voting) [16]. 

However, different criteria (e.g. training time, number of 

training examples involved, cropping training set with different 

subjective criteria, execution time, and the number of scanned 

windows in detection) can be used to favor one over another 

which will make it difficult to evaluate the performance of 

different methods even though they use the same benchmark 

data sets [18]. 

Fig.6. The ROC curves on the MIT+CMU frontal face test set. 

(a) (b)  

(c) (d) 

Fig.7. some results of the detector 

4. Conclusions 

 In this paper, we present a novel method to expand face 

sample set by applying the self-adaptive genetic algorithms. It 

can generate new face samples by crossover and mutation 

operations. These new generated samples can cover a widely 

variations: simulate the variations of faces in daily life and the 

variations of the images of lighting and quality conditions. It is 

turned out that the performances of the detector trained by both 

the initial generation and the solutions of GA are much better 

than that trained only by the initial generation. It also 

demonstrates that the expanded face samples set can be used to 

train other classifiers other than SNoW and can improve further 

the classifier performance. 
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