
Learning Long Term Face Aging Patterns
from Partially Dense Aging Databases

Jinli Suo1,2,3

jlsuo@jdl.ac.cn

Xilin Chen2 Shiguang Shan2

{xlchen,sgshan}@ict.ac.cn

Wen Gao1,4

wgao@pku.edu.cn

1Graduate University of Chinese Academy of Sciences(CAS), 100190, China
2Key Lab of Intelligent Information Processing of CAS,

Institute of Computing Technology, CAS, Beijing, 100190, China
3Lotus Hill Institute for Computer Vision and Information Science, 436000, China

4School of Electronic Engineering and Computer Science, Peking University, 100871, China

Abstract

Studies on face aging are handicapped by lack of long
term dense aging sequences for model training. To handle
this problem, we propose a new face aging model, which
learns long term face aging patterns from partially dense
aging databases. The learning strategy is based on two as-
sumptions: (i) short term face aging pattern is relatively
simple and is possible to be learned from currently avail-
able databases; (ii) long term face aging is a continuous
and smooth Markov process. Adopting a compositional face
representation, our aging algorithm learns a function-based
short term aging model from real aging sequences to in-
fer facial parameters within a short age span. Based on
the predefined smoothness criteria between two overlapping
short term aging patterns, we concatenate these learned
short term aging patterns to build the long term aging pat-
terns. Both the subjective assessment and objective evalua-
tions of synthetic aging sequences validate the effectiveness
of the proposed model.

1. Introduction
Face aging is attracting increasing interest from re-

searchers for its roles in real world applications(e.g., look-
ing for lost children or wanted fugitives, developing face
recognition systems[5, 24, 29, 30, 43] robust to age related
variations, template renewal[8], et al.) In recent years, a lot
of efforts focus on face aging modeling, building face aging
databases[1, 33] and aging model evaluation[20].

1.1. Previous work
Researchers have made great efforts on face aging mod-

eling and lots of algorithms were proposed. Generally these
approaches fall into two groups: physical model based and
example based.

Approaches based on physical model simulate face ag-
ing by modeling biological structure and aging mechanisms
of cranium, muscles or skin. For example, Wu et al.[44] and
Boissieux et al.[6] build layered skin models to simulate the
skin deformations in aging process. Berg and Justo[3] sim-
ulate the aging of orbicularis muscles. Other similar stud-
ies include Golovinskiy et al.’s[14], Lee et al.’s[22], Bando
et al.’s[2], Ramanathan and Chellappa’s[32] work. Due to
the subtleness of both facial structure and face aging mech-
anisms, physical model based methods are often complex
and computationally expensive. These disadvantages cause
it difficult to get realistic results by physical modeling.

Two main streams of example based approaches are re-
spectively prototype based and function based. (i) Prototype
based methods[7, 13, 23, 34, 40, 41] firstly divide age range
into discrete age groups and compute the mean face of each
age group as its prototype, and then define the differences
between prototypes as axis of aging transformation. Wang
et al.[43] and Hill et al.[15] extend this approach to PCA
space and Park et al.[26] apply it to 3D face data. Since
some details crucial for age perception are lost in prototype
computation, some other researchers specially work on ren-
dering high resolution aging results[12]. Although Scan-
drett et al.[35] consider the attributes of specific individuals
in their work, most prototype methods are able to extract
only average aging patterns, so the individuality and diver-
sity of face aging are neglected. (ii) Function based meth-
ods describe the relationship between a face image or its fa-
cial parameters and corresponding age label with an explicit
function, such as strain elicit transformation[28], quadratic
function[21, 23, 27], support vector regression[19, 36, 42],
kernel smoothing method[17] or an implicit function[4, 25].
Fang and Wang[18] directly build a mapping function be-
tween a young face and its appearance in latter ages. An-
thropometry evidences can be used as constraints of these
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mapping functions, such as in Ramanathan and Chellappa’s
work[31]. All those functions need considerable real aging
sequences for parameter learning and simple functions are
insufficient for modeling the large changes in facial appear-
ances over long periods. In spite of these drawbacks, the
method can be applied to short term face aging.

In all, physical model based approaches are constrained
by the complexities and example based approaches suffer
from lacking of training data.

1.2. Motivation and basic ideas
Since it is time consuming to collect long term(i.e.

across 3-4 decades) dense face aging sequences, currently
available face aging databases contain mostly short term se-
quences(i.e. age span smaller than 10 years), we refer to
these databases as partially dense datasets. Learning long
term aging patterns from partially dense datasets is a strat-
egy worth considering for example based approaches.

As a common sense, long term aging pattern is a smooth
Markov process(we only refer to nature aging in this paper)
composed of a series of short term aging patterns and simi-
larities exist among the short term aging patterns in a same
time span, especially for the individuals from the same eth-
nic group and of the same gender. We propose a face aging
model which firstly learns short term aging patterns from
real aging sequences and then sequentially concatenate sim-
ilar short term aging patterns into long ones. The aging al-
gorithm is composed of two steps:

Step 1) Learning short term face aging patterns. With
large number of short term face aging sequences from pub-
licly available face aging databases, such as FG-NET and
MORPH, our model extracts short term aging patterns from
the real aging sequences. This ensures that the learned pat-
terns are close to real aging process. Since the short-term
appearance changes are relatively small, we use a function
based approach to model the short term face aging.

Step 2) Concatenating short term aging patterns into
long term patterns. Formulating long term aging as a
Markov process, our model concatenates partially overlap-
ping short term aging patterns sequentially into long term
ones based on the predefined smoothness criteria. The di-
versity of aging is simulated by sampling different subse-
quent short term patterns probabilistically, with the proba-
bility being computed from the similarity measurement be-
tween two overlapping patterns.

To our knowledge, this is the first attempt to learn long
term aging patterns from partially dense datasets. One re-
cent work bearing some similarity with ours is [38], in
which a dynamic face aging model based on a hierarchi-
cal face representation is proposed. However, the dynamics
in [38] are learned from predefined similarity metrics in-
stead of real aging data and the continuous aging process is
simplified by dividing age range into 5 discrete groups.

The rest of this paper is organized as follows: In Sec.2

(a)

G1

G3

G5

G7

G2

G4

G6

(b) (c) (d)

Figure 1. The compositional face representation inspired by mus-
cle model. (a) shows the muscle model adopted in Facial Action
Coding System[10] and the muscle grouping based on it. (b) and
(c) are the divided facial subregions based on the muscle grouping
in (a). (d) shows the subregions with few muscles.

we describe the proposed compositional aging specific
AAM model. Then Sec.3 and Sec.4 explain the learning
of short term aging patterns and long term aging patterns
respectively. In Sec.5 we design some experiments to val-
idate the proposed model. Finally, this paper concludes in
Sec.6 with a summary and some discussions on future work.

2. Compositional aging specific face model
2.1. Muscular decomposition

Due to its simplicity and effectiveness in face represen-
tation, Active Appearance Model(AAM)[9] is widely used
in face analysis, including aging related studies, such as
[21],[43], et al.. However, the holistic AAM representation
has some limitations in the task of face aging modeling for
following two reasons: (1) a global AAM model capable of
describing large appearance changes across decades is of-
ten with high dimension and statistical learning approaches
suffer from the curse of dimension problem, which is espe-
cially serious in face aging problem; (2) aging mechanisms
of different regions are specifically related with their bio-
logical structures and display large varieties in both aging
pattern and aging velocity, thus face aging is a highly non-
linear process. Therefore, we adopt a region based AAM
model, which targets to reduce data dimension and the non-
linearity of aging problem.

Since the behaviors of facial muscles have large effects
on face appearances during the aging process(e.g., facial
contour declines gradually because of the loss of muscle
tone, wrinkles emerge due to the contraction of expression
muscles, et al.), we take into account anatomical evidences
when building our region based face representation. Ek-
man et al.[10] conduct a deep study on the structure and
function of facial muscles, and apply it to Face Action Cod-
ing System(FACS) successfully. Adopting a similar mus-
cle model, Ramanathan and Chellappa[32] simulate the face
shape changes caused by aging of facial muscles. On the ba-
sis of these two previous analysis on facial muscles, we se-
lect muscles most related to face aging and build a composi-
tional face model(see Fig. 1(a)). In this model, the muscles
cluster into groups based on their physical positions, orien-
tations and functionalities. Guided by the muscle clustering,
a face image I is divided into 13 subregions(intersections
exist on boundaries of some neighboring subregions), as are
shown in Fig. 1. Hair is not included in this model.
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Figure 2. Comparison between the original AAM model and ag-
ing specific AAM model. (a) and (b) respectively visualizes the
top five principal components of face shape and their correlation
with face aging in the original AAM model and aging specific
AAM model. Here the line segments illustrate the accounted shape
variations. Similarly, (c)(d) and (e)(f) respectively compare the
shape-free texture of around-eye region and forehead region in two
models. The results in this figure are learned from 500 African-
American males in the MORPH database.

Thus a face image is composed of a set of sub images:

I = +©R
r=1I

r (1)

Here R is the number of facial subregions, and +© denotes
the composition of subregions, with blending along the sub-
region boundaries to avoid the image artifacts.

2.2. Aging specific AAM model
In this paper we extend the original AAM[9] model for

aging modeling. The extended model includes a global ac-
tive shape model and a shape-free texture model for each
subregion separately. Since the principal components of the
original AAM model describe the variations in the whole
face dataset, embedding both age related and non-age re-
lated variations, we analyze the components statistically to
pick out the components significantly related with aging.

Firstly the face images in training data are grouped into
five equally divided age levels, and we denote their pro-
jection coefficients on a specific principal component as
wi,t, with i being the index of samples and t being the
age level of ith sample. Since the plots tell us that wi,t

is near Gaussian, we conduct widely used ANalysis Of
VAriance(ANOVA)[16] on these coefficients. One of the
most important statistics in ANOVA is F -ratio, we use
which to measure the correlation between the principal
component and face aging:

F -ratio =
1

NT −1

∑NT

t=1 nt(wt − w)2

1
NS−NT

∑NS

i=1(wi,t − wt)2
(2)

Here NT and NS are respectively the number of age levels
and training samples. wt is the mean coefficients of all nt

samples at age level t and w is the mean of all wts.

Algorithm 1 Learn a short term aging pattern of region r

Input:
W: projection coefficients of a real aging sequence
(wr

1,t1 ,w
r
2,t2 , · · · ,wr

n,tn
)

μμμr,σσσr: mean and standard deviation of wr’s gradient

1. Initialize candidate-models := nil
2. for loop = 1 to C2

n

2.1 maybe-inliers := two values randomly selected from W
and with different age labels

2.2 maybe-model := linear model fitted to maybe-inliers
2.3 consensus-set := All the wr

i,ti
fitting the model under er-

ror threshold 5 · [μμμr − 3σσσr,μμμr + 3σσσr]
2.4 better-model := B-spine model fitted to consensus-set
2.5 Add better-model to candidate-models

3. Output the model with minimum prediction error for all data
in W

With wi,t being near Gaussian, F -ratio follows F-
distribution with degrees of freedom NT −1 and NS −NT .
Setting the significance threshold at p < 0.05, we preserve
the components significantly related with face aging and re-
arrange them according to their correlation with face aging
in descending order. We name the model after rearrange-
ment as aging specific AAM model, which is quite different
from the original AAM model, as is shown in Fig. 2. In this
model a specific sub image of rth region I r is described as:

Ir = Ir
m +

Nr∑
pc=1

wr
pc · vr

pc + Ir
res, (3)

where Ir
m, vr and wr are mean image, principal components

and corresponding projection coefficients respectively. N r

is the number of preserved components, and I r
res is the

residue image containing mostly non-age related variations.

3. Short term aging pattern
Given a real image sequence of rth region {I r

i,ti
, i =

1, 2, · · · , m}, here Ir
i,ti

is the ith face image at age ti and
its AAM parameters are denoted as wr

i,ti
= {wr

i,ti,pc, pc =
1, 2, · · · , N r}, we target to learn a short term aging pat-
tern over τ = [t1, tm], which is composed of the coefficient
evolutions on all of the age related principle components:
pr

τ = {pr
τ,pc, pc = 1, 2, · · · , N r}.

In some extreme cases, non-age related variations are
highly mixed with those age related ones and can not be
excluded by the aging specific face model(e.g., expres-
sion lines are quite similar to wrinkles in appearance),
we treat these data as outliers and use RANdom SAmple
Consensus(RANSAC)[11] method to drop out them, as the
circled star marks illustrate in Fig. 3. The steps of learn-
ing short time aging patterns using RANSAC are shown
in Algorithm 1. The statistical analysis tells us that for
a specific facial region r, the gradients of projection co-
efficients on the principal component with index pc fol-
low Gaussian distribution N(μr

pc, (σ
r
pc)

2) and age percep-
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Figure 3. Modeling of short term face aging. The star marks de-
note the parameters of a given image sequence, among them the
circled ones are outliers excluded by RANSAC method. The solid
curve represents the learned aging pattern, with filled circles being
interpolated parameters at time steps of Δt.

tion has an ambiguity of around 5 years, thus for a pre-
trained aging model we assume that the samples not within
5[μr

pc−3σr
pc, μ

r
pc +3σr

pc] of its prediction are outliers in step
2.4 of Algorithm 1, where μμμr = {μr

pc, pc = 1, 2, · · · , N r}
and σσσr = {σr

pc, pc = 1, 2, · · · , N r}.
In implementation pr

τ,pc is defined as a B-spline curve
approximating the inliers of {wr

i,ti,pc}(denoted by uncircled
star marks in Fig. 3) with interpolation step Δt being 1 year.

4. Long term aging pattern
As is discussed above, a long term aging pattern is com-

posed of some sequential short term aging patterns. In this
paper we formulate the long term face aging as a Markov
model in the granularity of age spans, based on which we
can infer a sequence of overlapping short term aging pat-
terns in latter age spans from the aging pattern in current
age span. After the inference, we concatenate the short term
aging patters into a smooth long term aging pattern.
4.1. Concatenating strategy

Suppose pr
τ1

and pr
τ2

are two learned short term aging
patterns of rth region over two overlapping time spans τ 1

and τ2, we denote that Cr
1 = {Cr

1,pc, pc = 1, 2, · · · , N r}
and Cr

2 = {Cr
2,pc, pc = 1, 2, · · · , N r} are respectively the

fitted curves of pr
τ1

and pr
τ2

. The distance between two sets
of curves is defined as:

D(Cr
1,C

r
2) (4)

=
1

|τ1 ∩ τ2|
∫

τ1∩τ2

(
Nr∑

pc=1

Fpc ·
∣∣�Cr

1,pc(t) − �Cr
2,pc(t)

∣∣ )dt

In this equation, Fpc is the F -ratio of the principal compo-
nent with index pc. Here we assume that an aging pattern
is reflected by the ”changes” of face parameters over time
instead of parameters themselves, so gradient operator � is
introduced for computing the distance between patterns.

Considering the property of smoothness in face aging,
we favor the neighboring aging patterns with similar aging
trajectories in the overlapping time span. The probability
of concatenating curves Cr

1 and Cr
2 into a long term aging

pattern is computed as:

1

2
1

1

2

1

C1,N
r

C1,1
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r
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r r

C2,1
r

Figure 4. Illustration of concatenating short term aging patterns
into a long term pattern. The dash-dotted curves {Cr

1,pc} and
{Cr

2,pc} represent two partially overlapping(shadowed area) short
term patterns of region r. The set of solid curves is the concate-
nated long term aging pattern, which shifts the curves vertically
and concatenates them at the time point with the minimum differ-
ence in slopes, as are denoted by the filled circles.

P (Cr
2|Cr

1) ∝ exp−D(Cr
1,Cr

2) (5)

After sampling two sequential short term aging patterns
from the probability in Eq. 5, we try to concatenate them
smoothly along the time axis. In this paper we concate-
nate two overlapping patterns at the time point with the
minimum gradient difference summed over all the princi-
pal components, as is shown in Fig. 4

t∗ = arg min
t∈τ1∩τ2

Nr∑
pc=1

Fpc ·
∣∣�Cr

1,pc(t) − �Cr
2,pc(t)

∣∣ (6)

4.2. Diversity of face aging
By analyzing the short term aging patterns in Sec.3,

we find that there exist certain differences in the slopes of
curves describing them, and this diversity shows the intrin-
sic variability in both aging pattern and aging velocity. The
variability may be effects of various external factors(e.g.,
nutrition, lifestyles, health, et al.) or genes. To model the
diversity of face aging, we sample different sequential pat-
terns from the probability function defined in Eq. 5 when
inferring the aging paths in latter periods. For an input face,
out algorithm is able to synthesize a set of plausible aging
results, as are shown in Fig. 5. It is worthing noting that
facial hair is indicative of the face ages, thus its appearance
changes are also learned by the proposed aging model.

5. Experimental results
5.1. The face database

Two widely used face aging databases are FG-NET[1]
and MORPH[33]. We select the MORPH database in our
experiments for two reasons: (i) images are collected under
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Figure 5. For the input image on the leftmost column, we synthe-
size a set of results at older ages to reflect the diversity of aging.

controlled environment, and non-age related variations are
relatively small; (ii) the images are from a large number of
individuals, this is one necessary condition for the feasibil-
ity of the proposed learning strategy.

The MORPH database was firstly released in FG’06[33],
one of its extended versions includes 16,894 face images
from 4,664 adults and about 85.2% of these images are
from male individuals. There are in all 13,201 images of
African-Americans, 3,634 of Caucasians and 59 of other
races. The average age is 40.28 years old and the oldest one
is 99 years old. To learn the long term aging model, we use
images between 18 and 54 years and select the sequences
with photos snapped at no less than three different ages.
The maximum age span and mean age span in training set
are respectively 33 and 6.52 years. There are altogether 130
African-American male sequences, 133 African-American
female sequences, 147 Caucasian male sequences and 44
Caucasian female sequences in our training data. On each
face image, we labeled 83 landmarks for model training.

5.2. Aging simulation
Based on their ethnic group and gender, the subjects in

the MORPH dataset are divided into four groups: African-
American males, African-American females, Caucasian
males and Caucasian females, then we build a face aging
model for each group separately. For an input face im-
age, we perform aging simulation using the aging model
of his/her ethnic and gender group. Fig. 6 shows eight syn-
thetic sequences, from which one can see the large diversity
in aging of different groups. There exist apparent artifacts in
the forehead region of Caucasian females, this is caused by
insufficient aging sequences for model learning and heavy
hair occlusions in training data. We also synthesize a set of
results for one individual to illustrate the diversity of face
aging, as are shown in Fig. 5.

5.3. Aging model evaluation
Evaluation of face aging model is not straightforward

due to some unique characteristics of face aging process:

(a) African-American males

19 29 39 49

24 34 44 54

(b) African-American females

18 28 38 48

18 28 38 48

u

(c) Caucasian males

18 28 38 48

19 29 39 49

(d) Caucasian females

28 36 44 52

21 31 41 51

Figure 6. Some simulation results synthesized by our aging model.
(a)-(d) separately display two exemplar aging sequences of indi-
viduals from four different groups. In each group, the leftmost
column shows the input images, and following three columns are
synthesized images at latter ages, with the age span between adja-
cent images being about 10 years. The age of each face image is
labeled on the right bottom corner.

firstly, real aging sequences are difficult to collect and the
collected data often include non-age related variations; sec-
ondly, aging result is intrinsically uncertain, direct compar-
ison between the synthetic faces and real aging results does
not make sense. These challenges motivate researchers to
explore efforts on studies of aging model evaluation[ 20].



Table 1. MAE(yrs) of subjective and algorithmic age estimation.
(Note: A, C, M and F are abbreviations of Caucasian, African-
American, male and female respectively.)

A M A F C M C F
Subjective Real 6.26 5.76 6.90 5.37
Estimation Synthetic 5.07 6.48 6.93 5.80
Objective Real 5.78 6.10 6.77 7.20
Estimation Synthetic 6.30 5.96 6.71 6.26

Two widely used criteria for aging model evaluation are:

1. Having appearances of the intended age, i.e., whether
the aged faces are perceived to be of the intended ages.

2. Preservation of face identity, i.e., whether the synthetic
faces are still recognized as the original person.

Guided by these two criteria, we conduct both subjective
and algorithmic evaluations in the following experiments.
(20 volunteers are recruited for subjective evaluation.)
I. Age estimation test

We select 20 individuals(not included in training data)
from each group and synthesize 5 images across 3-4
decades for each individual, these 400 synthetic images
compose set A. For comparative study, we randomly se-
lect the same number of real images at different ages as
set B. Both subjective and algorithmic age estimation are
conducted on these two sets. In this paper, we adopt Mean
Absolute Error(MAE) as a quantitative measurement for the
accuracy of age estimation.

Experiment 1) Subjective age estimation. In this experi-
ment, we compare the accuracies of subjective age estima-
tion on real data and synthetic data. After a training proce-
dure with 100 faces at different ages and selected from the
training data, the volunteers are asked to estimate the face
ages of data in set A and B. The MAEs on both sets are
around 5-7 years, as are shown in 2∼3 rows of Table 1.

Experiment 2) Algorithmic age estimation. Automatic
face aging estimation has been studied for years, and vari-
ous algorithms were developed. Here we adopt an age es-
timation algorithm[39] with the-state-of-art performance to
compare the accuracies of objective age estimation on real
faces and synthetic faces. In this experiment age estimation
is performed on all the face images in training data and 400
synthetic images in set A using the Leave-One-Person-Out
approach. The estimation result is shown in parallel with
the result of subjective estimation in Table 1, from which
we can see that objective estimation obtains a performance
comparable with that of subjective estimation, with the es-
timation error being around 6 years. The maximum MAE
is 7.20 years, which is tested on Caucasian females, and the
large estimation error may be due to a much smaller dataset
of Caucasian females than that of the other groups.

From the MAEs in Table 1, we can compute that the av-
erage difference between subjective estimations on real and
synthetic data is about 0.593 years and for objective esti-
mation the difference is about 0.415 years. The small dif-
ference shows that real images and synthetic images have

Caucasian-descent male
Caucasian-descent female
African-American male
African-American female

re
co

gn
iti

on
 ra

te

age span (yrs)0 - 4
5 - 8

9 -12
13-16

17-20
21-24

>= 250
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
1.1
1.2

re
co

gn
iti

on
 ra

te

age span (yrs)0 - 4
5 - 8

9 -12
13-16

17-20
21-24

>= 25
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
1.1
1.2 Caucasian-descent male

Caucasian-descent female
African-American male
African-American female

Figure 7. Performances of face recognition by human beings.

similar appearances in terms of age perception, i.e., the pro-
posed model is able to synthesize faces of the intended age.
II. Identity preservation experiment

Experiment 1) Subjective face recognition across ages.
Due to the limitations of human memory, only 20 individ-
uals from each group are used for both real aging data and
synthetic data. To test the face recognition rate on synthetic
aging results, we mix the 80 young faces selected for syn-
thesizing images in set A together with 80 distractors and
denote them collectively as set C, from which volunteers are
asked to identify the faces in set A. For real aging data, we
select 20 aging sequences for each group from the MORPH
database. Their photos at the initial ages and 80 distractors
together compose set D, and the photos at latter ages are de-
noted as set E. Similarly, we ask the volunteers to recognize
the faces in set E, with set D being the gallery set.

The recognition results on four groups are plotted in
Fig. 7, which shows that the recognition rate generally de-
creases with time span increasing on both sets. while there
exist some jumps due to the limitation of the test set size.
This consists with the intuition that face recognition across
longer periods is more difficult. Another point worth not-
ing is that the recognition rate shows a cross-race effect and
certain individual differences in face recognition abilities,
as are illustrated by the error bars in Fig. 7. The among-
individual variance is larger on real data due to the effects
from non-age related variations.

Comparing Fig. 7(a) and (b) one can clearly see that the
recognition performance on synthetic data is higher. Maybe
this is because that real aging sequences include non-age re-
lated variations and the recognition rate is affected to some
extent. The high recognition result shows that face identity
is preserved effectively in our simulation results.

Experiment 2) Algorithmic face recognition across ages.
Since large appearance changes occur in a long period, so
far there is still no algorithm effective for face recognition
over long time spans. In this experiment we test the recog-
nition rates on set A and all the faces in training dataset
using a face recognition algorithm[37] developed on Gabor
features and LDA-based classifier. To keep the evaluation
objective, the recognition algorithm is trained on an abso-
lutely separate database.

Fig. 8(a) shows the recognition results on real aging data.
Although there exist slight differences among recognition
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Figure 8. Performances of algorithmic face recognition. The leg-
end omitted in (b) is the same with in (a).

rates on four groups, which can be caused by the unbalanced
training data size, the trend of recognition rate with time
span increasing is generally consistent: recognition perfor-
mance degenerates with the increase of time span.

From the recognition result on synthetic dataset plotted
in Fig. 8(b), one can see that performance also decreases
as age span increases. The recognition rate is much higher
than on real aging sequences, because recognition on real
aging sequences is affected by external factors(e.g., pose,
expression, light, et al.), whereas the synthetic faces contain
only age related variations. Another point different from re-
sults on real aging sequences is that the recognition rate on
African-Americans is relatively higher, maybe this is due
to the fact that more age related variations occur on Cau-
casians faces than on African-Americans. The high recog-
nition rate of objective face recognition gives the same con-
clusion as the subjective recognition: the proposed aging
model retains identity information in a large extent.
III. Analysis on the evaluation experiments

The above experiment results indicate that subjective
evaluation is comparatively more accurate, because human
beings are good at age estimation and recognizing faces af-
ter millions of years of evolution. But human experiment
has some drawbacks: firstly, the experimental period is usu-
ally long; secondly, subjective evaluation is limited to small
test sets and causes the results less accurate; thirdly, for both
age estimation and face recognition, cross-race effect is a
problem worth further consideration.

In contrast, algorithmic evaluation is not so time con-
suming and is less limited by the test set size, the cross-race
effect can also be eliminated with balanced training data, so
development of age estimation and face recognition algo-
rithms will advance the studies of face aging model evalu-
ation. Face recognition robust to age related variations is
a challenging problem and age estimation algorithms appli-
cable for images with non-age related variations(e.g., image
resolution, illumination, et al.) are still under study.

6. Conclusions and future work
This paper proposes a face aging model extracting long

term face aging patterns from partially dense aging datasets.
The work in this paper validates the feasibility of learn-
ing a long term face aging model from currently available
databases under a Markov assumption and smoothness con-

straints. The studies in this paper also reveal that large di-
versity exists among face aging of individuals from different
races and of different genders, and building group-specific
face aging models is indeed necessary.

Our future work will focus on introducing more knowl-
edges of anatomy to build more accurate face aging model
and studying face recognition across ages.

7. Acknowledgment
This paper is partially supported by Natural Science

Foundation of China under contract Nos. 60803084,
60872124, 60728203, and 60872077; National Basic Re-
search Program of China (973 Program) under contract
2009CB320902; Grand Program of International S&T Co-
operation of Zhejiang Province S&T Department (No.
2008C14063), and ISVISION Technology Co. Ltd..

References

[1] FG-NET aging database, online available in
http://sting.cycollege.ac.cy/alanitis/fgnetaging/. 1, 4

[2] Y. Bando, T. Kuratate, and T. Nishita. A simple method for
modeling wrinkles on human skin. In Proc. Pacific Conf.
Computer Graphics and Applications, pages 166–175, 2002.
1

[3] A. C. Berg and S. C. Justo. Aging of orbicularis muscle in
virtual human faces. In Proc. Int’l Conf. Information Visual-
ization, pages 164–168, 2003. 1

[4] A. C. Berg, F. J. P. Lopez, and M. Gonzalez. A facial aging
simulation method using flaccidity deformation criteria. In
Proc. Int’l Conf. Information Visualization, pages 791–796,
2006. 1

[5] S. Biswas, G. Aggarwal, N. Ramanathan, and R. Chellappa.
A non-generative approach for face recognition across aging.
In Proc. Int’l Conf. on Biometrics: Theory, Applications and
Systems, 2008. 1

[6] L. Boissieux, G. Kiss, N. M. Thalmann, and P. Kalra. Simu-
lation of skin aging and wrinkles with cosmetics insight. In
Proc. Eurographics Workshop on Animation Computer Ani-
mation and Simulation, pages 15–27, 2000. 1

[7] D. M. Burt and D. I. Perrett. Perception of age in adult cau-
casian male faces: Computer graphic manipulation of shape
and color information. Royal Soc. London, 259:137–143. 1

[8] J. W. Carls, R. Raines1, M. Grimaila, and S. Rogers. Bio-
metric enhancements: Template aging error score analysis.
In Proc. Int’l Conf. Automatic Face and Gesture Recogni-
tion, 2008. 1

[9] T. F. Cootes, G. J. Edwards, and C. J. Taylor. Active appear-
ance models. IEEE Trans. Pattern Analysis and Machine
Intelligence, 23(6):681–685, Jun. 2001. 2, 3

[10] P. Ekman and E. L. Rosenberg. What the Face Reveals: Ba-
sic and Applied Studies of Spontaneous Expression Using
the Facial Action Coding System(FACS). Oxford University
Press, 2nd edition, 2005. 2

[11] M. A. Fischler and R. C. Bolles. Random sample consen-
sus: a paradigm for model fitting with applications to image
analysis and automated cartography. Communications of the
ACM, 24(6):381–395, 1981. 3



[12] Y. Fu and N. Zheng. M-face: An appearance-based pho-
torealistic model for multiple facial attributes rendering.
IEEE Trans. Circuits and Systems for Video Technology,
16(7):830–842, Jul. 2006. 1

[13] M. Gandhi. A method for automatic synthesis of aged human
facial images. PhD thesis, McGill University, 2004. 1

[14] A. Golovinskiy, W. Matusik, H. Pfister, S. Rusinkiewicz, and
T. Funkhouser. A statistical model for synthesis of detailed
facial geometry. In ACM Trans. on Graphics, pages 1025–
1034, 2006. 1

[15] C. M. Hill, C. J. Solomon, and S. J. Gibson. Aging the human
face-a statistically rigorous approach. In Proc. IEE Sympo-
sium on Imaging for Crime Detection and Prevention, pages
89–94, 2005. 1

[16] D. C. Howell. Statistical methods for psychology. Belmont,
CA: Duxbury Press, 6th edition, 2007. 3

[17] T. J. Hutton, B. F. Buxton, P. Hammond, and H. W. Potts.
Estimating average growth trajectories in shape-space us-
ing kernel smoothing. IEEE Trans. Medical Imaging,
22(6):747–753, Jun. 2003. 1

[18] F. Jiang and Y. Wang. Facial aging simulation based on su-
per resolution in tensor space. In Proc. Int’l Conf. Image
Processing, pages 1648–1651, 2008. 1

[19] A. Lanitis. Comparative evaluation of automatic age-
progression methodologies. EURASIP Journal on Advances
in Signal Processing, 8(2):1–10, Jan. 2008. 1

[20] A. Lanitis. Evaluating the performance of face-aging algo-
rithms. In Proc. Int’l Conf. Automatic Face and Gesture
Recognition, 2008. 1, 6

[21] A. Lanitis, C. J. Taylor, and T. F. Cootes. Toward automatic
simulation of aging effects on face images. IEEE Trans. Pat-
tern Analysis and Machine Intelligence, 24(4):442–455, Apr.
2002. 1, 2

[22] W. S. Lee, Y. Wu, and N. M. Thalmann. Cloning and aging
in a VR family. In Proc. Virtual Reality, pages 61–68, 1999.
1

[23] F. R. Leta, A. Conci, D. Pamplona, and I. Itanguy. Manip-
ulating facial appearance through age parameters. In Ninth
Brazilian Symposium on Computer Graphics and Image Pro-
cessing, pages 167–172, 1996. 1

[24] H. Ling, S. Soatto, N. Ramanathan, and D. W. Jacobs. Study
of face recognition as people age. In Proc. Int’l Conf. Com-
puter Vision, pages 1–8, 2007. 1

[25] S. Mukaida, H. Ando, K. Kinoshita, M. Kamachi, and
K. Chihara. Facial image synthesis using age manipulation
based on statistical feature extraction. In Proc. Int’l Conf.
Visualization, Imaging, and Image Processing, pages 12–17,
2002. 1

[26] U. Park, Y. Tong, and A. K. Jain. Face recognition with
temporal invariance: A 3D aging model. In Proc. Int’l Conf.
Automatic Face and Gesture Recognition, 2008. 1

[27] E. Patterson, K. Ricanek, M. Albert, and E. Boone. Auto-
matic representation of adult aging in facial images. In Proc.
IASTED Int’l Conf. Visualization, Imaging, and Image ro-
cessing, page 612, 2006. 1

[28] J. B. Pittenger and R. E. Shaw. Aging faces as viscal-elastic
events: implications for a theory of nonrigid shape percep-

tion. Journal of Experimental Psychology:Human Percep-
tion and Performance, 1(4):374–382, Nov. 1975. 1

[29] A. N. R. Singh, M. Vatsa and S. K. Singh. Age transforma-
tion for improving face recognition. In Proc. Int’l Conf. Pat-
tern Recognition and Machine Intelligence, pages 576–583,
2007. 1

[30] N. Ramanathan and R. Chellappa. Face verification
across age progression. IEEE Trans. Image Processing,
15(11):3349–3361, 2006. 1

[31] N. Ramanathan and R. Chellappa. Modeling age progression
in young faces. In Proc. Int’l Conf. Computer Vision and
Pattern Recognition, pages 387–394, 2006. 2

[32] N. Ramanathan and R. Chellappa. Modeling shape and tex-
tural variations in aging faces. In Proc. Int’l Conf. Automatic
Face and Gesture Recognition, 2008. 1, 2

[33] K. Ricanek, Jr., and T. Tesafaye. Morph: a longitudinal im-
age database of normal adult age-progression. In Proc. Int’l
Conf. Automatic Face and Gesture Recognition, pages 341–
345, 2006. 1, 4, 5

[34] D. A. Rowland and D. I. Perrett. Manipulating facial ap-
pearance through shape and color. IEEE Trans. Computer
Graphics and Applications, 1995. 1

[35] C. M. Scandrett, C. J. Solomon, and S. J. Gibson. A person-
specific, rigorous aging model of the human face. Pattern
Recognition Letters, 27(15):1776–1787, Nov. 2006. 1

[36] K. Scherbaum, M. Sunkel, H. P. Seidel, and V. Blanz. Pre-
diction of individual non-linear aging trajectories of faces.
In Proc. Computer Graphics Forum, volume 26, pages 285–
294, 2007. 1

[37] Y. Su, S. Shan, X. Chen, and W. Gao. Hierarchical ensemble
of global and local classifiers for face recognition. In Proc.
Int’l Conf. Computer Vision, pages 1–8, 2007. 6

[38] J. Suo, F. Min, S. C. Zhu, S. Shan, and X. Chen. A multi-
resolution dynamic model for face aging simulation. In Proc.
Int’l Conf. Computer Vision and Pattern Recognition, pages
1–8, 2007. 2

[39] J. Suo, T. Wu, S. C. Zhu, S. Shan, X. Chen, and W. Gao.
Design sparse features for age estimation using hierarchical
face model. In Proc. Int’l Conf. Automatic Face and Gesture
Recognition, 2008. 6

[40] B. P. Tiddeman, D. M. Burt, and D. I. Perrett. Prototyp-
ing and transforming facial textures for perception research.
IEEE Trans. Computer Graphics and Applications, pages
42–50, 2001. 1

[41] B. P. Tiddeman, M. R. Stirrat, and D. I. Perrett. Towards re-
alism in facial prototyping: results of a wavelet mrf method.
In Proc. Theory and Practice of Computer Graphics, pages
103–111, 2006. 1

[42] J. Wang and C. Ling. Artificial aging of faces by support
vector machines. In Proc. Canadian Conference on Artificial
Intelligence, pages 499–503, 2004. 1

[43] J. Wang, Y. Shang, G. Su, and X. Lin. Age simulation for
face recognition. In Proc. Int’l Conf. Pattern Recognition,
pages 913–916, 2006. 1, 2

[44] Y. Wu, P. Beylot, and N. M. Thalmann. Skin aging esti-
mation by facial simulation. In Proc. Int’l Conf. Computer
Animation, pages 210–219, 1999. 1


