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ABSTRACT 

 
In this paper, we revisit the manifold assumption which has 
been widely adopted in the learning-based image super-
resolution. The assumption states that point-pairs from the 
high-resolution manifold share the local geometry with the 
corresponding low-resolution manifold. However, the 
assumption does not hold always, since the one-to-multiple 
mapping from LR to HR makes neighbor reconstruction 
ambiguous and results in blurring and artifacts. To minimize 
the ambiguous, we utilize Locality Preserving Constraints 
(LPC) to avoid confusions through emphasizing the 
consistency of localities on both manifolds explicitly. The 
LPC are combined with a MAP framework, and realized by 
building a set of cell-pairs on the coupled manifolds. Finally, 
we propose an energy minimization algorithm for the MAP 
with LPC which can reconstruct high quality images 
compared with previous methods. Experimental results 
show the effectiveness of our method. 

 
Index Terms— Super-resolution, Neighbor embedding, 

Manifold assumption, Locality preserving constraints 
 

1. INTRODUCTION 
 
Super-resolution (SR) aims to estimate a high-resolution 
(HR) image from one or multiple given low-resolution (LR) 
counterparts. Among existing methods, interpolation-based 
techniques usually predict a target pixel using its spatial 
neighbors. However, this simple method results in blurring 
because the prior of the smoothness does not fit for the area 
of high-frequency. Thus, some edge preserving methods [1, 
8] have been proposed to address this problem. Another 
class of methods is reconstruction-based approaches, which 
claims that the down-sampled HR estimation should be as 
close as possible to the input LR image. Back-projection 
(BP) algorithm [6] is proposed to minimize the 
reconstruction error in an iterative manner. Besides, some 
other methods [9, 11] regularized by priors (e.g., edges-
direct) are proposed to avoid artifacts. 

Following the early works [2, 4], learning-based SR 
methods have been extensively studied. Baker and Kanade 
[2] developed a method named “face hallucination” to infer 

HR face image from an LR input. Freeman et al. [4] use a 
Markov network to model the relationship between the LR 
images and the HR counterparts. In [7], authors introduce 
the primal sketch priors (e.g., edges) into the learning-based 
SR framework to further improve the performance. 

Inspired by locally linear embedding (LLE) [10], a series 
of SR methods based on a manifold assumption (called 
LLE-like methods) have been presented. The assumption 
claims that point-pairs from the LR manifold (LRM) and the 
corresponding HR manifold (HRM) possess similar local 
geometry. Chang et al. [3] propose an algorithm based on 
NE which has fairly good performance. Researchers 
combine the benefits from the priors of image primitives 
and the LLE in [5]. Recently, authors of [12] propose the 
sparse representation into NE by L1-norm regularization. 
Compared with previous learning-based methods, the LLE-
like synthesis manner greatly improves the SR performance. 

Nevertheless, most of the previous work, does not discuss 
whether the coupled manifolds, LRM and HRM, meet the 
manifold assumption. Authors of [5] just validate that the 
assumption is more consistent with primitive patches than 
general ones. In this paper, we revisit the manifold 
assumption and find that the assumption does not hold well 
on the coupled manifolds. The intrinsic reason is that the 
one-to-multiple mapping from LR to HR makes the points 
selected by k nearest neighbors (k-NN) algorithm on LRM 
are non-local on HRM. To avoid this confusion caused by 
non-local reconstruction, we introduce constraints, called as 
Locality Preserving Constraints (LPC), to guarantee the 
locality and the consistency on the coupled manifolds. 
Furthermore, we propose a synthesizing algorithm with 
LPC to improve the SR results. 
 

2. MANIFOLD ASSUMPTION 
 
In this paper, we present SR problem in patch-wise as 
follows: to estimate a HR image given a LR image with the 
help of a training set, where LR and HR images are 
represented by two patch sets, { }K

xx 1=l  and { }K
xx 1=h , 

respectively. x indicates the patch site in the image and K is 
the number of patches. The raw training set consists of a 
collection of HR natural images and LR counterparts which 
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are generated by degrading HR images using blurring and 
sub-sampling. Then, we cut the HR-LR image pairs into two 
patches set, { }N

ii 1== lL  and { }N
ii 1== hH , which are considered 

to be sampled from LRM and HRM. Here, i represents the 
patch index and N is the number of patches. 

Generally, the original LLE-like algorithm, illustrated in 
Fig. 1, consists of following steps: (1) finding its k nearest 
neighbors in L for each query LR patch lx,; (2) calculating 
the weights wx by reconstructing lx using its LR neighbors; 
(3) transferring the weights to the corresponding HR 
patches on H, and estimate the target HR patch hx by the 
linear combination of its HR neighbors using the calculated 
weights. The last two steps can be formulated as the 
following mathematical equations: 

2
)( ||||minarg ∈−= xNj jxjxx

x

lwlw
w

,              (1) 

and                            ∈= )(
ˆ

xNj jxjx hwh .                        (2) 

Here, N(x) consists of the neighbor indexes of patch lx. 
Based on the manifold assumption, the reconstruction 

weights of a LR patch should be similar with the weights of 
reconstructing the HR counterpart with the corresponding 
HR neighbors. However, this is not always the case since an 
implicit precondition for the manifold assumption is ignored. 
In this paper, we refer this pre-condition as Locality 
Preserving Constraints (LPC), which states that neighbor 
embedding should be carried out on corresponding locally 
linear regions on the coupled manifolds. But, original NE 
algorithms do not consider the locality issues of two 
manifolds at the same time (especially the locality on HRM). 

As shown in Fig. 1, the gray regions, L
l x

C and H
h x

C , 
represent locally linear regions on manifolds, which are 
referred as cells. We can see that the LR neighbors of patch 

xl  lie in one cell while the corresponding HR patches 
scatter in different cells. This situation violates the manifold 
assumption. As a result, the estimate xĥ using neighbor 
embedding is apparently different from the ground-truth xh . 
Essentially, this confusion is mainly caused by the one-to-
multiple mapping from LR to HR samples.  

In SR, the one-to-multiple mapping means that one LR  

patch may correspond to several different HR patches. Fig. 
2 illustrates the one-to-multiple mapping and the neighbor 
reconstruction results for 1-D signal. Markers and curves of 
different styles denote signals in low frequency (LF) and 
corresponding high frequency (HF) domains, respectively. 
More specifically, gray circles represent LF input signals. 
Fig. 2(a) shows the neighbor signals may be selected by 
original NE, which are close in LF, but very different in HF. 
The reason is that the locality on the coupled signal 
manifolds does not be considered simultaneously. In 
comparison, the neighbors selected with LPC guarantee 
consistency in both domains, as shown in Fig. 2(b). Fig. 2(c) 
shows the reconstruction results of NE (blue dotted curve) 
and LPC (red dashed curve). Obviously, the result of LPC is 
much more stable and accurate than that of the original NE. 
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Fig. 2. Illustration of the one-to-multiple mapping and the neighbor 
reconstruction. (a) three signals selected by original NE; (b) three signals 
selected with LPC; (c) reconstructed signals in HF. In (c), Solid curve 
denotes the ground-truth; Blue dotted curve denotes result signal by 
original NE; Red dashed curve denotes result signal by LPC. 

 
From the analysis above, LPC reduces the confusion 

caused by one-to-multiple mapping and constrains NE to be 
processed in cell-pairs.  In next section, we will formulate 
the problem as a MAP with LPC and present a SR algorithm. 

 
3. SUPER RESOLUTION BASED ON LPC 

 
We propose a probabilistic model, where the SR problem is 
formulated in a MAP framework as follows: 

)|(maxargˆ
LHH IIpI = .                      (3) 

When some priors or constraints such as manifold 
assumption are introduced, the model will transfer into 

),|(maxargˆ CIIpI LHH = .                   (4) 
Here, C denotes the priors, and LPC is employed as the 
constraints in our scheme. Following Bayes rule, we 
transform (4) into 

)()|(),|(),|( HHLLHLH IpIIpIICpCIIp ∝ .        (5) 
We define the last two terms of (5) as 

∏ −∝
x

xrHL EIIp )),(exp()|( Ll ,               (6) 

and                 ∏ −∝
yx

yxsH EIp
,

)),(exp()( hh .                   (7) 

In (6), 2
)( ||||),( ∈−= xNj jxjxxr LE lwll  computes the 

error of reconstructing patch lx with its neighbors on the 
LRM L. As for p(IH ), we use the smoothness of the estimate 
HR image as the priors and define the smoothness function 

sE  using the Sum Squared Difference function of the 

Fig. 1. Neighbor embedding based on manifold assumption. 
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overlapping regions between adjacent HR patches. As in 
(5), we introduce LPC term ),|( LH IICp  into the MAP 
framework. Based on previous analysis, we propose LPC as 

∏ −−∝
x

xlxlLH EEIICp ));(exp());(exp(),|( HhLl .     (8) 

In this formula, );( Ll xlE  and );( Hh xlE  are used to 
measure the locality on LRM and HRM respectively. 
Locality functions lE  are specialized as 
      ( )M

C i
T

i
M

l KCE M
i ppp p

ppppp /)()(exp),( ∈ ′−′−−=′ .      (9) 
M
pC  represents a cell that consists of the neighborhood set 

of point p on manifold M. We define locality using a 
Gaussian function of point p′  w.r.t. the points in cell M

pC  

on manifold M. The locality function can measure to what 
degree p′  belongs to cell M

pC  on manifold M. Here, 
M
pK denotes the number of points involved in M

pC  and we 

set 64=MKp  in our experiments. 
From above, the main step of implementation of LPC in 

the proposed method is to build a set of cell-pairs on the 
coupled manifolds. Each cell-pair should satisfy the locality 
property on the coupled manifolds simultaneously. We 
establish the cell-pairs from training set by the following 
simple steps. Firstly, we define augmented vectors 

{ }N
ii 1== pP  with TT

i
T
ii ][ hlp = . Then, cells P

pi
C  for point ip  

are calculated by its k nearest neighbors in P. Finally, P
pi

C is 

separated into LR part L
li

C  and HR part H
hi

C . It is clear that 
each cell-pair contains two cells which achieve locality on 
the manifold L and the manifold H. In the end, we learn a 
set of coupled cell-pairs N

ii
C 1}{ == P

pT , and ),( H
h

L
l

P
p iii

CCC = . 
The proposed SR algorithm based on LPC consists of two 

phases, training phase and reconstruction phase. At training 
phase, we combine the preprocessing in [4] and [7]. The 
original train set consists of LR images IL and HR 
counterparts IH. Firstly, IL is magnified into l

HI  with the 

same size of IH by interpolation. h
HI  is the differences 

between IH and l
HI , which denotes the high-frequency (HF) 

part of HR image. In our system, actually, l
HI  just saves the 

medium-frequency (MF) part of HR image, which is the 
convolution of l

HI and a band-pass filter. As the work in [7], 
we focus our capability on the regions near the image 
contours which are close to the missing HF part. Finally, the 
MF and HF patches along the contours are collected to form 
the patch-wise training set for our system. Besides, the 
normalization method in [4] is adopted to avoid influence of 
the illumination. After the preprocessing steps, we carry out 
the foregoing scheme to learn LPC on training set. 

In reconstruction phase, the MAP estimation in (4) is 
transformed into an energy minimization problem. For each 
patch, our algorithm is to minimize the function as  

++

+=

y yxssxrr

xllxlx

ECE

CECEE

i

ii

),(),(
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hhl

hlh
L
l

H
h

L
l

λλ

λ              (10) 

Here, parameters 1=lλ , 1=rλ  and 3.0=sλ  serve to 
balance different terms in the energy function. If we set 

0=lλ , our method will degrade to the original NE method. 
Since the iterative optimization for each patch is time-
consuming, we develop a non-iterative approximate 
algorithm described in Algorithm I. 

 

Algorithm I. Neighbor Embedding Algorithm based on LPC 
 

Input:    LR patches K
xxLI 1}{ == l  and cell-pairs N

ii
C 1}{ == P

pT . 

Output: HR patches K
xxHI 1}{ == h . 

For each query primitive xl , 

1. Sample 16 cell candidates P
pi

C  (for speed-up) according to the
first 16  minimums of  

iiji
KCE C xj

T
xjxl ll

L
l L

l
lllll /)()(),( ∈ −−= ; 

2. Use each LR cell candidate L
l i

C  and the corresponding HR cell 
H
hi

C  to calculate reconstruction weights xw by 

+− ∈∈
y

C jxjysC jxjx
ijij

x

E ),(||||minarg 2
H
h

L
l hl

w
hwhlwl

s.t. 1=j xjw . Where, y is x’s adjacent sites; 

3. Reconstruct each HR candidate ∈= H
hh hwh

ij C jxjx
ˆ ; 

4. Compute )ˆE( xh for each candidate xĥ by (10); 
5. Output )ˆE(minarg

ˆ
xx

x

hh
h

= ; 

Repeat Step 1 to 5 until all HR patches are estimated. 
 

In the proposed algorithm, for efficiency, we firstly 
sample cell candidates by the locality function on LRM at 
Step 1 for efficiency. Then, at Step 2 and 3, we optimize 
reconstruction weights and predict HR patch on each 
candidate cell pair. Finally, we select the HR patch which 
minimizes the energy function (10) as final estimation. In 
our algorithm, we just use 5 nearest neighbor as [3, 5] in 
Step 2. The experimental results will indicate that our 
algorithm is fairly effective. 
 

4. EXPERIMENTAL RESULTS 
 
A patch-wise training set with size of 21,000 is extracted 
from 12 HR images and LR counterparts. In our 
experiments, the all patches with size of 7 × 7 pixels are 
expanded by rotations to different orientations (90o, 180o, 
and 270o). To achieve the translation invariance, we align 
the centers of patches on contours. In this evaluation, we 
only test our approach on gray images or luminance channel 
(interpolation is carried out on the color channels). 
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Fig. 3. Histograms of correlation coefficient between reconstruction 

weights of LR and HR patches. (a) original NE algorithm; (b) LPC-based 
algorithm. 

 

Firstly, we verify the manifold assumption on the training 
set. Essentially, the assumption means that the 
reconstruction weights of a LR patch on LRM and that of its 
HR counterpart on HRM should be the same. Here, we use 
the standard linear correlation coefficient to measure this 
consistency. Fig. 3 shows two histograms of the correlation 
coefficients between the reconstruction weight vectors. Fig. 
3(a) and 3(b) are calculated for NE [3] and our LPC-based 
method on training set, respectively. It is clear that the 
correlation coefficients in (b) are closer to 1 than that in (a), 
indicating that the local geometry is more consistent on the 
neighborhoods under LPC. In Fig. 4, we give an example to 
compare the original NE and the LPC-based method. It is 
easy to see that with LPC, the neighbors selected are more 
compact, and the estimate target patch is more accurate. 

 
 

        
 

        

 
 

         
 

         
(a)                     (b)                                             (c)                   (d) 

Fig. 4. An example of SR reconstruction. From top to bottom, (a) input LR 
patch, LR reconstructions by NE, and by LPC; (b) five LR neighbors 
selected by NE, and by LPC; (c) five HR neighbors selected by NE, and by 
LPC; (d) HR ground-truth, HR estimates by NE, and LPC; 
 

In the second experiment, we compare our method with 
spline-interpolation and NE in Chang et al.’s work [9]. In 
Fig. 5, we can see that our HR results seem to be sharper 
and smoother without blurring and artifacts. These effects 
are more obvious at places with sharp edges: the petals and 
stamens of the flower and so on. We also calculate the RMS 
on a test set of 14 images which are different with training 
images. The average RMS errors of spline-interpolation, NE 
and our method are 5.90, 5.71 and 5.31, respectively. More 
results will be found in our website1. Our method improves 
the performance of LLE-like SR methods. 

 

5. CONCLUSION  
 
In this paper, we revisit the manifold assumption which is 
the basis of some learning-based SR algorithms. We analyze 
the limitations of these methods and propose a novel SR 
algorithm based on Locality Preserving Constraints. Our 
method calculates LPC from the training set simply and then  
processes neighbor embedding with the constraints on the 

                                                 
1 http://www.jdl.ac.cn/user/bli/publication 

 
Fig. 5. 3X magnification of flower. (a) The original HR image. (b) The 
results by spline interpolation. (c) The result by Neighbor Embedding in 
Chang et al.’s work [3]. (d) The result by our method. (e) Patches from top 
to bottom correspond to the blue box regions in (b), (c) and (d) respectively.  
 
coupled cell-pairs learned from the manifolds. Encouraging 
results verify the effectiveness of our method for single 
image SR problems. The proposed LPC can be viewed as 
general constraints for a class of methods with manifold 
assumption. Possibilities of applying LPC to other coupled 
manifolds learning problems will be pursued in future. 
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