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Abstract 

 
Real-world face recognition systems often have to face 

the single sample per person (SSPP) problem, that is, only 
a single training sample for each person is enrolled in the 
database. In this case, many of the popular face 
recognition methods fail to work well due to the inability to 
learn the discriminatory information specific to the persons 
to be identified. To address this problem, in this paper, we 
propose an Adaptive Generic Learning (AGL) method, 
which adapts a generic discriminant model to better 
distinguish the persons with single face sample. As a 
specific implementation of the AGL, a Coupled Linear 
Representation (CLR) algorithm is proposed to infer, based 
on the generic training set, the within-class scatter matrix 
and the class mean of each person given its single enrolled 
sample. Thus, the traditional Fisher’s Linear Discriminant 
(FLD) can be applied to SSPP task. Experiments on the 
FERET and a challenging passport face database show 
that the proposed method can achieve better results 
compared with other common solutions to the SSPP 
problem. 
 

1. Introduction 
Face recognition from still images and video sequence 

has been an active research topic due to its scientific 
challenges and wide range of potential applications, such as 
biometric identity authentication, human-computer 
interaction, and video surveillance. The challenges of face 
recognition mainly come from the large variations in the 
visual stimulus due to illumination conditions, viewing 
directions, facial expressions, aging, and disguises. Within 
the past two decades, numerous face recognition methods 
have been proposed to deal with these challenging 
problems, as reviewed in the literature survey [1]. These 
methods can be roughly divided into two categories: 
geometric-based methods and appearance-based methods 
[2]. The former generally represent a face image by the 
relative position and other parameters of some distinctive 

features such as eyes, mouth, nose, and chin. In contrast, 
for appearance-based methods, a face image is treated 
holistically as a sample in the image space. Since 1990s, the 
appearance-based methods had dominated the face 
recognition field due to their good performance and 
simplicity. Among them, the most popular ones are 
subspace-based methods, such as the Eigenfaces (based on 
Principal Component Analysis, PCA) [3] and the 
Fisherfaces (based on Fisher’s Linear Discriminant, FLD) 
[4].  

However, the performance of the appearance-based 
methods is heavily affected by the number of training 
samples for each person [5]. More specifically, if the 
number of training samples is much smaller than the feature 
dimensionality, the estimation of intra-personal and 
inter-personal variations would be generally inaccurate. 
Especially, if only one training sample is available for each 
person, the intra-personal variations can not be estimated at 
all. In this case, for instance, FLD will degenerate to PCA. 
This is the so-called Single Sample Per Person (SSPP) 
problem in face recognition. This problem has prevented 
those discriminant analysis methods from successful 
application to real-world face recognition scenarios, such 
as e-passport and ID card verification. In these applications, 
there is usually only a single training sample for each 
person, since it is generally very difficult or even 
impossible to collect additional samples. 

In the literature, some methods were proposed to deal 
with the SSPP problem, as reviewed in [6]. These methods 
can be coarsely divided into three categories: unsupervised 
learning, virtual sample generation and generic learning. 
We introduce them one by one briefly in the follows.  

In the first category, the unsupervised techniques are 
used to circumvent the SSPP problem. These methods 
generally do not need the labels of the training samples and 
thus neglect the utilization of intra-personal variations. The 
most representative method of this category is PCA (or 
Eigenfaces), whose goal is to find the low dimensional 
subspace with maximum data variance. PCA had already 
become the baseline algorithm of face recognition and been 
extended to many different versions, such 2DPCA [7], 
(PC)2A [8] and Kernel PCA [9]. Besides the PCA-based 
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methods, in [10], Tan et al. proposed another unsupervised 
method based on the Self-Organizing Map (SOM), and 
reported higher recognition rate than PCA. Although the 
unsupervised methods do not suffer from the SSPP 
problem, they only utilize the inter-personal variations and 
fail to make use of the intra-personal variations; therefore, 
their performance might be poor if the face images include 
large variations in expressions or lighting conditions.  

In order to extract the discriminatory information 
embedded in the intra-personal variations, some 
researchers proposed to generate some extra samples for 
each person in the database. In [11], Martinez proposed a 
perturbation-based approach to generating virtual face 
images. In [12], Shan et al. extended Fisherfaces for SSPP 
problem by generating virtual face images via geometric 
transform and photometric changes. In [13], Huang et al. 
proposed a component-based method, in which each local 
facial region is moved in four directions to generate more 
training samples for each person. In [14], Chen et al. 
proposed to partition each face image into a set of 
sub-images with the same dimensionality, therefore 
obtaining multiple training samples for each person. With 
these extra training samples, the traditional FLD-based 
methods can be applied. In [15], Gao et al. utilized SVD to 
decompose each face image into two complementary parts: 
a smooth general appearance image and a difference image. 
The later is used to approximate the intra-personal 
variations. In addition, considering the 3D nature of the 
human face, many research efforts focus on generating the 
virtual face views with novel pose, lighting and expression, 
such as in [16, 17, 18]. Overall speaking, these methods are 
basically either heuristic or highly dependent on prior 
information about the human face. Furthermore, in 
real-world applications, determining what kind of and how 
many virtual samples need to be generated is not a trivial 
task.  

For the methods of the third category, a generic training 
set, in which each person has more than one training sample, 
is adopted to extract the discriminatory information. Then, 
this generic discriminatory information is directly used to 
identify the persons with only one training sample. Some 
previous works under this framework include [19, 20, 21, 
22]. For example, in [19], Wang et al. presented a generic 
learning framework and adopted many feature extraction 
methods to extract the discriminatory information from a 
generic training set. In [21], Kim and Kittler proposed a 
solution to the pose-invariant face recognition problem 
from a single frontal face image by collecting a generic 
training set to extract a pose-invariant subspace.  

The underlying assumption of the generic learning 
methods is that, both the intra-personal variations of 
different persons and the inter-personal variations for 
different populations (sets of persons) are similar, and thus 
can be approximated by estimating from a generic large 

population. However, this assumption is too strong in many 
cases, especially in the case of populations containing 
persons of different skin colors, ages, or even occupations. 
Therefore, we argue that the discriminatory information 
embedded in the generic training set should be adapted to 
identify other persons. 

Based on the above analysis, in this paper, we propose 
the Adaptive Generic Learning (AGL) method for face 
recognition from SSPP. Unlike generic learning methods, 
AGL does not directly employ the discriminatory 
information learned from the generic training set, but 
adapts it to the persons to be identified (i.e., the persons in 
the gallery). Specifically, for each person (with only a 
single sample) in the gallery, AGL attempts to infer its 
intra-personal variations and mean by a predicting model 
learned from the generic training set. With the predicted 
intra-personal variations and mean of each enrolled person, 
the overall within-class and between-class scatter matrix 
can be estimated for the persons in the specific gallery, 
which thus makes FLD applicable to the SSPP scenario.  

The proposed method is evaluated on both the FERET 
face database and a passport face database under the SSPP 
scenario. Experimental results show that the proposed AGL 
method significantly outperforms the traditional generic 
learning method as well as other common solutions to the 
SSPP problem. 

2. AGL: Problem Description and Basic Ideas 
As mentioned above, this paper aims at applying FLD to 

face recognition under SSPP scenario. For clarity, we first 
give a brief introduction to the traditional FLD and the 
generic learning based methods, then the basic idea of the 
proposed AGL is presented.  

In the traditional FLD, the within-class scatter matrix 
(SW) and the between-class scatter matrix (SB) are used to 
measure the class separability. They are defined as,  

1

C

W i
i=

= ∑S S , ( )( )
i

T
i i i

X∈

= − −∑
x

S x m x m , (1)

1
( )( )

C
T

B i i i
i

N
=

= − −∑S m m m m , (2)

where C is the number of classes; Si is the within-class 
scatter matrix of the i-th class; Ni is the number of samples 
in class Xi ; mi is the mean vector of class Xi ; m is the mean 
vector of all the samples. The FLD is then formulated as the 
solution of the following optimization problem: 
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Mathematically, this ratio is maximized when the column 
vectors of the projection matrix W are the eigenvectors of 

1
W B
−S S [23] if SW is non-singular.  
As mentioned previously, in the case of SSPP scenario, 

for each enrolled person in the gallery, there is only one 
sample. Formally, we denote the gallery as 

{ : 1, 2,..., }g g
kX k M= =x , where g

kx is the face image (or 
sample) of the k-th person (or class) in the gallery. 
Evidently, with this gallery, FLD can not be applied 
because the SW degenerates to a zero matrix in this case.  

To address the SSPP problem, the generic learning 
method employs a generic training set. The set is formally 
denoted as { : 1,2,..., ; 1,2,..., }t

ij i
tX i C j N= = =x , where 

t
ijx is the j-th face image of the i-th person in the generic 

training set, and iN  is the sample number of the i-th person. 
Clearly, in the generic training set, each person should have 
more than one training sample. Then, FLD model is learned 
on this generic training set and applied to identify the 
persons in the gallery. Evidently, the underlying 
assumption of this method is that, the within-class and 
between-class scatter matrix of the persons in the gallery 
are very similar to and thus can be approximated by those 
of the generic training set. To meet this assumption, the 
population and variations in the generic training set should 
be as similar as possible to those in the gallery and the 
unseen testing images, which is however hard to satisfy in 
real-world applications.  
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Fig.1. Illustration of the basic ideas of the proposed Adaptive 
Generic Learning. In the figure, MSPP means multiple samples 
per person and SSPP denotes single sample per person. 

To solve the above problem, we propose the Adaptive 
Generic Learning method, whose basic idea is illustrated in 
Fig.1. Instead of directly using the within-class scatter 
matrix (hereinafter denoted as t

WS ) and the between-class 

scatter matrix (hereinafter denoted as t
BS ) of the generic 

training set, we propose to predict those of the gallery 
(hereinafter respectively denoted as g

WS and g
BS ).  

With the predicted g
WS and g

BS , FLD can be easily 
applied to recognize the persons in the gallery. It is worth 
pointing out that, the basic idea illustrated in Fig.1 is 
general enough to support various implementations. In the 
following section, we will present a specific 
implementation based on a linear-regression-like strategy. 

3. Adaptive FLD Learning via Coupled 
Linear Representation 

As mentioned previously, each class in the generic 
training set corresponds to a within-class scatter matrix and 
a class mean (i.e., t

iX corresponds to ( t
iS , t

im )). Thus, 
given a generic training set with C classes, we can have C 
pairs of this correspondence. Consequently, our goal can be 
further formulated as: given the above C pairs of 
correspondence and a gallery sample g

kx , how to estimate 

the within-class scatter matrix g
kS and the class mean g

km  
of this person? Evidently, this becomes a typical prediction 
problem and can be solved by many techniques. In this 
study, we present a relatively simple but effective method, 
named by us Coupled Linear Representation (CLR). 

In the following, we first present the theoretical principle 
of CLR. Then, the detailed implementation is given. 

3.1. Theoretical Principle 

Let ( 1,..., )t
i i C=X  be the face image of the i-th person in 

the generic training set, which can be considered as a 
random vector. The expectation and covariance matrix of 

t
iX  are denoted as t

iμ  and t
iΣ  respectively. For a person 

gX in the gallery, we can safely assume that it can be 
approximated by the linear combination of ( 1,..., )t

i i C=X : 

1

C
g t

i i
i

w
=

≈ ∑X X , (4)

where iw  is the weight of t
iX . It is not difficult to derive 

that the expectation of gX (denoted as gμ ) can be 
approximated by the linear combination of 

( 1,..., )t
i i Cμ = with the same weights: 

1

C
g t

i i
i

wμ μ
=

≈ ∑ . (5)

As for the covariance matrix of gX (denoted as gΣ ), the 
situation is more complex. According to the definition of 
covariance matrix, gΣ  can be computed as follows: 

( )( )E
Tg g g g gμ μ⎡ ⎤Σ = − −⎢ ⎥⎣ ⎦

X X . (6)

By putting Eq.4 and Eq.5 into the above equation, it can be 
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reformulated as 
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, (7)

where t
ijΣ  denotes the cross covariance matrix of t

iX  and 
t
jX . Considering that t

iX  and t
jX represent face images of 

different persons, they should not have any causality. In 
other words, t

iX  and t
jX are irrelevant. Thus, the cross 

covariance matrix t
ijΣ should be a zero matrix. With the 

above analysis, Eq.7 can be rewritten as: 
2

C
g t

i i
i

wΣ ≈ Σ∑ . (8)

That is to say gΣ  also can be approximated by the linear 
combination of t

iΣ ( 1,..., )i C= .  

3.2. Implementation 
With the above analysis, this subsection presents in 

detail how to predict the expectation ( gμ ) and the 

covariance matrix ( gΣ ) for each person gX  in the gallery. 
Considering that, in real-world applications, the number of 
the available face images for each person is limited, the 
mean and within-class scatter matrix for each person are 
adopted as the estimation of its expectation and covariance 
matrix respectively.  

In order to predict gm and gS for each person in the 
gallery, the key issue is to learn the combination 
coefficients { }iw . In this paper, t

iX  is represented by its 

mean vector t
im  and gX is represented by its single face 

image gx . Thus, Eq.4 can be rewritten as follows: 

1

C
g t

i i
i

w
=

≈ ∑x m . (9)

Once the coefficients { }iw are learned, the mean and 

within-class scatter matrix of gX can be approximated as:  

1

C
g t g

i i
i

w
=

≈ =∑m m x , (10)

2

1

C
g t

i i
i

w
=

≈ ∑S S . (11)

Eq.10 indicates gm is estimated directly as gx . This is 
rational since gx is the only representative sample of gX .  

( , )t t
C CS m

1
tm  

t
im

t
Cm  

1 1( , )t tS m

( , )t t
i iS m

( , )g gS m
gx

Generic 
training 
set 

Gallery 
sample

Representation  

1w

iw

Cw

... 
... ...

... 

2
1 1( ) ;w w

2( ) ;i iw w

2( ) ;C Cw w

Estimation 
 

Fig.2. The estimation of g
kS  and g

km of the k-th person with 

single sample g
kx  in the gallery. 

Then, how do we learn{ }iw ? Fig.2 illustrates the overall 
framework of the proposed CLR which consists of two 
phases: representation and estimation. The former solves 
the coefficients of the linear combination; while the latter 
applies the coefficients to estimate the statistics (via Eq.10 
and Eq.11). In the following, we describe how to solve the 
coefficients of the linear combination. 

Let us define matrix 1 2[ , ,..., ]t t t d C
C

×= ∈ℜA m m m and 

column vector 1 2[ , ,..., ]k k k C
k Cw w w= ∈ℜw , where d is the 

dimensionality of the samples and C is the number of 
persons in the generic training set. Thus, for the k-th person 
in the gallery, Eq.9 can be rewritten as 

g T
kk =x Aw . (12)

kw can be easily solved by using pseudo-inverse:  

† 1( )g T T g
k k k

−= =w A x A AA x , (13
)

where †A  is the pseudo-inverse matrix of A . With the 
learned coefficients, in the estimation phase, the g

kS  and 
g
km  can be approximated as a linear combination of all the 

t
iS and t

im respectively (by Eq.10 and Eq.11).  

After the estimation of the g
kS  and g

km for each person in 
the gallery, the traditional FLD can be applied to obtain the 
low dimensional subspace, which is called by us the 
Adapted FLD subspace since it is adapted to discriminate 
the persons in the gallery.  
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 For clarity, the complete procedure of the proposed 
adaptive FLD learning via coupled linear representation is 
summarized in Alg.1. After Adapted FLD subspace is 
obtained, both the gallery samples and the testing samples 
are projected into this subspace and then the nearest 
neighbor classifier is used for classification.  

Alg. 1. Adaptive FLD Learning via Coupled Linear 
Representation 

 Given a generic training set 

11,1 1,2 1, 2,1[ , ,..., , ...,t t t t
N=T x x x x  , ]C

t d N
C N R ×∈x and a galley 

1[ ,..., ]t t d M
M R ×= ∈G x x . 

 Compute the t
iS  and t

im for each person in the generic 
training set. 

 For each g
kx in the gallery: 

1. solve coefficients vector kw  according Eq.13. 

2. estimate the g
kS  and g

km according to Eq.10 and 
Eq.11 respectively. 

 Compute the g
WS and g

BS by using the estimated g
kS  and 

g
km , according to Eq.1 and Eq.2. 

4. Experiments 
 In this section, we adopt some publicly available 
large-scale face databases (XM2VTS [24], CAS-PEL [25] 
and FERET [26]) and a private passport face database to 
evaluate the proposed method and compared it with some 
popular methods dealing with the SSPP problem.  
 To simulate the SSPP problem, two testing sets are used 
in our experiments, i.e., the FERET face database and our 
private passport face database. Among them, the FERET 
face database consists of a gallery and four probe (i.e., 
testing) sets: fafb, fafc, dup1 and dup2. The gallery includes 
1196 persons with only a single image for each person. The 
images in fafb set are with expression variation, fafc set 
contains images with lighting variation, and the images in 
dup1 and dup2 sets were acquired some days later. Our 
passport face database contains 4658 passport face images 
of 2000 persons. To simulate an SSPP problem, one image 
is randomly selected for each person and to form the gallery, 
while other images are used for testing. Thus, the gallery 
consists of 2000 persons with a single image per person, 
and the probe set includes 2658 images. Due to privacy 
problem, the images are not exampled in the paper. 
However, we must point out that, the images for the same 
person in this database were acquired at several years’ 
interval and with various image acquiring devices. 
Therefore, this test forms a quite challenging scenario. 
 As for the generic training set, in real-word applications, 
it should contain as many persons and images as possible in 
order to include as much representative discriminative 

information as possible. However, considering the high 
computational cost of using a huge generic training set, we 
only build a generic training set of moderate scale. As 
mentioned in the introduction, the motivation of our 
method is that the discrimination information embedded in 
the generic training set should not be directly used to 
identify persons in the gallery, because there may exists 
large difference between these two image sets. Thus, in 
order to validate our method, only two public face 
databases (i.e., XM2VTS and CAS-PEAL) which are very 
different from FERET and our Passport databases are 
selected to build the generic training set. The XM2VTS 
face database contains 3440 images of 295 persons taken at 
one month interval with the slight head pose variations and 
illumination condition changes. The CAS-PEAL face 
database contains images with the variations due to pose, 
expression, lighting and so on. In our experiments, all the 
images in the XM2VTS face database and all the images in 
the CAS-PEAL training set (1200 frontal face images of 
300 persons) are put together to form the generic training 
set. Consequently, the generic training set contains 4640 
face images of 595 persons.  

XM2VTS

CAS-PEAL

FERET-Gallery

FERET-Probe

 
Fig.3. Examples of the normalized face image in the XM2VTS, 
CAS-PEAL and FERET face databases. 

 
In the experiments, all the face images are aligned and 

normalized to the size of 40 by 50 pixels according to the 
manually located eye centers, with the histogram 
equalization as the illumination preprocessing. Some 
examples of the normalized face image are shown in Fig.3. 

4.1. Evaluation of the Adapted FLD  
 In order to reduce the computational burden, before FLD 
adaptation, the dimensionality of the face images is reduced 
to 500 by using PCA (trained on the generic training set and 
about 96% energy reserved). The number of persons in 
both the generic training set and the gallery is larger than 
500, thus the maximum dimension of the FLD subspace in 
our experiments is 500. For clarity, only the peak 
recognition rate of the optimal dimension is reported. It is 
worth pointing out that, in our experiments, after projecting 
images onto the FLD subspace, the similarity between two 
samples is measured by the normalized cross-correlation 
and the nearest neighbor classifier is used for classification.  



 
 

6 

 Besides the Generic FLD (with t
BS and t

WS ) and the 

Adapted FLD (with g
BS and g

WS ), there are still two derived 

methods: one is with t
BS and g

WS , the other is with g
BS and 

t
WS . Table.1 gives the rank-1 recognition rate of these 

methods on both the FERET and the Passport face 
database. 
 
Table 1. Rank-1 recognition rates of different combinations of 

BS and WS on both the FERET and passport face database. Bold 
font denotes the recognition rates of the best combination. 

FERET (%) Different 
choices of 
SW and SB fafb fafc dup1 dup2

Passport 
 (%) 

( ; )t t
B WS S  84.1 67.5 47.5 23.5 35.8 

( ; )g t
WBS S  76.5 63.4 44.0 20.5 31.0 

( ; )t g
B WS S  75.1 57.2 43.4 23.5 32.8 

( ; )g g
B WS S  88.5 71.6 53.3 35.0 53.5 

  
 It can be concluded from Table.1 that the Adapted FLD 
with g

BS and g
WS performs significantly better than other 

methods. Particularly, its accuracy is greatly improved 
compared with the Generic FLD with t

BS and t
WS computed 

directly on the generic training set. Especially on the 
Passport face database, the improvement of the recognition 
rate is more than 15 percents (from 35.8% to 53.5%).  

4.2. Comparison with Other Methods 
 In this section, we compare the proposed method with 
other typical methods which can be used to deal with the 
SSPP problem, including PCA [3], (PC)2A [8], Local 
Binary Pattern (LBP) [27], the method in [14] (hereinafter 
denoted as Block FLD), as well as the Generic FLD.  
 We implement the above comparison methods ourselves 
and their setups are described as follows. For (PC)2A [8], 
there is only one free parameter α , the weight of 
projection-combined version of the face image. As reported 
in [8], the experiments demonstrate that the performance of 
(PC)2A is not sensitive to α  when it is between 0.1 and 0.5. 
Thus, in our experiments, the weight is fixed to 0.3. As to 
the Block FLD [14], the critical parameter is the size of the 
image blocks. So, we try four different sizes (10×10, 10×25, 
20×10 and 20×25) and report the results of the best one 
(10×25). Similarly, in LBP, the partition of the face image 
has great effect on its performance. In our experiments, we 
also try four different numbers of image blocks (16, 32, 40, 
72) and report the best results (i.e., those of 72 blocks in our 
study). It should be pointed out that, all these methods 
except LBP are trained on the gallery samples. 

  In addition, in recent years, FLD is often combined with 
Gabor features to further improve the accuracy of the face 
recognition systems, as done in [28, 29, 30].  Therefore, we 
also validate the method combining the Adapted FLD with 
Gabor features (only the magnitude part). In our 
implementation, to reduce the dimensionality of Gabor 
features for FLD, we partition the face image into 4 blocks 
(each with the size of 20×25 pixels) and then train 4 
Gabor-FLD classifiers respectively, which are finally 
combined by weighted sum rule. Hereinafter the method is 
denoted as Adapted Gabor-FLD. Obviously, the Generic 
FLD can also be enhanced by this strategy, which is 
denoted hereinafter as Generic Gabor-FLD hereinafter.  
 
Table 2. Rank-1 recognition rates of our methods and other 
compared methods on FERET and Passport database. Bold font 
denotes the recognition rates of our methods. 

FERET (%) 
Methods 

fafb fafc dup1 dup2 
Passport 

 (%) 

PCA 87.4 10.3 38.9 12.8 20.6 

(PC)2A 87.9 12.4 38.6 13.2 20.4 

LBP 97.5 49.0 59.0 37.2 45.1 

Block FLD 73.3 50.0 41.3 33.8 42.3 

Generic 
FLD 84.1 67.5 47.5 23.5 35.8 

Adapted  
FLD 88.5 71.6 53.3 35.0 53.5 

Generic 
Gabor-FLD 96.4 89.2 67.3 47.4 53.8 

Adapted 
Gabor-FLD 97.9 92.3 70.8 54.7 63.5 

Note: since we do not exploit the FERET training set, the results 
on FERET dataset should not be compared with the results 
reported in previous literature on this database. The testing 
scenario in our paper is much challenging.  
 

Table.2 gives the comparison results of these methods on 
both the FERET and Passport database. Note that, in the 
table, for all the subspace-based methods, only the peak 
recognition rates at the optimal subspace dimension are 
reported. From Table.2, we can reach several observations: 
1) the PCA-based methods are worst; 2) Generic FLD 
performs worse than LBP, whereas our Adapted FLD 
outperforms LBP significantly on the Passport database 
and performs comparably to LBP on the FERET probe sets;  
3) by using Gabor filters, the performances of FLD-based 
methods are greatly improved; 4) by using Gabor features, 
the proposed Adapted Gabor-FLD method outperforms 
other methods significantly on all the testing sets.  
 It is worth pointing out that, in recent years, some 
methods reported impressive results (e.g., in [31]) on the 
FERET database which is better than those in this paper. 
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However, it must be noted that those results are not 
comparable with ours directly, since they used an 
evaluation protocol quite different from ours. To learn the 
recognition model, those methods generally made use of 
the FERET training set, which has similar sample 
distribution with the testing dataset and thus facilitates the 
testing. However, our method does not exploit the FERET 
training set at all, thus forms a more challenging testing 
scenario. 

5.  Discussion 
 The proposed method essentially relates in some sense to 
the methods based on virtual sample generation (e.g. [12]). 
Specifically, both methods utilize some prior information 
to generate novel discriminatory information more specific 
to the persons under consideration. However, the 
differences between these two methods are also evident. 
Firstly, our method does not explicitly generate any virtual 
sample but directly estimate the within-class scatter matrix 
of each person. Secondly, our method employs a 
learning-based method to utilize the prior information 
embedded in the generic training set, whereas in the 
methods of virtual sample generation, the prior information 
is often utilized in an explicit manner (e.g. using 3D face 
model or illumination models).  
 Additionally, the traditional FLD often suffers from the 
small sample size (SSS) problem, i.e., the amount of 
training samples are not sufficient to guarantee the 
non-singularity of the within-class scatter matrix. 
Obviously, the SSPP problem is actually an extreme case of 
the SSS problem. Consequently, the proposed method can 
also solve the SSS problem. For example, as in this paper, 
we can directly replace the “real” but singular within-class 
scatter matrix (computed on the gallery) with the estimated 
non-singular within-class scatter matrix (adapted from the 
generic training set). Another alternative is to combine the 
estimated within-class scatter matrix and the “real” one to 
make the latter non-singular.  
 Besides generic FLD, the basic idea of adaptive generic 
learning can also be used to improve other generic learning 
methods. For example, in Bayesian face recognition [20], 
the intra-personal variations and inter-personal variations 
are also modeled on a generic training set. So, it is rational 
to adapt them to a specific gallery. For this purpose, we 
might need to respectively model the intra-personal 
variations of each person in the generic training set, from 
which the intra-personal variations of persons in the gallery 
can be estimated in the similar way of this paper. 

6. Conclusion and Future Work 
 Real-world face recognition systems often suffer from 
the single sample per person problem, which makes many 
supervised learning methods fail to extract the 

discriminatory information. To deal with this problem, in 
this paper, we propose to adapt the within-class and 
between-class scatter matrices computed from a generic 
training set to the persons to be identified by coupled linear 
representation method. Experimental results on the FERET 
and a passport face databases demonstrate that the 
proposed method outperforms other relevant methods.   
 Though promising results have been achieved, as a 
preliminary study, the proposed method still has large 
space to extend. For instance, when solving the 
combination coefficients, the class mean is adopted to 
represent each class. However, in most real applications, a 
class can hardly be well modeled by its mean. Thus, there 
should be better methods to model the classes and solve the 
combination coefficients. Additionally, as discussed in 
Section 5, the method can be smoothly applied to solve SSS 
problem or adapted to other non-FLD face recognition 
models. 
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