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Abstract

In this paper, we present a pose based approach for
locating and recognizing human actions in videos. In our
method, human poses are detected and represented based
on deformable part model. To our knowledge, this is the
first work on exploring the effectiveness of deformable part
models in combining human detection and pose estimation
into action recognition. Comparing with previous methods,
ours have three main advantages. First, our method does
not rely on any assumption on video preprocessing quality,
such as satisfactory foreground segmentation or reliable
tracking; Second, we propose a novel compact
representation for human pose which works together with
human detection and can well represent the spatial and
temporal structures inside an action; Third, with human
detection taken into consideration in our framework, our
method has the ability to locate and recognize multiple
actions in the same scene. Experiments on benchmark
datasets and recorded cluttered videos verified the efficacy
of our method.

1. Introduction

Human action recognition is a challenging and widely
studied problem in computer vision and pattern recognition
community. Effective solutions to this problem can serve a
lot of important application domains, such as
human-computer interaction, security surveillance, the
development of intelligent environments, etc. During the
past decades, lots of approaches have been proposed to
solve this problem. We can categorize the approaches into
three major classes. One class of methods tries to model
actions using global spatiotemporal templates, such as
Motion-Energy-Image and Motion-History-Image
templates proposed by Bobick and Davis [1] and space-time
shape models by Blank et al. [2]. In [3], Efros et al. derive a
robust motion descriptor from optical flow for identifying
the instances of different actions. More recently, Yao and
Zhu [4] present deformable action templates to detect
interesting actions in videos.
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The second class is based on space-time (S-T) interest
point detectors [5, 6]. In [5], Niebles et al. recognize actions
by applying latent topic model with a “bag of
spatial-temporal words” representation for video sequence.
Laptev et al. [6] present a new method for video
classification by incorporating space-time pyramids and
multi-channel non-linear SVMs with local S-T features.
Although the sparsity and computational efficiency are
appealing, the S-T points are hard to be reliably extracted
from raw videos.

Both classes of approaches neglect human poses which
convey the most important information of actions. Actually,
an action can be seen as a temporal sequence of poses, and
some key poses are usually fairly distinguishable from
others of different actions. A reliable representation of pose
can facilitate modeling complex and continuous actions.
Recently, some researchers study action recognition based
on informative pose descriptors. We refer to this class as
pose based approaches. Examples to this class include [7, 8,
9]. In [7], Ikizler and Duygulu represent each human pose
by spatial histogram of oriented rectangular patches
extracted over the human silhouettes. Wang et al. [8] apply
R transform to silhouettes to form a geometric invariant
representation. Thurau and Hlavac [9] propose a
HOG-based pose descriptor by exploiting a non-negative
matrix factorization (NMF) basis representation. Our
method also falls into this category.

Despite the promising performance of recent action
recognition methods, some limitations of these solutions
still exist. Firstly, many approaches assume that humans can
be reliably tracked by some bounding boxes [10, 11].
Besides, approaches based on silhouette extraction assume
that foreground can be nicely segmented from background.
Both assumptions on the preprocessing step are critical for
the following action recognition task. However, they are
unrealistic and too hard, especially in some uncontrolled
environment. Secondly, most approaches cannot be
generalized to recognize multiple actions by different
humans in the same scene.
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Figure 1: Framework of our action recognition algorithm. (a) input videos; (b) a set of learned deformable part templates; (c)
visualization of pose sequence representations, where the horizontal axis corresponds to time step and the vertical axis corresponds
to mixture components; (d) action classification by SVMs and majority voting.

In this paper, we try to make up the above limitations and
propose a novel pose based approach to recognize actions
by jointly considering three natural issues: human detection,
pose estimation and action recognition. It is worth noting
that there are only a few methods jointly considering the
problems like this in the literature. In this way, not only can
we weaken the assumptions like uncluttered background or
reliable tracking in preprocessing, but also we can locate
human actions in videos in both space and time dimensions.
Meanwhile, it is straightforward for our method to
simultaneously recognize multiple actions performed by
different humans in the same scene. To illustrate the
efficacy of our method, we conduct a series of experiments
on both benchmark databases and recorded videos with
multiple actions in cluttered conditions.

1.1. Overall Proposals

The overall framework of our pose based action
recognition method is illustrated in Figure 1. Given some
input videos (a), our method recognizes the actions inside
each video according to two main steps. First, a set of
deformable part templates (b) are applied to detect humans
in the video frames following [12]. Instead of estimating the
accurate pose configuration of body parts as in [14, 15], we
just compute the matching scores of each detected human
with respect to all templates. The scores are then
concatenated to form our compact representation for a
human pose. Thus, each action in the input videos is
described using a sequence of pose representations (c),
which reflects the spatial and temporal structures of
different actions. Second, we classify the sub-sequences of
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these pose sequences by standard SVM, and assign an
action class label to each whole sequence by majority voting,
as shown in (d).
The main contributions of this work are three-fold:
1)We weaken the assumptions on the
preprocessing quality for action recognition
2) We propose a unified framework which combines
human detection and pose estimation to solve the
problem of action recognition. Particularly, the
compact representation of human poses is proved
effective and discriminating.
3) Our method has the ability to locate and recognize
multiple human actions in the same scene.

video

The paper is organized as follows. Next section discusses
the most related work to this paper. In Section 3, we
describe the method for human detection and compact pose
representation. Section 4 presents the action recognition
algorithm. Experimental results are shown in Section 5.
Section 6 concludes this paper.

2. Related Work

The pose based action recognition method proposed in
this paper is inspired by related previous work in a few lines
of research, although they are somewhat different from our
method.

There has been only a few works in the literature that
consider the problem of action recognition together with
human detection and pose estimation. Examples include [16,
17, 18]. In [16], Yang et al. estimate body part locations
using different standard linear SVM classifiers and classify



human action in an integrated way. Different from what we
intend to solve here, their method focuses on action
recognition from still images, under the assumption that
there is only one person centered in the middle of every
image. In [17], Ning et al. try to bridge the gap between high
dimensional observations and random fields, by jointly
optimizing the parameters of a latent pose estimator and
random fields; however they assume that human has been
detected while we try to integrate this step into action
recognition. Our method is more similar in spirit with [18],
where Ramanan and Forsyth annotate actions in videos by
first tracking human then estimating 3D pose configuration
and matching the pose to an annotated motion capture
dataset. Different from their method, our method does not
need to restore the accurate 2D configuration of body parts,
thus, we can save computational complexity and avoid large
amounts of manually labeling work.

Our method for action recognition is largely inspired by
the success of deformation part model (DPM) in both
human detection and pose estimation [12, 13, 14, 15]. The
effectiveness of DPM implies great potentials to integrate
the two problems into action recognition, which is also our
ultimate goal. In [12, 13], Felzenszwalb et al. achieve
state-of-the-art performance in object detection based on
mixtures of deformable part models and histograms of
oriented gradients (HOG) feature pyramid [19]. Ramanan et
al. [14, 15] train deformable part models with pre-labeled
images to restore accurate configuration of body parts. To
our knowledge, our work is the first exploration on the
effectiveness of DPM in combining human detection and
pose estimation into action recognition.

As a feature representation method, HOG has shown its
success in both human detection [19] and pose
representation [9]. It also has the advantages of avoiding
background subtraction in silhouettes based methods and
distracting motion in dynamic feature based methods. In this
paper, we adopt HOG pyramid to represent features.

3. Pose Representation

For pose based action recognition, it is crucial to derive a
proper representation of human pose. It is straightforward to
represent poses as in pose estimation literature [14, 15], but
it usually requires large amounts of tedious manual work to
label body parts in training images. In this paper, instead of
restoring parts configuration, we match each human to a
mixture of deformable part models and collect the matching
scores for representing body pose.

Deformation part model, built upon pictorial structure
[20], represents object by a collection of parts connected in
a deformation manner. It explicitly encodes both
appearance and spatial arrangements of different parts.
DPM has been formulated as latent SVM and conditional
random fields in human detection [12] and pose estimation
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[14] respectively. Based on [12], we integrate human
detection and pose estimation into action recognition and
avoid the large amounts of labeling work in pose estimation.
In this section, we first briefly review the deformable part
models proposed in [12], and then we extend their models to
represent human poses.

3.1. Deformable Part Models

A deformable part model with n parts is defined as M =
(Fo,Py,...,Pnb), where Fy is a root filter, P; is the model for
the i-th part, and b is a real-valued bias term. Each part
model P; is defined as (F;, d;, v;) where F; is a filter for the
i-th part, v; is a two dimensional vector specifying a
reference position for part i relative to the root position, and
di is a two dimensional vector to penalize spatial
displacement of part i with respect to its reference position.
Let H denote the HOG feature pyramid of an image, and p; =
(%, Vi, I;) specify a position (x;, ;) in the I;-th level of H for
filter i. A configuration of filters can be denoted by z = (po,
P1,...,.pn). The matching score of configuration z to a
deformable part model M depends on the responses of the
filters at their respective locations, the deformation cost of
each part with respect to the root, and the bias, i.e.,

score(z;M) =

SFp(H,p)->d,-(dx? dy)+b
i=0 i=1

where ¢(H, p;) is the sub-window of H covered by filter
F; with top-left corner at p;, and (dx;, dy;?) denotes a two
dimensional vector containing the squared distances in x
and y directions between the actual position of i-th part and
its relative reference position to the root. As the level of
each part is restricted to be twice the level of root in order to
obtain high performance, the displacement is,

(dx;, dy,) = (X, ¥) — (X% Yo) +Vv) ()

At each root position in an image, a matching score is
computed by maximizing over all possible placements of
parts,

score(p,; M) = max score(p,,..., p,;M) (3)
Pises Pn

which can be obtained efficiently by generalized distance
transforms [21]. High-scoring root locations indicate
detected humans.



Figure 2: The 4-component mixture model used for detecting
and scoring human poses. Each component contains a root
filter, a set of part filters and deformable cost of each part,
from left to right in a rectangle.

3.2. Training Deformable Part Models

The parameters of deformable part model can be trained
in latent SVM framework where locations of part filter are
treated as latent variables. Model parameters are trained by
optimizing a discriminative function using stochastic
gradient descent. It’s recommended for interesting readers
to refer to original work [12]. Here, due to space limitations
we only focus on critical issues for representing body pose.

The first important issue is the initialization of part
models. Unlike [15, 16], we only require human is labeled
with a bounding box in training image, which helps save
large amounts of labeling work. To initialize part models, an
initial root filter is first trained using a standard SVM as in
[19], then interpolated to twice the spatial resolution and a
number of rectangles are greedily placed on the interpolated
root filter to cover as much energy as possible. Part models
are initialized by the sub-windows of the interpolated root
filter covered by these rectangles. Intuitively, parts defined
here do not explicitly correspond to physical parts of human
body, like arms, legs, etc. but this method can help capture
the most respective local appearance of human body.

Using only one deformable part model is not enough to
capture significant variations in human appearance and pose
articulation. As in [12] a mixture model is introduced to
deal with this problem. Let M = (M, M,,..,M,) be a mixture
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model of m components. During detection, each root
location in image is scored by each component in both left
and right orientations, and the maximum score is used to
define detections.

Mixture of deformable models can also be trained in the
framework of latent SVM where the index of component
giving the highest score is also treated as latent variable. In
practice, we collected a set of 1841 images of different
human poses as positive samples, some of the images are
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from Weizmann and KTH and some are from our daily life.
We manually labeled humans in images with bounding
boxes. Another set of background images is collected as
negative samples. We train a 4-components mixture model
on these images, which is shown in Figure 2.

3.3. Pose Representation Based on Multiple DPMs

Note that, once a human is detected, we have computed
the matching scores of the detection with respect to all
components. These scores can be interpreted as similarities
between the body pose and different components. We
propose to constitute a vector of the matching scores for
pose representation. Suppose a person has been detected at
position p, we concatenate the matching scores of all model
components at p to form our representation. Let score(p; M)
denote the matching result of component M, at p. As for
mixture model, score(p; M) is a vector (scoreg, score;) with
its elements corresponding to matching scores in left and
right orientations respectively. Thus, our pose
representation for a detection at position p can be expressed
as,

pose(p) = (score(p; M,),...,score(p; M) (4

Note that once a human is detected, the scores of different
model components have been computed, and we
immediately get the representation of human pose. Thus,
different from previous methods, we derive the
representation of human pose together with human
detection.

4. Action Recognition

Representing actions: After we get the pose
representations for a human at all time steps, an action can
then be described by sequencing these pose representations
in time order. Figure 3 shows example actions represented
by our method with each corresponding to one action in
Weizmann dataset. Columns in each pose sequence
correspond to time steps, and rows correspond to
components of mixture model. From these pose sequences,
it’s easy to observe clear temporal patterns which implies
great potentials of our method for action recognition. In
practice, in order to reduce the impact of imperfect
detections, the pose sequence for an action is smoothed by
averaging over a local window. A window of length 3 is
chosen in our case.

SVM classification: As in [7, 9], the action recognition is
performed by a windowing approach. The pose sequence is
first segmented into fixed length sub-sequences, with
neighboring sub-sequences overlapped by some ratio. We
trained SVM classifiers with RBF kernel for each action
respectively. The parameters of SVM classifier were
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Figure 3: Examples of human actions represented by our
pose representation method.

Figure 4: Detections corresponding to the same
actor are grouped together.

selected by grid search and 10-fold cross-validation. These
SVM classifiers are used to classify each sub-sequence, and
the whole sequence is classified by a majority voting
manner based on the predicted class labels of its
sub-sequences.

Recognizing multiple actions: In practice, in order to
recognize multiple actions in the same scene, we need to
group these detections according to which person a
detection corresponds to. The poses belonging to the same
group are arranged in time order, forming the pose
sequences of one person. In this paper, we use an online
approach to group detections based on color histogram. A
color histogram descriptor is maintained for each group and
updated over time. A detection is grouped according to the
smallest L1 distance between color histograms of the
detection and any group. Let I; (i=0,1,2,...) be the i-th frame
in a video and DetectHuman(l;) the procedure which returns
the detected humans’ bounding boxes and pose
representations. Let GL denote the group list and g be an
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element in GL, the latest detection in g is denoted as head(g).
And the color histogram for a group g and a detection d are
denoted as chist(g) and chist(d) respectively. Then our
online grouping procedure works as follows:

1 Initialize GL with frame I
2 foreachframel; i=1,23,...
3 Det = DetectHuman(li)
4 for each detection d in Det
5 Selecte the group g from GL that has the most
similar color histogram with d:
mindist = L1Dist( chist(g), chist(d) )

6 if mindist > threshold

7 add a new group g’ initialized with d to GL
8 set head(g’) =d

9 else if head(g) is from Det

10 if mindist < L1Dist (chist(head(g)), chist(g))
11 set head(g) = d

12 else

13 set head(g) =d

14 for each group g in GL

15 if new detection was added to g

16 chist(g) = 0.90 * chist(head(g)) + 0.10 * chist(g)

17 Return groups in GL that is longer than L

Where step 5 is for the situation when a new person is
detected and step 9 is for when multiple detections for a
same person are detected. The color histogram is updated
by a weighting manner to account for all past detections in a
group as in step 16. And in step 17 only groups that are
longer than L are returned, this is because false detection
could happen, and they usually form a shorter group due to
step 6. L is set to be 25 in our experiment. Figure 4 shows an
example of grouping detections for multiple actors in the
same scene.

5. Experiments

We conduct three experiments to verify the efficacy of
our approach. Two are carried out on the benchmark
databases Weizmann [2] and KTH [23], and the other is on
the database we recorded to validate the ability to recognize
multiple actions.

Experiment 1: This experiment is evaluated on the
Weizmann dataset which was originally recorded by Blank
et al. [2]; it consists of 9 subjects with each performing a set
of 10 different actions: bending down, jumping jack,
jumping, jumping in place, skipping on one leg, galloping
sideways, running, walking, waving one hand, and waving
both hands. As most methods do with the dataset, we adopt
a leave-one-out cross-validation scheme for testing: videos
of 8 subjects are used for training, and the remaining one for
testing, which is repeated for all 9 subjects and the results
are averaged. In our windowing approach, each video is



segmented into sub-sequences of length 25 and neighboring

5 parts 6 parts 7 parts 8 parts
3 components| 78.89%  83.33% 85.56%  87.78%
4 components] 84.44% 89.31%  93.33% 95.56%

Table 1: Precision of classifying action sequences under
different numbers of parts and components.

sub-sequences have an overlapping of 3 frames. All training
sequences are also flipped a same direction to make our
method can classify the same actions with different facing
orientations to the same class.

We first conduct a series of experiments on this dataset to
explore the impact of the number of components in mixture
model and the number of parts in each component on the
overall performance. The results on classifying action
sequences are summarized in Table 1. As we can see, the
performance is increased with the number of components
and parts, which is mainly because increasing the number of
components and parts will improve the mixture model’s
ability to capture more local details. However, the more
complex the model, the more computational time and
danger of over fitting. For our task, it’s reasonable and
enough to use 4 components and 8 parts in the model, which
gives the best result here.

The resulting confusion matrices are shown in Figure 5
and Figure 6. It can be seen that the “waving one hand”
action is the most difficult one to be recognized and rather
easy to be confused with the “waving two hands” action.
This may be because instead of restoring body parts
configuration, we derived our pose representation only
based on the matching scores of each component and the
contribution of part filters anchored at arm positions is
relative small.

Table 2 shows the comparison results of different
approaches evaluated on the Weizmann dataset. Note that
most methods are performed in a “leave-one-actor-out”
scheme with slight differences. As we can see, our method is
comparable to state-of-the-art methods. However, our
method do not need foreground segmentation as those based
on silhouettes [2, 7] and we do not assume clean
background in either training or testing phases as in [9].
What’s more, we should emphasize that our methods
integrate human detection and pose estimation into action
recognition, which makes it possible to simultaneously
recognize multiple actions in the same scene.

Experiment 2: The second experiment is performed on
more challenging KTH dataset [23]. There are six actions in
this dataset: boxing, handclapping, handwaving, jogging,
running and walking. The actions are performed by 25

bend 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01
jack . 00
jump 0. 00
pjump 0. 00
run 0. 00
side 0. 00
skip 0.00
wave2 0. 00
wavel 0. 00
walk 0. 00
w?b .@y '$§ §§§ & €§~ §& $§& gsﬁ éék
Figure 5: Confusion matrix for classifying subsequences
on Weizmann dataset.
bend 00 0.00 0.00
jack 0.00 00 0.00 0.00
Jjump 0.00 0.00
pjump 0.00 0.00
run 0.00 0.00
side 0.00 0.00
skip 0.00 0.00
wave2 0.00 0.00
wavel 0.00 0.00
walk 0.00 0.00
Q@‘b »ﬁ@& »ﬁo& «;'5&@ & %'NBQ %\?Q @@ @Q\ \@\\b

Figure 6: Confusion matrix for classifying action videos on
Weizmann dataset.

Methods Accuracy

Our Method 95. 60%
Thurau [9] 94. 40%
Tkizler [7] 100. 00%
Blank [2] 99. 60%
Niebles [5] 90. 00%
Ali [10] 95. 75%

Table 2: Comparison of Different approaches
evaluated on Weizmann dataset
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boxing
Jogging
running
handwaving
handclapping

walking

Figure 7: Confusion matrix for classifying
actions on KTH dataset.

all dl d2 d3 d4
Our method 87. 3% 90. 5% 75. 4% 84. 8% 93. 7%
Yao [4] 87. 8% 90. 1% 84. 5% 86. 1% 91. 3%
Tkizler [7] 89. 4%
Neibles [5] 81. 5%
Ali [10] 87. 7%

Table 3: Comparison of different approaches evaluated on
KTH dataset

subjects under four different conditions (d1-d4) (see [23]
for details). We use a similar experiment setting as in [4].
All the sequences are trimmed to 20 frames and flipped a
same direction. The evaluation is performed with 5-fold
cross-validations: the dataset is split into 5 folds with 5
subjects in each, 4 folds for training and one for testing. The
results are averaged over 5 permutations.

Figure 7 shows the results of our method on KTH dataset.
Although jogging and running are the hardest actions to be
distinguished in the dataset, our method distinguishes the
two actions very well. Actually, the poses involved in
jogging and running are very similar, while the speeds of the
pose evolutions in the two actions are somewhat different
from each other, which can be used as the critical
information to distinguish actions. Since we represent a
human action by a sequence of poses, the speed information
has been implicitly encoded in our representation. Thus our
method can successfully recognize the two actions. This is
also one advantage of our pose based approach. Moreover,
we test our methods under four different conditions
respectively. Table 3 summarizes the comparison results,
where our method achieves comparable performance to
state-of-the-art methods.

Experiment 3: In this experiment, we validate our method
in recognizing multiple actions in the same cluttered scene.
The experiment is conducted on a collection of videos
recorded by us. Each video contains more than one actors
who are performing different actions in a relative complex
setting. The videos involve five action classes selected from
Weizmann dataset: bending down, jumping jack, jumping
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bend 0.00 0.00 0.14 0.00 0.00 0.00 0.00 0.00
jack 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
pjump 0.00 0.00 0.20 0.00 0.00 0.00 0.00 0.00
wave2 0. 00 0.00 0.00 0.00 0.00 0.00 NOEEM 0.00 0.00
walk 0.00 0.00 0.00 0.00 0.20 0.00 0.00 0.00 0.00

R R I

Figure 9: Results for classifying recorded action
videos against models trained on the Weizmann
dataset. We achieved the averaged precision 47.3%.

in place, walking, and waving both hands. Some example
frames in the recorded video are shown in Figure 8. To
recognize the actions inside the video, we first detect
humans in videos frames, extract pose representation for
each detection, and then these detections are grouped to
form pose sequences for each person’s action using the
method described in section 4. The ground truth action class
for pose sequence is labeled manually. We predict the
action class of pose sequences against SVM classifier
trained on Weizmann dataset and the result is averaged.
Figure 9 shows the confusion matrix for classifying pose
sequences and some detection results are shown in Figure
10.

There are mainly two reasons that we did not achieve
perfect results as in previous two experiments. First, models
trained on Weizmann dataset are not robust enough to
cluttered background. Second, for multiple actions
recognition, it could happen at some time steps two actions
are overlapped with each other. More reliable methods for
handling these two problems will be our future work.

6. Conclusion

In this paper, we proposed a method for compactly
representing human pose to recognize human actions in
videos, which is based on deformable part models and
works together with human detection. An action is
represented by a sequence of pose representations on which
action classification is performed. Comparing with previous
methods, ours have three main advantages: a) we do not rely
on foreground segmentation as those based on silhouettes; b)
instead of representing body poses by body parts
configuration as in traditional methods of pose estimation,
we derive a more compact representation for body pose, in
addition, only bounding boxes of the persons in training
images are needed, while in traditional pose estimation one
has to label the accurate configuration of body parts; c) As
we take human detection into consideration, our methods
have the ability to locate and recognize multiple actions in
the same scene. However, there still exist limitations in our
current work. One is that we need two training procedures,
one for mixture model and the other for SVM classifier. The



Figure 8: Example frames of our recorded videos

other is that temporal action segmentation is assumed as the
datasets we evaluated on, actually the voting scheme we
adopt here can also do temporal segmentation, however
more robust scheme based on our pose descriptor will be
one of our main future topics.
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