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Abstract. It is well known that visual attention and saliency mechanisms play 
an important role in human visual perception. This paper proposes a novel 
bottom-up saliency mechanism through scale space analysis. The research on 
human perception had shown that our ability to perceive a visual scene with 
different scales is described with the Contrast-Sensitivity Function (CSF). 
Motivated by this observation, we model the saliency as weighted average of 
the multi-scale analysis of the visual scene, where the weights of the middle 
spatial frequency bands are larger than others, following the CSF. This method 
is tested on natural images. The experimental results show that this approach is 
able to quickly extract salient regions which are consistent with human visual 
perception, both qualitatively and quantitatively. 
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1   Introduction 

It is well known that the visual attention and saliency mechanism play an important 
role in human visual perception. In recent years, there have been increasing efforts to 
introduce computational models to explain the fundamental properties of biological 
visual saliency. It is generally agreed that visual attention of Human Vision System 
(HVS) is an interaction between bottom-up and top-down mechanisms. In this paper, 
we will focus on the bottom-up saliency detection.  

Bottom-up saliency drives attention only by the properties of the stimuli in a visual 
scene and is independent of any high level visual tasks. Inspired by the early visual 
pathway in biological vision, the features used in saliency models include low-level 
simple visual attributes, such as intensity�color, orientation and motion. In one of the 
most popular models for bottom-up saliency [1], saliency is measured as the absolute 
difference between feature responses at a location and those in its neighborhood, in a 
center-surround fashion. This model has been shown to successfully replicate many 
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observations from psychophysics [2]. Gao and Mahadevan [3] implemented the center-
surround mechanisms as a discriminate process based on the distributions of local 
features centering and surrounding at a given point. In a recent proposal, Kienzle et al. [4] 
employed machine learning techniques to build a saliency model from human eye 
fixations on natural images, and showed that a center-surround receptive field emerged 
from the learned classifier. Some other recent works model the saliency in information 
theory and deriving saliency mechanisms as optimal implementations of generic 
computational principles, such as the maximization of self-information [5], local entropy 
[6] or ‘surprise’ [7]. Other methods are purely computational and are not based on 
biological vision principles [8, 9]. 

This paper proposes a saliency detection method based on the scale selectivity of 
HVS. In natural scenes, objects and patterns can appear at a wide variety of scales. In 
other words, a natural image includes signals of multiple scales or frequencies. 
However, the HVS is able to quickly select the frequency band that conveyed the 
most information to solve a given task and interpret the image, not conscious of the 
information in the other scales [10]. Researches on human perception had suggested 
that image understanding is based on a multi-scale, global to local analysis of the 
visual input [11, 12]. The global precedence hypothesis of image analysis implies that 
the low spatial frequency components dominate early visual processing. Physiological 
research has also shown that our ability to perceive the details of a visual scene is 
determined by the relative size and contrast of the detail present. The threshold 
contrast necessary for perception of the signal is found to be a function of its spatial 
frequency, described by the CSF [13, 14], in which contrast sensitivities are higher in 
the middle frequency bands than the other bands. These inspire us to detect saliency 
in the visual by using the low-middle frequency components and ignoring the other 
ones.  

The rest of the paper is organized as follows. Some related works on scale 
selectivity of human vision system will be given in Section 2. The analysis of the eye 
tracking data and the details of the proposed saliency detection methods are described 
in Section 3. Experimental results are shown in Section 4. Finally the conclusions are 
given in Sections 5. 

2   Scale Selectivity of Human Vision System 

Scale selectivity is a visual processing property which passes different spatial 
frequencies. This behavior is characterized by a modulation-transfer function (MTF) 
which assigns an amplitude scale factor to different spatial frequency [15]. The 
amplitude scale factor ranges from 1.0 for spatial frequencies that are completely 
passed by the filter to 0.0 for spatial frequencies that are completely blocked. In 
certain situations, the MTF can be described by the CSF [13] which is the reciprocal 
of contrast sensitivity as a function of spatial frequency. This function describes the 
sensitivity of the human eye to sine-wave gratings at various frequencies. 
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The CSF tells us how sensitive we perceive different frequencies of visual stimuli. 
As illustrated in Fig.1 [15], the CSF curve is band pass in which spatial frequencies 
around 3-6 cycles/degree are best represented, while both lower and higher are poorly, 
and it is meaningless for that above 60 cycles/degree. That is to say, if the frequency 
of visual stimuli is too high, we will not be able to recognize the stimuli pattern any 
more. For example, the stripes in an image consisting of vertical black and white 
stripes are thin enough (i.e. a few thousand per millimeter), then we will not be able to 
see the individual stripes. 

 

Fig. 1. Contrast-Sensitivity Function [15] 

3   Saliency Detection Based on Scale Selectivity 

Motivated by the observation in scale selectivity of human vision system, we propose 
a novel algorithm in this section. Although the form of CSF is known, the 
measurements of CSF only utilize sine-wave gratings, which is a simple stimulus 
[13]. Nevertheless, its application on complex stimuli, such as nature images, is 
dubious. Therefore we firstly analyze the sensitivity of the human eye at each spatial 
frequency according to eye tracking data over images. 

3.1   Analysis of Eye Tracking Data 

It is well known that any image can be represented equivalently in image space and 
frequency space. One can move back and forth between image space and frequency 
space via Fourier transformation and inverse Fourier transformation [17]. Fig.2 shows 
some natural images, their corresponding pictures in different frequency band and 
human saliency map, respectively. It is obvious that low-middle frequency 
components of image are closest to the human’s perception when compare with the 
saliency map from the eye tracking data, which is consistent with previously 
described CSF. 
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 (a)                   (b)                (c)                  (d) 

Fig. 2. Analysis of spatial frequencies. In each group, we present (a) original image, (b) 
decomposition of image into low-middle frequency components, (c) decomposition of image 
into high frequency bands, (d) saliency map from the eye tracking data. 

As stated before, different frequencies which human perceive are quite distinct, 
namely, human have intense perception in some frequency but in others have a little 
or scarcely sensitive. We analyze the sensitivity of the human eye at each spatial 
frequency on two pubic datasets proposed by Bruce et al. [5] and Judd et al. [16]. The 
dataset of Bruce et al. [5] contains eye fixation records from 20 subjects on 120 
images of size 511×681. The dataset of Judd et al. [16] contains 1003 natural images 
covering a wide range of situations, and the eye fixation data is collected from 15 
subjects. All of images are down-sampled to the size of 64× 86. 

We use the ROC metric for quantitative analysis human sensitive on each 
frequency. Under the criterion, we make comparisons between every frequency map 
from an image and eye fixation records from humans [5, 16]. By varying the 
threshold, we draw the ROC curve, and the area under the curve indicates how well 
the frequency map of any frequency can predict the ground truth fixations. More 
specifically, the larger area, the more sensitive human perceive, and vice versa. 
According to the value of the area, we obtain a set of coefficients about human 
sensitivity in every frequency. Fig.3(a)(b) and Fig.4(a)(b) are the sensitivity curves 
showing the changes in scales which are obtained from both the whole and part of the 
dataset, respectively. The red curves in these figures represent the sensitivity statistic 
of human fixation in different scales, while the blue ones are the 5-order polynomial 
fitting with respect to the red. As shown in these figures, we find that the sensitivity 
curve of different scenarios share similar trends. 
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(a)                                    (b) 

Fig. 3. Sensitivity curves on different frequency (a) over 60 images and (b) the whole images in 
Bruce et al. [5], where red curves represent the sensitivity statistic of human fixation in 
different scales, and the blue ones are the polynomial fitting with respect to the red ones 
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(a)                                    (b) 

Fig. 4. Sensitivity curves on different frequency (a) over 300 images in Judd et al. and (b) the whole 
images in Judd et al. [16], where red curves represent the sensitivity statistic of human fixation in 
different scales, and the blue ones are the polynomial fitting with respect to the red ones 

Table 1. Test results of frequency sensitivity by cross-validation 

 Bruce dataset [5] Judd dataset [16] 
Bruce dataset [5] 0.71259 0.68612 
Judd dataset [16] 0.71590 0.69438 
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According to the sensitivity coefficients from Fig.3 and Fig.4, we conduct four 
tests. In the first two tests, we utilize the sensitivity coefficients from part of the 
images as the weighted value of amplitude, and test on the other part of same dataset. 
In the later two, we carry out in a cross-dataset validation way, where training and 
testing are on different datasets. More specifically, we use each sensitivity coefficient 
from the whole dataset of Judd as the weighted value of amplitude, and test on Bruce 
dataset. Similarly, we conducted on the whole datasets of Bruce and test on Judd. 
Table 1 lists the four test results of cross-validation. For example, the value 0.71259 
indicates the result training and testing both on Bruce dataset. As shown in Table 1, 
the best test result comes from training on Judd and testing on Bruce; while the worst 
result from training on Bruce and testing on Judd. This may due to the fact that the 
images in Judd dataset include more semantic objects which attract human eyes such 
as faces, cars, which can not explain by low level signal features only. However, 
difference between training results are little, which indicate that we can mimic the 
scale selectivity of HVS by designing a band-pass filter which passes the low-middle 
frequency components while suppresses the others.  

3.2   Saliency Based on Scale Selection 

Based on the scale selection properties of human vision system, we decompose the 
input image into the multi-scale bands and detect the saliency of the input scene by 
designing a band-pass filter which mimic the scale selectivity of human vision 
system.  

We use Fourier transform to get a multi-scale representation of the input. The 2D 
formulation of Fourier function is: 

2 ( )

( , )

( , ) ( , ) j ux vy

x y

F u v I x y e π += �
, 

(1)

where (x, y) is the coordinate of the current pixel and I(x,y) is the intensity function of 
input image. The variable u and v represent spatial frequency coordinate of natural 
image in horizontal and vertical directivity, respectively. The amplitude in each 
frequency band is represented as: 

( , ) ( , )A u v F u v= . (2)

Weighted value of each scale in image is equal to the corresponding coefficients. As a 
result, the amplitude B(�) in each scale after weighting can be represented as: 

( ) ( ) ( )B A Hω ω ω= ⋅ . (3)

The weighted amplitude map in different frequencies bands is shown in Fig.5(c). It 
can be seen that the center of the amplitude map is lighter, which further demonstrate 
the amplitude is more intense at low-middle frequency. 

Then we can acquire saliency image in each spatial frequency by Inverse Fourier 
Transform. The value of the saliency map is obtained by Eq.4: 

[ ]21( , ) ( , )* ( ) exp( ( ))S x y g x y F B i P wω−= ⋅ ⋅ , (4)
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whereF-1 denotes Inverse Fourier Transform, ( )P w  is the phase spectrum of the image, 

which is preserved during the process, and ( , )g x y  indicates a 2D Gaussian filter to 

smooth the saliency map. An example of the saliency image is shown in Fig.5(d). 
As stated before, human vision system are more sensitive to the low-middle 

frequency components. Based on the observation, we find that simply using the low-
middle frequency components of image as the saliency map produces excellent result.  

The low-middle frequency component is extracted using the following band-pass 
filter: 

2 2 2 2
1 2( ) exp( / 2 ) exp( / 2 )H ω ω σ ω σ= − − − , (5)

where w is the frequency, it is represented as: 2 2w u v= + , σ1, σ2  are the variances 
of the Gaussian function. The relationship between σ and cut-off frequency �0 is 
described as: 

0

1

2 ln 2
σ ω= . (6)

According to perception ability that HVS on different spatial frequency visual signal, 
we indicate that the variances of σ are 15.2 and 90.5, respectively. The band-pass 
filter that we defined is shown in Fig.5(b). It preserves the low-middle frequency of 
the image for the detection of saliency.  

         
(a)                       (b)                  (c)                   (d) 

Fig. 5. (a) is the original image. The corresponding weighted amplitude map (c) is computed 
using the band-pass filter (b). And the saliency map is shown in (d). 

4   Experimental Results 

In this section, we evaluate the proposed method on natural images to demonstrate its 
effectiveness. In the experiments, we use the image dataset and its corresponding eye 
fixations collected by Bruce et al. [5] as the benchmark for comparison. We down-
sample the images to the size of 64× 86 pixels. The results of our model are compared 
with two state-of-the-art methods: information maximization approach [5] and 
spectral residual approach [9], as shown in Fig.6 and Fig.7.  

For qualitative analysis, we show two challenging saliency detection cases. The 
first case (Fig.6) includes images with a large amount of textured regions in the 
background. These textured regions are usually neglected by the human beings, 
whose saliency will be obviously inhibited. For such images, we expect that only the 
object’s pixels will be identified as salient. In Bruce et al.’s method [5], the pixels on 
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the objects are salient, but other pixels which are on the background are partially 
salient as well. As a consequence, Bruce et al.’s method is quite sensitive to textured 
regions. In Hou et al.’s method [9], which is somewhat better in this respect, however, 
many pixels on the salient objects are not detected as salient, e.g., the clock. Our 
method detects the pixels on the salient objects and is much less sensitive to 
background texture. 

  
 
 
 
 
 
 
 
 
 
 
       (a)               (b)              (c)             (d)               (e)    
 

Fig. 6. Comparative saliency results on images with a large amount of textured regions in the 
background. The first image in each row is the original image (a), the rest saliency maps from 
left to right are produced by Bruce et al.[5] (b), Hou et al.[9] (c), our method (d) and human 
fixations (e), respectively. 

 

 
 
 
 
 
 
 
 
 
 

        
     

(a)             (b)              (c)              (d)              (e) 

Fig. 7. Comparative saliency results on images of complex scenes. The first image in each line 
is the original image (a), the rest saliency maps from left to right are produced by Bruce et 
al.[5] (b), Hou et al.[9] (c), our method (d) and human fixations and (e), respectively. 

The second case includes images of complex scenes. Fig.7 shows images of messy 
scene indoor. In this situation, the core objects in cluttered scene are expected as 
salient. It can be observed that our approach capture salient parts. For example both 
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the globe and the table are detected in the first scene, and the hydrant is detected in 
the second scene. Taking the advantage of the property of middle spatial frequency, 
the proposed method achieves the best visual-evaluated performances among all 
comparative studies. 

For quantitative evaluation, we exploit Receiver Operating Characteristic (ROC) 
curve. The fixation data collected by Bruce et al. [5] is compared as the benchmark. 
From Fig.8, we could see that our algorithm outperforms other methods. In addition, 
we computed the Area Under ROC Curve (AUC). The average values of ROC areas 
are calculated over all 120 test images. And the results are reported in Table 2, which 
further demonstrates the superiority of the proposed method. 

Table 2. Performances on static image saliency 

Method Bruce et al.[5] Hou et al.[9] Our method 

AUC 0.6919 0.7217 0.7265 
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Fig. 8. ROC curves for different methods 

5   Conclusion 

In this paper, we propose a novel saliency detection method through scale space 
analysis. The saliency is based on the principle which is observed in the psychological 
literature: our ability to perceive a visual scene on different scales. This inspires us to 
detect saliency by using the low-middle frequency components and ignoring the 
others. Experiments on real world datasets demonstrated that our method achieves a 
high degree of accuracy and the computing cost is less. We would like to learn the 
benefits of our method in applications, such as image classification and image quality 
assessment in the future. 
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