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ABSTRACT 
 
Linear Discriminant Analysis (LDA) is an efficient image 
feature extraction technique by supervised dimensionality 
reduction. In this paper, we extend LDA to Structured 
Sparse LDA (SSLDA), where the projecting vectors are not 
only constrained to sparsity but also structured with a pre-
specified set of shapes. While the sparse priors deal with 
small sample size problem, the proposed structure 
regularization can also encode higher-order information with 
better interpretability. We also propose a simple and 
efficient optimization algorithm to solve the proposed 
optimization problem. Experiments on face images show the 
benefits of the proposed structured sparse LDA on both 
classification accuracy and interpretability. 
 
Index Terms— Linear discriminant analysis, Sparse coding, 
Face recognition, Least squares, Interpretability 
 

1. INTRODUCTION 
 
Linear Discriminant Analysis (LDA) is an efficient method 
for image feature extraction and dimensionality reduction. 
Its goal is to separate the class means well and 
simultaneously achieve small within-class variance via 
projecting high-dimensional data into a low-dimensional 
space.  

One of LDA’s shortcomings is that, even though it can 
find a small number of important projections, the mappings 
typically involve all original variables. Therefore, when the 
number of variables is large, the within-class covariance 
matrix is hard to be reliably estimated, and thus overfitting 
often occurs.  To avoid the overfitting on high dimension 
data and small sample size, in recent years, some variations 
of LDA which find sparse factors have been developed.  For 
example, Moghaddam et al. [1] proposed an exact and 
optimal sparse LDA (SLDA) using spectral branch-and-
bound search with high complexity. Qiao et al. [2] also 
proposed an efficient algorithm to deal with the overfitting 
phenomenon by resorting to the connection of Fisher’s LDA 
[3] and generalized eigenvalue problem. In fact, the sparse 

LDA essentially implies variable selection. For face images, 
the sparsity can capture some features or parts of face which 
might be intuitively meaningful from our prior. More 
generally, it is desirable to learn higher-order information 
which reflects the structure of the face so that we may 
enforce certain constraints on face components to promote 
recognition performance.  

In recent years, some researches [4,5,6,7] on structured 
sparsity have demonstrated the benefit from such structured 
prior in the context of compressed sensing, regression, 
classification, and so on. In particular, Jenatton et.al [7] 
proposed the structured sparse principal component analysis 
(SSPCA), where the sparse patterns of all dictionary atoms 
are structured and constrained to be a pre-specified groups 
by exploiting l2,1 mixed norm. SSPCA gives a good 
explanation on which area is more important and meaningful 
for face recognition. 

Motivated by the above analysis, in this paper, we aim to 
go beyond sparse LDA and propose structured sparse LDA 
(SSLDA). Different from previous LDA and its variations, 
SSLDA not only models the data with well separability, but 
also mines some priori structure information to explain the 
variance implied in the data. We demonstrate that Least 
Squares LDA (LSLDA) [8] can be used successfully to 
establish the model with structured sparsity-inducing norms. 
We also propose a simple and efficient optimization 
algorithm to solve this model. Experimental results on face 
images show the benefits of SSLDA on recognition 
performance and interpretability. 
 

2. LINEAR DISTCRIMINANT ANALYSIS 
 

Consider the input data vectors np
n RX ×∈= ),,( 21 xxx   in 

high dimensional space, where p is the original feature 
dimension and n is the sample number. For simplicity, the 
data is centered so that ∑ == i i n 0/xx . In LDA, we use the 
between-class scatter and within-class scatter matrices: 
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where mk , nk is the center and sample number of the k-th 
cluster respectively. The LDA’s projections V are 
determined by  
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which can be solved as a generalized eigenvalue equation, 
vv wb SS λ=                                     (3) 

with the leading eigenvectors.  
The above LDA formulation has been proven to be 

equivalent to a least squares problem under a mild condition, 
i.e. least squares LDA (LSLDA) [8], that is, 
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where cnRY ×∈ , and c is the cluster number, and Y is defined 
by 
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where nj is the number of samples in the j-th cluster. It has 
been proven theoretically and empirically that the 
equivalence between LSLDA (4) and original LDA (2) holds 
for most high-dimensional and under-sampled data [8]. 

 
3. PROJECTION VIA STRUCTURE SPARSE 

REGRESSION 
 

In this section, we first introduce structured sparsity-
inducing norms, then formulate structured sparse LDA, and 
finally give an efficient algorithm. 

 
3.1. Structured Sparsity-Inducing Norms 

 
Jenatton et al. [7] introduced a structured sparse norm, 
where the regularization (e.g. l2,1-norm) is exploited to 
enforce between-group sparsity with within-group l2 norm. 
That is, such mixed norm highlights more the selection of a 
few groups of variables rather than single variable. 
Generally, Interesting groups are pre-defined/auto-learned 
by certain priors. Then, following by the pre-specified 
groups, the structured sparse norm can be formulated as 
follows, 
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where g is a subset of variable indexes so that 
},,1{ pGg =∪ ∈ covers all variables, Gp
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gi∈ and 0 otherwise, )2,0(∈α , the operation “  ” means 
the dot product. Especially, when 1=α , i.e. the l1 norm is 
used to constraint to group selection, thus the above 
structured constraint (6) is l2,1 norm which linearly combines 
the l2 norms of possibly groups of variables with the weight 
dg. In practice, we exploit the l1 norm since it is convex. 

Another question is how to define the groups. There are 
many options, in this paper, but we merely investigate the 
form of 2-dimensional grid on images. Following by the 
strategy in [7], we partition the 2-dimensional plane in all 
horizontal and vertical half-spaces with overlapping groups, 
which has been proven to be able to induce rectangular 
nonzero patterns under l1 norm.  

 
3.2. Formulation of Structured Sparse LDA 
 
By combining (4) with (6), we can obtain the model of 
structured sparse LDA, 
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where kV is the k-th column of matrix V. Since each column 
of V is independent in this regression model, we may operate 
on each column on Y. Therefore, (7) can be converted into 
the following formulation for simplicity, 
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However, this optimization problem is no longer 
differentiable and convex when 1<α . To address this 
regularization, we utilize the following theorem from [7]. 
 
Theorem 1: Let )2,0(∈α  and )2/( ααβ −= . For any vector 

mR∈u , we have the following equality, 
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Using above theorem, we can reformulate the objective 
function (8) as follows, 
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3.3. Optimization 
 
To solve the optimization problem in (9), we present an 
algorithm alternating the calculation of the two variables 
involved, i.e., v and z. So, the optimization algorithm mainly 
includes two steps: first, we use Theorem 1 to solve z in (9) 
for fixed v. Second, for fixed z, we can solve v as the 
following convex problem, 

 vv
2

vy
2
1       

/vd
2

vy
2
1v

2

1

2

2

2

Λ+−=

+−= ∑
=

T

F

T

i

G

i

g

F

T

X
c

zX
c

)f( i

λ

λ


 ,     (10) 



where ))/)(((
1
∑
=

=Λ
G

i
i

igig zdiag dd  . Thus (10) has a closed 

form solution for the variable v, which can be updated as  
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By alternating the two steps, our algorithm can converge 
very fast, as shown in Fig.1. In experiments, the stopping 
criterion relies on the relative decrease (e.g. 10-3) in the cost 
function (8). More importantly, the algorithm does not need 
a warm starting.  
 

4. EXPERIMENTS 
 
We use two standard face databases, AR [9] and Extended 
YaleB [10], to experimentally compare the proposed 
SSLDA method with other methods by the nearest neighbor 
classifier. The comparison methods include Regularized 
LDA (RLDA) [11], Uncorrelated LDA (ULDA) [12], 
Orthogonal LDA (OLDA) [12], LSLDA and SLDA. For fair 
comparison, SLDA is implemented with only sparsity 
instead of group sparsity based on the regression model of 
LDA. For clarity, we only consider L1 sparse, i.e. α=1, and 
present results for SSLDA and SLDA with the parameters 
λ=0.005, 0.1 unless specified. The projecting dimension of 
LDA is set to class number minus 1. The z is initialized as 0. 

A subset from the AR database [9] consists of 1,400 non-
occluded face images, corresponding to 100 subjects (50 
males and 50 females), is used in our experiments. We crop 
and normalize the original face images to 40*32 pixels by 
aligning two eyes. The Extended Yale B [10] contains about 
2,414 frontal face images of 38 individuals with varying 
illumination condition. We also use the cropped face images 
of size 40*32 pixels. To eliminate illumination effect partly, 
we exploit histogram equalization. 

We first tested the different algorithms on AR database. 
We randomly split the subset into two halves. One half, 
containing 7 face images for each person, is used for training, 
and the other half is used for testing. Fig. 2 shows some 
examples of learned projections for SLDA and SSLDA, 
where the parameter λ is respectively set to 0.02 and 1.0 for 
more clear description. Each pixel value implies the weight 
for corresponding location in face image. Positive and 

negative values are respectively represented by red and blue 
color. For more clear representation, we reduce the values 
close to 0 (less than 10-3 with absolute value) to 0 for 
projections of SSLDA. While SLDA finds sparse but 
spatially unconstrained patterns, SSLDA chooses sparsely 
convex areas that approximately correspond to natural 
components of face image.  

We also quantitatively compare SSLDA with other 
methods, shown in Fig.3. Surprisingly, we find that the 
performance of SSLDA on the test set is pretty excellent 
compared with SLDA, which yields sparsity without any 
structured priors. SSLDA slightly outperforms the RLDA, 
which improves over ULDA and OLDA.  This also implies 
the importance of the structure in face recognition, which 
helps SSLDA to improve the recognition performance. 

In the second experiment we test the proposed algorithm’s 
ability on Extended Yale B database [10] which consists of 
face images with complex illumination variations. We 
randomly choose 4, 8, 16, 32 face images from per subject 
as the training set, the others images are used to test 
respectively.  The experimental results are shown in Fig. 4. 
SSLDA outperforms other methods consistently. In 
particular, for small sample size, SSLDA is more robust. 
When the number of training samples is 4 and 8, the 
performance of SSLDA is significantly superior to other best 
methods. More importantly, SSLDA completely outperforms 

Figure 2. The learned projections on AR database: SLDA 
(the first row) and SSLDA (the bottom two rows). Each 
image represents a projecting vector, only a few vectors are 
shown here because of space limitation. Blue pixels mean 
negative values, red pixels represent positive values. 
(Please see the color figure) 

Figure 3. Classification accuracy versus variants of LDA 
with k-NN classifier on AR database. SSLDA does not 
degrade the performance of face recognition. 

Figure 1. Convergence trend with iteration times. Data 
comes from AR [9] database.  



LDA with only sparsity constraints, which again verifies that 
implicitly facial structure can help face recognition. With 
increasing sample size, the performance of RLDA is close to 
SSLDA since enough samples may make learned projection 
more robust to generalize on testing samples. In addition, we 
also find the recognition performance becomes better with 
increasing of the training samples number because the 
overfitting can be generally reduced when utilizing a large 
number of training samples. 
 

5. CONCLUSION 
 
In this paper, we proposed to apply the structured sparse to 
Linear Discriminant Analysis from the viewpoint of 
reconstruction based on the fact that multivariate LDA is 
equivalent to a least squares model under a mild condition. 
We added the sparsity-inducing norms into the least square 
LDA model and then proposed a simple but efficient 
algorithm to solve SSLDA. In the task of face recognition, 
our approach leads to not only better performance but also 
more interpretable projections. 

In future work, we are going to extend the structured 
sparsity-inducing regularization to linear graph embedding, 
and explore more applications in object classification.  
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Figure 4. Classification accuracy versus variants of LDA 
with k-NN classifier on Extended Yale B database. (a), (b), 
(c) and (d) use 4, 8, 16 and 32 face images per subject as 
the training set respectively.  When training set size is 
small, the performance of SSLDA significantly 
outperforms other methods. With increasing size, the 
RLDA is close to SSLDA on classification accuracy. More 
importantly, SSLDA improves over SLDA consistently, 
which implies facial structures help face recognition. 
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